校本课程常用的巧算和速算方法
常用的巧算和速算方法

小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。
2。
计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3。
计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算。
(2)28+28+28=(28+2)+(28+2)+(28+2)—6=30+30+30—6=90—6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去。
二、改变运算顺序:在只有“+"、“-”号的混合算式中,运算顺序可改变计算:(1)45—18+19(2)45+18-19解:(1)45—18+19=45+19—18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面。
校本课程:常用的巧算和速算方法

*****校本课程数学计算方法第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12 X 14= ?解:1 X仁12 + 4 = 62X4 = 812 X 14=168注:个位相乘,不够两位数要用0占位。
2 .头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23 X 27= ?解:2+1=32X3 = 63X7 = 2123 X 27=621注:个位相乘,不够两位数要用0占位。
3 .第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37 X 44= ?解:3+1=44 X 4=167 X 4=2837 X 44=1628注:个位相乘,不够两位数要用0占位4 .几十一乘几十一:口诀:头乘头,头加头,尾乘尾例:21 X 4仁?解:2 X 4=82+4=61 X 1=121 X 41=8615 .11乘任意数:口诀:首尾不动下落,中间之和下拉例:11 X 23125= ?解:2+3=53+1=41+2=32+5=72和5分别在首尾11 X 23125=254375注:和满十要进一。
6 .十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字, 加下一位数,再向下落。
例:13 X 326= ?解:13个位是33X 3+2=113X 2+6=123 X 6=1813 X 326=4238注:和满十要进一。
第二讲常用巧算速算中的思维与方法(1)【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。
例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为1+2 + ....... +99+10014 2+ 3 + .................... + 99+ 100+ )100+ 99+98+ ........................ 十 2 +1| 101 + 101+101 + .................... + 10HW1所以,1 + 2+ 3 + 4+……+ 99+ 100= 101 X 100 十2=5050“ 3+5+7+ .........+ 97+99= ?3 十 5 卡了+....... +97 + 99+) 99 + 97 + 95 +.................. +5 + 3102 + 102 + 102+ .............. +102 + 1021 ----------------------------------------------- ------------------------------------------------- 13+5 + 7+……+ 97+99= (99+ 3)X 49 - 2= 2499 。
小学数学速算巧算

小学数学速算巧算速算是指利用数与数之间的特殊关系进行较快的加减乘除运算。
速算是数学学习中的一项重要技能,能够帮助学生更快速、准确地完成计算,提高数学成绩。
在小学数学学习中,掌握速算技巧对于学生的数学能力提升非常重要。
一、乘法速算乘法速算是指利用乘法口诀和数字规律进行快速计算。
以下是几个常用的乘法速算技巧:1、头同尾合十法:这种方法适用于头数相同,尾数相加等于10的两个数相乘。
例如:27×23=621(7×9=63),38×32=1216(4×8=32)。
2、头差尾补法:这种方法适用于头数相差为1,尾数相乘后再加上一个数能够凑成10的两个数相乘。
例如:46×44=2024(4×6=24),27×23=621(3×7=21)。
3、头同尾补法:这种方法适用于头数相同,尾数相差为1的两个数相乘。
例如:67×63=4221(6×7=42),48×42=2016(5×8=40)。
4、头尾互补法:这种方法适用于头数和尾数互补的两个数相乘。
例如:73×37=2711(7×3=21),88×82=7136(9×8=72)。
二、加法速算加法速算是指利用特殊的加法规律进行快速计算。
以下是几个常用的加法速算技巧:1、补数加法:这种方法适用于两个加数的补数相加。
例如:98+89=187(9+8=17),76+64=140(7+6=13)。
2、分组凑整法:这种方法适用于两个加数的尾数相加为整十或整百的情况。
例如:34+66=100(3+6=9),45+55=100(5+5=10)。
3、基准数法:这种方法适用于一组数相加,其中有几个相同的数或者相邻的数。
例如:50+55+58+59+62+65=(50+65)×6÷2=240。
三、减法速算减法速算是指利用特殊的减法规律进行快速计算。
(完整word版)校本课程:常用的巧算和速算方法(word文档良心出品)

目录第一讲生活中几十乘以几十巧算方法 (2)第二讲常用巧算速算中的思维与方法(1) (4)第三讲常用巧算速算中的思维与方法(2) (6)第四讲常用巧算速算中的思维与方法(3) (8)第五讲常用巧算速算中的思维与方法(4) (10)第六讲常用巧算速算中的思维与方法(5) (14)第七讲常用巧算速算中的思维与方法(6) (16)第八讲小数的速算与巧算1——凑整 (18)第九讲乘法速算1 (19)第十讲乘法速算2 (21)第十一讲乘法速算3 (22)第十二讲乘法速算4 (23)第十三讲乘法速算5 (24)第十四讲乘法速算6 (25)第十五讲乘法速算7 (27)第十六讲乘法速算8 (29)注:《速算技巧》 (33)第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
实用小学巧算和速算方法(可打印)

第一讲速算与巧算(一)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1巧算下面各题:①36+87+64②99+136+101③1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。
例2①188+873②548+996③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。
如:二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例3①300-73-27②1000-90-80-20-10解:①式=300-(73+27)=300-100=200②式=1000-(90+80+20+10)=1000-200=8002.先减去那些与被减数有相同尾数的减数。
例4①4723-(723+189)②2356-159-256解:①式=4723-723-189=4000-189=3811②式=2356-256-159=2100-159=19413.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
常用的巧算和速算方法

常用的巧算和速算方法巧算和速算方法是一种用来简化和加快数学计算的技巧或方法。
在日常生活和工作中,相信有很多人都希望能够迅速准确地进行计算。
以下将介绍一些常用的巧算和速算方法。
1.规律运算法规律运算法是根据数学规律进行计算的方法。
例如,对于两个数的和或差,我们可以利用「同补」的概念,将计算转化为更为简单的形式。
比如,计算79+73可以转化为80+72,利用整十数相加的规律进行计算,即得1522.乘数调整法乘数调整法是在乘法运算中,根据数值特征进行调整。
对于两个大数相乘,可以通过调整其中一个数,使其成为10的整数次幂的形式,进而简化计算。
例如,计算84×48可以调整为80×48+4×48,这样可以利用「倍数性质」和「分开计算」的原则,分别计算80×48和4×48,再将两个结果相加。
3.快速除法法快速除法法是利用数的倍数关系进行除法运算的方法。
例如,计算858÷6可以先观察858和6的倍数关系,可以发现858是6的140倍,因此可以直接得出商为140。
4.近似取数法近似取数法是在计算过程中,对于大数去除无关紧要的位数,简化计算。
例如,计算9876-4321时,可以将9876和4321两个数的千位、百位去掉,得到76-21=55、再将去掉的位数加回来,即可得到正确结果。
5.平方数的巧算法对于平方数,有一些特殊的巧算公式。
例如,计算49的平方,可以利用公式(a+b)×(a-b)=a²-b²,将49写为50-1,然后进行求解,即得49²=50²-1²=2500-1=24996.百分比计算法百分比计算是在计算过程中,利用常见的百分数换算进行计算。
例如,计算一个数值的5%,可以先将这个数值除以20,然后再乘以1,即可得到所求百分比的值。
例如,计算80的5%,可以先将80除以20得到4,再乘以1,即得到所求的百分比值为47.近似法在计算过程中,可以对数值进行近似处理,以便更快地进行计算。
常用的巧算和速算方法

巧算和速算方法,包括:九九乘法口诀:通过记忆乘法口诀表格,可以快速算出两个数的积。
平方差公式:对于两个整数 $a$ 和 $b$,可以快速计算 $(a+b)^2$ 和$(a-b)^2$,分别为 $a^2+2ab+b^2$ 和 $a^2-2ab+b^2$。
除法倒数法:通过求出某个数的倒数,然后用这个倒数乘以需要除的数,可以快速计算除法结果。
11乘法口诀:对于两位数相乘,可以通过将这两个数字的和放在中间,例如$24 \times 11$ 可以计算为 $2$ 和 $4+2$ 和 $4$,得到 $264$。
规律判断法:在一些数列中,如果存在规律,可以通过观察规律推算出下一个数字。
四舍五入法:在进行精确计算不必要的时候,可以使用四舍五入法,保留一定的有效数字即可。
近似取整法:在进行大致计算的时候,可以使用近似取整法,将一个数字取整到最接近的整数,例如 $23.6$ 取整到 $24$。
连加连乘法:对于一些需要进行连加或连乘的数列,可以通过提取公因子,将计算过程简化。
小数移位法:在对小数进行计算时,可以通过移位小数点来将小数转换为整数,然后进行整数运算,最后再将小数点移回原位。
分式化简法:在进行分式运算时,可以通过化简分数,将分式化为最简形式,简化运算。
凑整法:将一个数凑整为最近的整数或10的倍数,然后再进行计算,最后再进行减法运算补回凑整时的误差。
差积因式法:在进行乘法或除法时,将数字拆分为其因子的乘积,然后再进行计算。
近似数法:在进行加减运算时,将数近似为离它最近的10、100、1000等倍数,然后再进行计算。
最后,再将结果还原为原数的近似值。
线性加减法:对于两个数 $a$ 和 $b$,如果它们的差为 $k$,那么 $a\pmb$ 就等于 $a\pm k\pm (b-k)$,其中 $k$ 是某个整数,使得 $b-k$ 或$a-k$ 是一个整数。
平方法:在进行乘法时,如果两个数都离平方数的差不远,那么可以利用公式$(a+b)^2=a^2+2ab+b^2$ 来简化计算。
校本课程:常用的巧算和速算方法

*****校本课程数学计算方法第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。
第二讲常用巧算速算中的思维与方法(1)【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。
例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为1+2 +……+99+100所以,1+2+3+4+……+99+100=101×100÷2=5050“3+5+7+………+97+99=?3+5+7+……+97+99=(99+3)×49÷2= 2499。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*****校本课程数学计算方法第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。
第二讲常用巧算速算中的思维与方法(1)【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。
例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为1+2 +……+99+100所以,1+2+3+4+……+99+100=101×100÷2=5050“3+5+7+………+97+99=?3+5+7+……+97+99=(99+3)×49÷2= 2499。
这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。
张丘建利用这一思路巧妙地解答了“有女不善织”这一名题:“今有女子不善织,日减功,迟。
初日织五尺,末日织一尺,今三十日织讫。
问织几何?”题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。
她第一天织了5 尺布,最后一天织了1 尺,一共织了30 天。
问她一共织了多少布?张丘建在《算经》上给出的解法是:“并初末日织尺数,半之,余以乘织讫日数,即得。
”“答曰:二匹一丈”。
这一解法,用现代的算式表达,就是1 匹=4 丈,1 丈=10 尺,90 尺=9 丈=2 匹1 丈。
张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30 天所织的布都加起来,算式就是:5+…………+1在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。
若把这个式子反过来,则算式便是:1+………………+5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。
同样,这一递增的相同的数,也不是一个整数。
假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等”这一特点,那么,就会出现下面的式子:所以,加得的结果是6×30=180(尺)但这妇女用30 天织的布没有180 尺,而只有180 尺布的一半。
所以,这妇女30 天织的布是180÷2=90(尺)可见,这种解法的确是简单、巧妙和饶有趣味的。
第三讲常用巧算速算中的思维与方法(2)方法一:分组计算一些看似很难计算的题目,采用“分组计算”的方法,往往可以使它很快地解答出来。
例如:求1 到10 亿这10 亿个自然数的数字之和。
这道题是求“10 亿个自然数的数字之和”,而不是“10 亿个自然数之和”。
什么是“数字之和”?例如,求1 到12 这12 个自然数的数字之和,算式是1+2+3+4+5+6+7+8+9+1+0+1+1+1+1+2=5l。
显然,10 亿个自然数的数字之和,如果一个一个地相加,那是极麻烦,也极费时间(很多年都难于算出结果)的。
怎么办呢?我们不妨在这10 亿个自然数的前面添上一个“0”,改变数字的个数,但不会改变计算的结果。
然后,将它们分组:0 和999,999,999;1 和999,999,998;2 和999,999,997;3 和999,999,996;4 和999,999,995;5 和999,999,994;……… ………依次类推,可知除最后一个数,1,000,000,000 以外,其他的自然数与添上的0 共10 亿个数,共可以分为5 亿组,各组数字之和都是81,如0+9+9+9+9+9+9+9+9+9=811+9+9+9+9+9+9+9+9+8=81………………最后的一个数1,000,000,000 不成对,它的数字之和是1。
所以,此题的计算结果是(81×500,000,000)+1=40,500,000,000+1=40,500,000,001方法二:由小推大计算复杂时,我们可以从数目较小的特殊情况入手,研究题目特点,找出一般规律,再推出题目的结果。
例如:(1)计算下面方阵中所有的数的和。
这是个“100×100”的大方阵,数目很多,关系较为复杂。
不妨先化大为小,再由小推大。
先观察“5×5”的方阵,如下图(图4.1)所示。
容易看到,对角线上五个“5”之和为25。
这时,如果将对角线下面的部分(右下部分)用剪刀剪开,如图4.2 那样拼接,那么将会发现,这五个斜行,每行数之和都是25。
所以,“5×5”方阵的所有数之和为25×5=125,即53=125。
于是,很容易推出大的数阵“100×100”的方阵所有数之和为1003=1,000,000。
(2)把自然数中的偶数,像图4.3 那样排成五列。
最左边的叫第一列,按从左到右的顺序,其他叫第二、第三……第五列。
那么2002 出现在哪一列:因为从2 到2002,共有偶数2002÷2=1001(个)。
从前到后,是每8 个偶数为一组,每组都是前四个偶数分别在第二、三、四、五列,后四个偶数分别在第四、三、二、一列(偶数都是按由小到大的顺序)。
所以,由1001÷8=125…………1,可知这1001 个偶数可以分为125 组,还余1 个。
故2002 应排在第二列。
方法三:凑整巧算用“凑整方法”巧算,常常能使计算变得比较简便、快速。
例如(1)99.9+11.1=(90+10)+(9+1)+(0.9+0.1)=111(2)9+97+998+6=(9+1)+(97+3)+(998+2)=10+100+1000=1110(3)125+125+125+125+120+125+125+125=155+125+125+125+(120+5)+125+125+125-5=125×8-5=1000-5=995第四讲常用巧算速算中的思维与方法(3)方法一:巧妙试商除数是两位数的除法,可以采用一些巧妙试商方法,提高计算速度。
(1)用“商五法”试商。
当除数(两位数)的10 倍的一半,与被除数相等(或相近)时,可以直接试商“5”。
如70÷14=5,125÷25=5。
当除数一次不能除尽被除数的时候,有些可以用“无除半商五”。
“无除”指被除数前两位不够除,“半商五”指若被除数的前两位恰好等于(或接近)除数的一半时,则可直接商“ 5”。
例如1248÷24=52,2385÷45=53(2)同头无除商八、九。
“同头”指被除数和除数最高位上的数字相同。
“无除”仍指被除数前两位不够除。
这时,商定在被除数高位数起的第三位上面,再直接商8 或商9。
5742÷58=99,4176÷48=87。
(3)用“商九法”试商。
当被除数的前两位数字临时组成的数小于除数,且前三位数字临时组成的数与除数之和,大于或等于除数的10 倍时,可以一次定商为“9”。
一般地说,假如被除数为m,除数为n,只有当9n≤m<10n 时,n 除m 的商才是9。
同样地,10n≤m+n<11n。
这就是我们上述做法的根据。
例如4508÷49=92,6480÷72=90。
(4)用差数试商。
当除数是11、12、13…………18 和19,被除数前两位又不够除的时候,可以用“差数试商法”,即根据被除数前两位临时组成的数与除数的差来试商的方法。
若差数是1 或2,则初商为9;差数是3 或4,则初商为8;差数是5 或6,则初商为7;差数是7 或8,则初商是6;差数是9 时,则初商为5。
若不准确,只要调小1 就行了。
例如1476÷18=82(18 与14 差4,初商为8,经试除,商8正确);1278÷17=75(17 与12 的差为5,初商为7,经试除,商7 正确)。
为了便于记忆,我们可将它编成下面的口诀:差一差二商个九,差三差四八当头;差五差六初商七,差七差八先商六;差数是九五上阵,试商快速无忧愁。
方法二:恒等变形恒等变形是一种重要的思想和方法,也是一种重要的解题技巧。
它利用我们学过的知识,去进行有目的的数学变形,常常能使题目很快地获得解答。
例如(1)1832+68=(1832-32)+(68+32)=1800+100=1900(2)359.7-9.9=(359.7+0.1)-(9.9+O.1)=359.8-10=349.8第五讲常用巧算速算中的思维与方法(4)方法一:拆数加减在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。
(1)拆成两个分数相减。
例如又如(2)拆成两个分数相加。
例如又如方法二:同分子分数加减同分子分数的加减法,有以下的计算规律:分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)乘以这相同的分子所得的积作分子。
分子相同,分母不是互质数的两个分数相加减,也可按上述规律计算,只是最后需要注意把得数约简为既约(最简)分数。
例如(注意:分数减法要用减数的原分母减去被减数的原分母。
)由上面的规律还可以推出,当分子都是1,分母是连续的两个自然数时,这两个分数的差就是这两个分数的积,根据这一关系,我们也可以简化运算过程。
例如方法三:先借后还“先借后还”是一条重要的数学解题思想和解题技巧。
例如做这道题,按先通分后相加的一般办法,势必影响解题速度。
现在从“凑整”着眼,采用“先借后还”的办法,很快就将题目解答出来了。