高考数学冲刺复习 精练10

合集下载

高考数学复习高频考点题型专题讲解与训练10---函数的图象(附解析答案)

高考数学复习高频考点题型专题讲解与训练10---函数的图象(附解析答案)

高考数学复习高频考点题型专题讲解与训练专题10:函数的图象1. 设函数 f (x )=e x (2x −1)−ax +a ,其中 a <1,若存在唯一的整数 x 0 使得 f (x 0)<0,则 a 的取值范围是 ( )A. [−32e ,1)B. [−32e ,34)C. [32e ,34)D. [32e ,1)2. 已知定义在 R 上的函数 y =f (x ) 对任意的 x 都满足 f (x +2)=f (x ),当 −1≤x <1 时,f (x )=x 3,若函数 g (x )=f (x )−log a ∣x∣(a >0,且 a ≠1)至少有 6 个零点,则 a 的取值范围是 ( )A. (0,15]∪(5,+∞)B. (0,15)∪(5,+∞)C. (17,15]∪(5,7]D. (17,15)∪[5,7)3. 如图,长方形 ABCD 的边 AB =2,BC =1,O 是 AB 的中点,点 P 沿着边 BC ,CD 与 DA 运动,记 ∠BOP =x .将动点 P 到 A ,B 两点距离之和表示为 x 的函数 f (x ),则 y =f (x ) 的图象大致为 ( )A. B. C. D.4. 将函数y=ln(x+1)(x≥0)的图象绕坐标原点逆时针方向旋转角θ(θ∈(0,α]),得到曲线C,若对于每一个旋转角θ,曲线C都仍然是一个函数的图象,则α的最大值为( )A. πB. π2C. π3D. π45. 如图,正三角形ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量OP⃗⃗⃗⃗⃗ 在a= (1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是( )A. B.C. D.6. 经济学家在研究供求关系时,一般用纵轴表示产品价格(自变量),用横轴表示产品数量(因变量).某类产品的市场供求关系在不受外界因素(如政府限制最高价格等)的影响下,市场会自发调解供求关系:当产品价格P1低于均衡价格P0时,则需求量大于供应量,价格会上升为P2;当产品价格P2高于均衡价格P0时,则供应量大于需求量,价格又会下降,价格如此继续波动下去,产品价格将会逐渐靠近均衡价格P0.能正确表示上述供求关系的图形是( )A. B.C. D.7. 设 f (x )=∣lnx∣,若函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点,则实数 a 的取值范围是 ( )A. (0,1e )B. (ln33,e)C. (0,ln33]D. [ln33,1e )8. 已知函数 f (x )=x −4+9x+1,x ∈(0,4).当 x =a 时,f (x ) 取得最小值 b ,则函数 g (x )=(1a )∣x+b∣ 的图象为 ( )A. B.C. D.9. 定义在 R 上的奇函数 f (x ) 满足:①对任意 x ,都有 f (x +3)=f (x ) 成立;②当 x ∈[0,32] 时,f (x )=32−∣∣32−2x ∣∣,则方程 f (x )=1∣x∣在区间 [−4,4] 上根的个数是 ( ) A. 4B. 5C. 6D. 710. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x ≥0 时,f (x )=12(∣x −a 2∣+∣x −2a 2∣−3a 2).若 ∀x ∈R ,f (x −1)≤f (x ),则实数 a 的取值范围为 ( ) A. [−16,16]B. [−√66,√66]C. [−13,13]D. [−√33,√33]11. 如图可能是下列哪个函数的图象 ( )A. y=2x−x2−1B. y=2x sinx4x+1C. y=(x2−2x)e xD. y=xlnx12. 如图,圆C:(x−1)2+(y−1)2=1在直线l:y=x+t下方的弓形(阴影部分)的面积为S,当直线l由下而上移动时,面积S关于t的函数图象大致为( ).A. B.C. D.13. 已知函数 f (x )=x −[x ],其中 [x ] 表示不超过实数 x 的最大整数.若关于 x 的方程f (x )=kx +k 有三个不同的实根,则实数 k 的取值范围是 ( )A. (−1,−12]∪[14,13)B. [−1,−12)∪(14,13]C. [−13,−14)∪(12,1]D. (−13,−14]∪[12,1)14. 已知函数 f (x )={∣log 2x ∣,0<x <2,sin (π4x),2≤x ≤10, 若存在实数 x 1,x 2,x 3,x 4,满足 x 1<x 2<x 3<x 4,且 f (x 1)=f (x 2)=f (x 3)=f (x 4),则(x 3−2)⋅(x 4−2)x 1⋅x 2 的取值范围是( )A. (4,16)B. (0,12)C. (9,21)D. (15,25)15. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数 f (x )={1,x ∈Q,0,x ∈∁R Q.被称为狄利克雷函数,其中 R 为实数集,Q 为有理数集,则关于函数 f (x ) 有如下四个命题:①f(f (x ))=1;②函数 f (x ) 是偶函数;③任取一个不为零的有理数 T ,f (x +T )=f (x ) 对任意的 x ∈R 恒成立;④存在三个点 A(x 1,f (x 1)),B(x 2,f (x 2)),C(x 3,f (x 3)),使得 △ABC 为等边三角形.其中真命题的个数为 ( )A. 1B. 2C. 3D. 416. 已知函数 f (x )=∣log 2∣x −1∣∣,且关于 x 的方程 [f (x )]2+af (x )+2b =0 有 6 个不同的实数根,若最小的实数根为 −3,则 a +b 的值为 ( )A. −2B. 4C. 6D. 817. 定义在 R 上的函数 f (x )=xsin2xx 2+a 的图象如图所示,则实数 a 的可能值为 ( )A. 16B. 14C. 12D. 118. 下列四个函数①f (x )=x +1,②f (x )=2x 3,③f (x )=xsinx ,④f (x )=x cosx 的图象能等分圆 O:x 2+y 2=1 的面积的是 ( )A. ②③B. ②④C. ②③④D. ①②③④19. 某市2015年前n个月空气质量优良的总天数S n与n之间的关系如图所示.若前m月的月平均空气质量优良天数最大,则m值为( )A. 7B. 9C. 10D. 1220. 如图,已知l1⊥l2,圆心在l1上,半径为1m的圆O沿l1以1m/s的速度匀速竖直向上移动,且在t=0时,圆O与l2相切于点A,圆O被直线l2所截得到的两段圆弧中,位于l2上方的圆弧的长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )A. B.C. D.21. 一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n(n∈N∗),则该函数的图象是( )A. B.C. D.22. 已知函数f(x)=x2−2(a+2)x+a2,g(x)=−x2+2(a−2)x−a2+8,设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A−B=( )A. 16B. −16C. a2−2a−16D. a2+2a−1623. 如图,已知l1⊥l2,圆心在l1上,半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )A. B.C. D.24. 给出幂函数(1) f (x )=x ,(2) f (x )=x 2,(3) f (x )=x 3,(4) f (x )=√x ,(5) f (x )=1x ,其中满足条件 f (x 1+x 22)>f (x 1)+f (x 2)2(x 1>x 2>0) 的函数的个数是 ( ) 个.A. 1B. 2C. 3D. 425. 已知函数 f (x )={x 2+5x,x ≥0,−e x +1,x <0.若 f (x )≥kx ,则 k 的取值范围是 ( ) A. (−∞,0]B. (−∞,5]C. (0,5]D. [0,5]26. 若函数 y =a x +b 的图象如图所示,则函数 y =1x+a +b +1 的图象为 ( )A. B.C. D.27. 设函数 f (x )=∣2x −1∣,c <b <a ,且 f (c )>f (a )>f (b ),则 2a +2c 与 2 的大小关系式 ( )A. 2a +2c >2B. 2a +2c ≥2C. 2a +2c ≤2D. 2a +2c <228. 函数 f (x )=e x +e −xe x −e −x (x ≠0) 的图象大致为 ( ) A. B.C. D.29. 若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称.则称点对[P,Q]是函数y=f(x)的一对"友好点对"(点对[P,Q]与[Q,P]看作同一对"友好点对").已知函数f(x)={log2x(x>0)−x2−4x(x≤0),则此函数的"友好点对"有( )A. 0对B. 1对C. 2对D. 3对30. 若函数f(x)=a2x−4,g(x)=log a∣x∣(a>0且a≠1),且f(2)⋅g(−2)<0,则函数f(x)、g(x)在同一坐标系内的大致图象是( )A. B.C. D.31. 定义域为R的函数f(x)={1∣x−1∣,x≠11,x=1,若关于x的函数ℎ(x)=f2(x)+bf(x)+12有5个不同的零点x1,x2,x3,x4,x5,则x12+x22+x32+x42+x52等于( )A. 2b 2+2b2B. 16C. 5D. 1532. 关于x的方程(x2−1)2−∣x2−1∣+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根.其中假命题的个数是( )A. 0B. 1C. 2D. 333. 已知a>0且a≠1,函数f(x)={(a−1)x+3a−4(x≤0),a x(x>0)满足对任意实数x1≠x2,都有f(x2)−f(x1)x2−x1>0成立,则a的取值范围是( )A. (0,1)B. (1,+∞)C. (1,53]D. [53,2)34. 已知函 f (x )={∣lgx ∣,0<x ≤10−12x +6,x >10,若 a ,b ,c 互不相等,且 f (a )=f (b )=f (c ),则 abc 的取值范围是 ( )A. (1,10)B. (5,6)C. (10,12)D. (20,24)35. 已知函数 f (x )=x 2+2x +a (a >0),f (m )<0,则 ( )A. f (m +x +1x )<0B. f (m +x +1x )≤0C. f (m +x +1x )>0D. f (m +x +1x ) 符号不确定36. 已知函数 f (x )={kx +k (1−a 2),(x ≥0,)x 2+(a 2−4a )x +(3−a )2,(x <0),其中 a ∈R ,若对任意的非零实数 x 1,存在唯一的非零实数 x 2(x 2≠x 1),使得 f (x 2)=f (x 1) 成立,则 k 的最小值为 ( )A. −115B. 5C. 6D. 837. 若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的"自公切线".下列方程:①x2−y2=1,②y=x2−∣x∣,③y=3sinx+4cosx,④∣x∣+1=√4−y2,对应的曲线中存在"自公切线"的有( )A. ①③B. ①④C. ②③D. ②④38. 已知函数f(x)的定义域为R.若∃常数c>0,对∀x∈R,有f(x+c)>f(x−c),则称函数f(x)具有性质P.给定下列三个函数:①f(x)=∣x∣;②f(x)=sinx;③f(x)=x3−x.其中,具有性质P的函数的序号是( )A. ①B. ③C. ①②D. ②③39. f(x)=(x−a)(x−b)−2(其中a<b),且α,β是方程f(x)=0的两根,α<β,则实数a,b,α,β的大小关系为( )A. α<a<b<βB. α<a<β<bC. a<α<b<βD. a<α<β<b40. 已知函数f(x)=ln(x+1),x∈(0,+∞),下列结论错误的是( )A. ∀x1,x2∈(0,+∞),(x2−x1)[f(x2)−f(x1)]≥0B. ∀x 1∈(0,+∞),∃x 2∈(0,+∞),f (x 1)−f (x 2)<x 2−x 1C. ∀x 1∈(0,+∞),∃x 2∈(0,+∞),x 2f (x 1)>x 1f (x 2)D. ∃x 1,x 2∈(0,+∞),f (x 1)+f (x 2)2>f (x 1+x 22)41. 设定义域为 R 的函数 f (x )={|lg|x −1||,x ≠1,0,x =1,则关于 x 的方程 [f (x )]2+bf (x )+c =0 有 7 个不同实数解的充要条件是 ( )A. b <0 且 c >0B. b >0 且 c <0C. b <0 且 c =0D. b ≥0 且 c =042. 已知函数 f (x )=x 1+∣x∣(x ∈R ) 时,则下列结论不正确的是 ( )A. ∀x ∈R ,等式 f (−x )+f (x )=0 恒成立B. ∃m ∈(0,1) ,使得方程 ∣f (x )∣=m 有两个不等实数根C. ∀x 1,x 2∈R ,若 x 1≠x 2 ,则一定有 f (x 1)≠f (x 2)D. ∃k ∈(1,+∞) ,使得函数 g (x )=f (x )−kx 在 R 上有三个零点43. 定义:区间 [x 1,x 2](x 1<x 2) 的长度等于 x 2−x 1.函数 y =∣log a x ∣(a >1) 的定义域为 [m,n ](m <n ),值域为 [0,1].若区间 [m,n ] 的长度的最小值为 34,则实数 a 的值为 ( )A. 54B. 2C. 154D. 444. 直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数 f(x) 的图象恰好通过 k(k ∈N ∗) 个格点,则称函数 f(x) 为 k 阶格点函数.下列函数:①f(x)=sinx ;②f(x)=π(x −1)2+3 ;③f(x)=(13)x ;④f(x)=log 0.6x .其中是一阶格点函数的有 ( )A. ①②B. ①④C. ①②④D. ①②③④45. 已知函数 f (x )=4∣x∣+2−1 的定义域为 [a,b ],其中 a 、b ∈Z ,且 a <b .若函数 f (x )的值域为 [0,1],则满足条件的整数对 (a,b ) 共有 ( )A. 2 个B. 5 个C. 6 个D. 8 个46. 已知函数 f (x )={−x x+1,−1<x ≤0,x,0<x ≤1与函数 g (x )=a (x +1) 在 (−1,1] 上有 2 个交点,若方程 x −1x =5a 的解为正整数,则满足条件的实数 a 有 ( )A. 0 个B. 1 个C. 2 个D. 3 个47. 已知函数 f (x )={2x+2+a,x ≤0,f (x −1)+1,x >0,若对任意的 a ∈(−3,+∞),关于 x 的方程 f (x )=kx 都有 3 个不同的根,则 k 等于 ( )A. 1B. 2C. 3D. 448. 已知函数 y =f (−∣x∣) 的图象如图所示,则函数 y =f (x ) 的图象不可能是 ( )A. B.C. D.49. 设函数的集合 P ={f (x )=log 2(x +a )+b∣∣a =−12,0,12,1;b =−1,0,1},平面上点的集合 Q ={(x,y )∣x =−12,0,12,1;y =−1,0,1},则在同一直角坐标系中,P 中函数 f (x ) 的图象恰好经过 Q 中两个点的函数的个数是 ( )A. 4B. 6C. 8D. 1050. 已知函数 f (x )=∣x 2+3x ∣,x ∈R .若方程 f (x )−a∣x −1∣=0 恰有 4 个互异的实数根,则实数 a 的取值范围为 .51. 已知函数 f (x )=x (lnx −ax ) 有两个极值点,则实数 a 的取值范围是 .52. 已知函数 f (x )={(12)x +34,x ≥2,log 2x,0<x <2. 若函数 g (x )=f (x )−k 有两个不同的零点,则实数 k 的取值范围是 .53. 对于函数 f (x )={sinπx,x ∈[0,2],12f (x −2),x ∈(2,+∞), 有下列 5 个结论: ①任取 x 1,x 2∈(0,+∞),都有 ∣f (x 1)−f (x 2)∣≤2;②函数 y =f (x ) 在区间 (4,5) 上单调递增;③f (x )=2kf (x +2k )(k ∈N +),对一切 x ∈(0,+∞) 恒成立;④函数 y =f (x )−ln (x −1) 有 3 个零点;⑤若关于 x 的方程 f (x )=m (m <0) 有且只有两个不同实根 x 1,x 2,则 x 1+x 2=3. 则其中所有正确结论的序号是 .(请写出全部正确结论的序号)54. 关于函数 f (x )=b ∣x∣−a (a >0,b >0) 有下列命题:①函数 f (x ) 的值域为 (−∞,0)∪(0,+∞);②直线 x =k 与函数 f (x ) 的图象有唯一交点;③函数 y =f (x )+1 有两个零点;④函数定义域为 D ,则任意的 x ∈D ,f (x )=f (−x ).其中所有叙述正确的命题序号是 .55. 如果是函数y=sinπxx2−bx+c 的图象的一部分,若图象的最高点的坐标为(12,43),则b+c=.56. 设a∈R,若x>0时均有[(a−1)x−1](x2−ax−1)≥0,则a=.57. 对于函数y=f(x)(x∈R),给出下列命题:(1)在同一直角坐标系中,函数y=f(1−x)与y=f(x−1)的图象关于直线x=0对称;(2)若f(1−x)=f(x−1),则函数y=f(x)的图象关于直线x=1对称;(3)若f(1+x)=f(x−1),则函数y=f(x)是周期函数;(4)若f(1−x)=−f(x−1),则函数y=f(x)的图象关于点(0,0)对称.其中所有正确命题的序号是 .58. 已知函数 f (x )={|log 3x|,0<x <313x 2−103x +8,x ≥3,若存在实数 a ,b ,c ,d ,满足f (a )=f (b )=f (c )=f (d ),其中 d >c >b >a >0,则 abcd 的取值范围是 .59. 在平面直角坐标系 xOy 中,将函数 y =√3+2x −x 2−√3(x ∈[0,2]) 的图象绕坐标原点 O 按逆时针方向旋转角 θ,若 ∀θ∈[0,α],旋转后所得曲线都是某个函数的图象,则 α 的最大值为 .60. 已知函数 f (x )={∣log 3x ∣,0<x <3,sin π3x,3≤x ≤9,若存在实数 a ,b ,c ,d 满足 a <b <c <d ,且 f (a )=f (b )=f (c )=f (d ),则 (c−3)(d−3)ab 的取值范围是 .61. 已知函数 f (x )={∣2x −1∣−1,x ≤1x 2−3x+3x−1,x >1,下列关于函数 g (x )=[f (x )]2+af (x )−1(其中 a 为常数)的叙述中:①对 ∀a ∈R ,函数 g (x ) 至少有一个零点;②当a=0时,函数g(x)有两个不同零点;③∃a∈R,使得函数g(x)有三个不同零点;④函数g(x)有四个不同零点的充要条件是a<0.其中真命题有.(把你认为真命题的序号都填上)62. 已知函数y=x(x−1)(x+1)的图象如图所示.令f(x)=x(x−1)(x+1)+0.01,则下列关于f(x)=0的解的叙述正确的是(填写序号).①有三个实根;②当x>1时,恰有一个实根;③当0<x<1时,恰有一个实根;④当−1<x<0时,恰有一个实根;⑤当x<−1时,恰有一个实根(有且只有一个实根).63. 某食品的保鲜时间t(单位:小时)与储藏温度x(单位:∘C)满足函数关系t={64,x≤0,2kx+6,x>0.且该食品在4∘C的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论:①.该食品在6∘C的保鲜时间是8小时;②.当x∈[−6,6]时,该食品的保鲜时间t随着x增大而逐渐减少;③.到了此日13时,甲所购买的食品还在保鲜时间内;④.到了此日14时,甲所购买的食品已然过了保鲜时间.其中,所有正确结论的序号是.64. [x]表示不超过x的最大整数,定义函数f(x)=x−[x].则下列结论中正确的有.①函数f(x)的值域为[0,1];②方程 f (x )=12 有无数个解;③函数 f (x ) 的图象是一条直线;④函数 f (x ) 是 [k,k +1](k ∈Z ) 上的增函数.65. 已知函数 f (x )=∣∣log a ∣x −1∣∣∣(a >0,a ≠1),若 x 1<x 2<x 3<x 4,且 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 1x 1+1x 2+1x 3+1x 4= .66. 将函数 y =∣∣12x −1∣∣+∣∣12x −2∣∣+1 的图象绕原点顺时针方向旋转角 θ(0≤θ≤π2) 得到曲线 C .若对于每一个旋转角 θ,曲线 C 都是一个函数的图象,则 θ 的取值范围是 .67. 设函数 f (x )={x 2−4x +1(x ≥0),3x +2(x <0), 若互不相等的实数 x 1,x 2,x 3 满足 f (x 1)=f (x 2)=f (x 3),则 x 1+x 2+x 3 的取值范围是 .68. 已知函数f(x)=∣lg(x−1)∣.若a≠b,f(a)=f(b),则a+2b的取值范围是.69. 已知函数y=f(x)和y=g(x)在[−2,2]的图象如图所示.给出下列四个命题:①方程f[g(x)]=0有且仅有6个根;②方程g[f(x)]=0有且仅有3个根;③方程f[f(x)]=0有且仅有5个根;④方程g[g(x)]=0有且仅有4个根,其中正确的命题是.(将所有正确的命题序号填在横线上)70. 对于实数 a 和 b ,定义运算" ∗ ":a ∗b ={a 2−ab,a ≤b,b 2−ab,a >b.设 f (x )=(2x −1)∗(x −1),且关于 x 的方程 f (x )=m (m ∈R ) 恰有三个互不相等的实数根 x 1,x 2,x 3,则 x 1x 2x 3 的取值范围是 .71. 设函数 f 0(x )=(12)∣x∣,f 1(x )=∣∣f 0(x )−12∣∣,f n (x )=∣∣∣f n−1(x )−(12)n ∣∣∣,n ≥1,n ∈N ,则方程 f n (x )=(1n+2)n有 个实数根.72. 已知 f (x )=m (x −2m )(x +m +3),g (x )=2x −2.若同时满足条件:①∀x ∈R ,f (x )<0 或g (x )<0;②∃x ∈(−∞,−4),f (x )g (x )<0,则 m 的取值范围是 .73. 已知 f (x ) 是定义在 [1,+∞) 上的函数,且 f (x )={1−∣2x −3∣,1≤x <212f (12x),x ≥2,则函数 y =2xf (x )−3 在区间 (1,2015) 上的零点的个数为 .74. 如图所示,函数 y =f (x ) 的图象由两条射线和三条线段组成.若 ∀x ∈R ,f (x )>f (x −1),则正实数 a 的取值范围为 .75. 已知函数 f (x )={∣x 2+5x +4∣,x ≤0,2∣x −2∣,x >0,若函数 y =f (x )−a∣x∣ 恰有 4 个零点,则实数 a 的取值范围为 .76. 已知定义在 [−1,1] 上的函数 f (x )=−2∣x∣+1,设 f 1(x )=f (x ),f n+1(x )=f [f n (x )],n ∈N +,若关于 x 的方程 f 3(x )−mx +m =0 有 5 个实数解,则实数 m 的取值范围是 .77. 设函数 f (x ) 的定义域为 D ,若存在非零实数 l 使得对于任意 x ∈M (M ⊆D ),有 x +l ∈D ,且 f (x +l )≥f (x ),则称 f (x ) 为 M 上的 l 高调函数.(1)如果定义域为 [−1,+∞) 的函数 f (x )=x 2 为 [−1,+∞) 上的 m 高调函数,那么实数 m 的取值范围是 .(2)如果定义域为 R 的函数 f (x ) 是奇函数,当 x ≥0 时,f (x )=∣x −a 2∣−a 2,且f (x ) 为 R 上的 4 高调函数,那么实数 a 的取值范围是 .参考答案,仅供参考1. D 【解析】法一:考虑函数 g (x )=e x (2x −1),以及函数 ℎ(x )=a (x −1),则题意要求存在唯一的整数 x 0 使得 g (x 0)<ℎ(x 0).注意到 gʹ(x )=e x (2x +1),尤其注意到 y =x −1 为 y =g (x ) 在 (0,−1) 处的切线,如图.于是可以确定符合题意的唯一整数 x 0=0,则 {f (0)<0f (1)≥0f (−1)≥0,解得 32e ≤a <1.法二:首先 f (0)=−1+a <0,所以唯一的整数为 0.而 f (−1)=−3e+2a ≥0,解得 a ≥32e .又 a <1,对 f (x ) 求导得 fʹ(x )=e x (2x +1)−a , 当 x <−12 时,fʹ(x )<0;当 x >0 时,fʹ(x )>0.从而 f (x ) 在 (−∞,−12) 上单调递减,在 (0,+∞) 上单调递增. 而当 a ≥32e 时,有 f (−1)≥0,f (0)<0,f (1)>0, 故在 (−∞,−1]∪[1,+∞) 上 f (x )≥0,f (0)<0,满足题意.所以满足条件的 a 的取值范围为 [32e ,1).2. A 【解析】由题意得,函数 g (x )=f (x )−log a ∣x∣ 的零点个数即为 y =f (x ) 与 y =log a ∣x∣ 的图象的交点个数. 因为 f (x +2)=f (x ),所以函数 f (x ) 是周期为 2 的周期函数, 又因为 f (x )=x 3(−1≤x <1), 所以函数 f (x ) 的图象如图所示.在同一坐标系中作出函数 y =log a ∣x∣={log a x,x >0log a (−x ),x <0 的图象(a >1 时,如图(1);0<a <1 时,如图(2)).由图象得,要使y=f(x)与y=log a∣x∣的图象至少有6个交点,则当a>1时log a5<1;当0<a<1时,log a5≥−1,解得a>5或0<a≤15.3. B【解析】当点P在BC上时,x∈[0,π4],y=PA+PB=√4+tan2x+tanx,y随x增大而增大,且y与x不为线性关系.由对称性可知,当P在DA上时,y单调递减,且y与x不为线性关系,当x=π4时,y=√5+1;当P在CD上运动时,x∈(π4,3π4],当x=π2时,PA+PB=2√2<√5+1,结合选项,故选B.4. D5. C【解析】设BC与y轴交于点M,则AGGM =21,又G(0,1),A(0,2),所以M(0,12),正三角形边长为√3.当点P运动到点B时,∠AGP=2π3,此时射影y取到最小值−√32,所以排除A,B.当点P从点B向点M运动时,2π3≤x≤π,∠PGM=π−x,所以−y12=tan(π−x),得y=12tanx,结合图象应该选C.6. D7. D【解析】函数g(x)=f(x)−ax在区间(0,3]上有三个零点即函数f(x)=∣lnx∣与y= ax在区间(0,3]上有三个交点.画图如下.当a≤0时,显然,不合乎题意,当a>0时,由图知,当x∈(0,1]时,存在一个交点,当x>1时,f(x)=lnx,可得g(x)=lnx−ax(x∈(1,3]),gʹ(x)=1x −a=1−axx,若gʹ(x)<0,可得x>1a ,g(x)为减函数,若gʹ(x)>0,可得x<1a,g(x)为增函数,此时y=f(x)与y=ax必须在[1,3]上有两个交点,即y=g(x)在[1,3]上有两个零点,所以{g(1a)>0,g(3)≤0,g(1)≤0,解得ln33≤a<1e,故函数g(x)=f(x)−ax在区间(0,3]上有三个零点时,ln33≤a<1e.8. B 【解析】f (x )=x −4+9x+1=(x +1)+9x+1−5≥2√(x +1)×9(x+1)−5=1, 当且仅当 (x +1)2=9,即 x =2(x =−4 舍去)时等号成立,故 a =2,b =1,所以函数 g (x )=(12)∣x+1∣,其图象是把函数 y =(12)∣x∣的图象向左平移一个单位得到.9. B 【解析】因为 f (x +3)=f (x ),所以 f (x ) 周期为 3,当 x ∈[0,32] 时,f (x )={2x,0<x ≤34,3−2x,34<x ≤32.画出 y =f (x ) 和 y =1∣x∣的图象如下.由图象知方程 f (x )=1∣x∣ 在区间 [−4,4] 上根的个数是 5 个. 10. B【解析】函数 f (x )=12(∣x −a 2∣+∣x −2a 2∣−3a 2).在 x ≥0 时的解析式等价于 f (x )={−x,0≤x ≤a 2,−a 2,a 2<x <2a 2,x −3a 2,x ≥2a 2. 因此根据奇函数的图象关于原点对称作出函数 f (x ) 在 R 上的大致图象如下,由∀x∈R,f(x−1)≤f(x),可得2a2−(−4a2)≤1,解得a∈[−√66,√66].11. C【解析】A 中,因为y=2x−x2−1,当x趋向于−∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,所以函数y=2x−x2−1的值小于0,所以 A 中的函数不满足条件;B 中,因为y=sinx是周期函数,所以函数y=2x sinx4x+1的图象是以x轴为中心的波浪线,所以 B 中的函数不满足条件;C 中,因为函数y=x2−2x=(x−1)2−1,当x<0或x>1时,y>0,当0<x<1时,y<0;且y=e x>0恒成立,所以y=(x2−2x)e x的图象在x趋向于−∞时,y>0,0<x<1时,y<0,在x趋向于+∞时,y趋向于+∞;所以 C 中的函数满足条件;D 中,y=xlnx 的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,所以y=xlnx<0,所以 D 中函数不满足条件.12. C【解析】由图1知当t≤−√2时,S=0.由图2知当t≥√2时,S=π.,且阴影部分的面积以t=0为分界点,离t=0越近增长得越快,对照当t=0时,S=π2图象知 C 符合题意.13. A【解析】如下图所示:y=kx+k表示恒过点A(−1,0)斜率为k的直线.若方程f(x)=kx+k有3个相异的实根,则函数f(x)=x−[x]与函数g(x)=kx+k的图象有且仅有3个交点.由图可得:当直线y=kx+k过(2,1)点时,k=13;当直线y=kx+k过(3,1)点时,k=14;当直线y=kx+k过(−2,1)点时,k=−1;当直线y=kx+k过(−3,1)点时,k=−12.则实数k的取值范围是14≤k<13或−1<k≤−12.14. B【解析】画出f(x)的图象如图所示,由图中可以看出:x1<1<x2<2<x3<4<8<x4<10,因为f(x1)=f(x2)=f(x3)= f(x4),所以−log2x1=log2x2,x3+x4=12,从而有x1⋅x2=1,又(x3−2)⋅(x4−2)= (x3−2)⋅(12−x3−2)=−(x3−6)2+16,所以(x3−2)⋅(x4−2)x1⋅x2的取值范围是(0,12) .15. D【解析】由狄利克雷函数的定义:若x∈Q,则f(f(x))=f(1)=1,若x∈∁R Q,则f(f(x))=f(0)=1;若x∈Q,则−x∈Q,则f(−x)=f(x)=1;若x∈∁R Q,则−x∈∁R Q,则f(−x)=f(x)=0;所以函数f(x)是偶函数;若x∈Q,因为T是非零的有理数,所以x+T∈Q,所以有f(x+T)=f(x)=1;若x∈∁R Q,则x+T∈∁R Q,所以f(x+T)=f(x),所以对任意的x∈R,有f(x+T)=f(x)恒成立;取A(−√33,0),B(√33,0),C(0,1),则△ABC为等边三角形,所以存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.16. A【解析】画出函数f(x)=∣log2∣x−1∣∣的图象,如图所示.设f(x)=t,则t2+at+2b=0.若关于x的方程[f(x)]2+af(x)+2b=0有6个不同的实数根,则关于t的方程t2+at+2b=0一定有一根为0,另一根为正,从而b=0,a<0,且两根分别为t1=0、t2=−a.(i)方程f(x)=−a(a<0)有4个实根,由最小的根为−3,得f(−3)=−a,解得a=−2;(ii)方程f(x)=0有x=0和x=2两个实根.综上,a+b=−2.17. A18. B19. C20. B【解析】解法一如图,设∠MON=α,由弧长公式知x=α,在Rt△AOM中,∣AO∣=1−t,cos x2=∣OA∣∣OM∣=1−t,所以y=cosx=2cos2x2−1=2(t−1)2−1(0≤t≤1).故其对应的大致图象应为 B.解法二由题意可知,当t=1时,圆O在直线l2上方的部分为半圆,所对应的弧长为π×1=π,所以cosπ=−1,排除 A,D;当t=12时如图所示,易知∠BOC=2π3,所以cos2π3=−12<0,排除 C.21. A【解析】由已知得f(a n)>a n,即y=f(x)的图象在y=x的图象的上方.22. B【解析】由f(x)=g(x),得(x−a)2=4.所以,当x=a−2和x=a+2时,两函数值相等,又f(x)的图象为开口向上的抛物线,g(x)的图象为开口向下的抛物线,则H1(x)={f(x),x≤a−2,g(x),a−2<x<a+2,f(x),x≥a+2, H2(x)={g(x),x≤a−2,f(x),a−2<x<a+2,g(x),x≥a+2.所以A=H1(x)min=f(a+2)=−4a−4,B=H2(x)max=g(a−2)=−4a+12,所以A−B=−16.23. B【解析】通过圆心角α将弧长x与时间t联系起来,圆半径为1,设弧长x所对的圆心角为α,则α=x,如图所示,cosα2=1−t,即cos x2=1−t,则y=cosx=2cos2x2−1=2(1−t)2−1=2(t−1)2−1(0≤t≤1).其图象为开口向上,在[0,1]上的一段抛物线.24. A【解析】①不满足,函数f(x)=x的图象是一条直线,故当x1>x2>0时,f(x1+x22)=f(x1)+f(x2)2;②不满足,在第一象限,函数f(x)=x2的图象是凹形曲线,故当x1>x2>0时,f(x1+x22)<f(x1)+f(x2)2;③不满足,在第一象限,函数f(x)=x3的图象是凹形曲线,故当x1>x2>0时,f(x1+x22)<f(x1)+f(x2)2;④满足,函数f(x)=√x的图象是凸形曲线,故当x1>x2>0时,f(x1+x22)>f(x1)+f(x2)2;⑤不满足,当x1>x2>0时,f(x1+x22)<f(x1)+f(x2)2.25. D【解析】f(x)的图象如下图所示:令g(x)=kx,则使得f(x)的图象在g(x)图象的上方即可.g(x)的两个临界状态分别是k=0和与y=x2+5x(x≥0)相切的时候.当g(x)与y=x2+5x(x≥0)相切时,k=yʹx=0=5.所以0≤k≤5.26. C【解析】由图可知0<a<1,−2<b<−1.又函数y=1x+a+b+1的图象是由y=1x向左平移a个单位,向下平移∣b+1∣单位而得到的.结合四个选项可知C正确.27. D28. A【解析】提示:因为函数f(x)是奇函数,又f(x)=1+2e2x−1在x∈(−∞,0)∪(0,+∞)上单调递减.29. C【解析】函数f(x)={log2x(x>0)−x2−4x(x≤0)的图象(实线部分)及函数f(x)=−x2−4x(x≤0)的图象关于原点对称的图象(虚线部分)如图所示:则 A ,B 两点关于原点的对称点一定在函数 f (x )=−x 2−4x (x ≤0) 的图象上,故函数 f (x ) 的"友好点对"有 2 对. 30. B【解析】f (2)⋅g (−2)=a 0log a 2<0,得 0<a <1,所以 f (x )=a 2x−4 在 R 上为减函数,g (x )=log a ∣x ∣ 在 (0,+∞) 上为减函数,在 (−∞,0) 上为增函数.31. D 【解析】令 ℎ(x )=0,即 f 2(x )+bf (x )+12=0,由其有 5 个不同零点,结合函数 f (x ) 图象,可知,f (x )=1 应满足上述方程,再结合,两根之积为 12,则 f (x )=12 也满足方程; 因此,解上述 f (x )=1 和 f (x )=12,可得方程的 5 个不同的零点为 x 1=0 、 x 2=1 、 x 3=2 、 x 4=−1 、 x 5=3.32. A【解析】根据题意可令∣x2−1∣=t(t≥0),则原方程化为t2−t+k=0,设方程t2−t+k=0的两根为t1,t2(不妨设t1≤t2),则Δ=1−4k≥0,得k≤14.则{t1+t2=1,t1⋅t2=k,结合t=∣x2−1∣的图象可知:①当k<0时,t1<0<1<t2,所以原方程有2个不同的实根.②当k=0时,t1=0,t2=1,所以原方程有5个不同的实根.③当k=14时,t1=t2=12,所以原方程有4个不同的实根.④当0<k<14时,0<t1<t2<1,所以原方程有8个不同的实根.33. C【解析】由题意知f(x)在R上为增函数,画出函数图象的草图如图所示:所以 {a −1>0,a >1,3a −4≤1, 解得 1<a ≤53.34. C 【解析】作出函数 f (x ) 的图象如图, 不妨设 a <b <c ,则 −lga =lgb =−12c +6∈(0,1) ab =1,0<−12c +6<1 则 abc =c ∈(10,12).35. C【解析】设 f (x ) 的两个根分别为 x 1,x 2,且 x 1<x 2,则 (x 1−x 2)2=(x 1+x 2)2−4x 1x 2=4−4a ,因为 a >0,所以 x 2−x 1<2. 由 f (m )<0 可知 x 1<m <x 2,利用均值不等式可知 m +x +1x ≥m +2 或 m +x +1x ≤m −2,结合二次函数图象知 m +x +1x >x 2 或 m +x +1x <x 1,所以 f (m +x +1x )>0. 36. D 【解析】因为函数 f (x )={kx +k (1−a 2),(x ≥0),x 2+(a 2−4a )x +(3−a )2,(x <0),,其中 a ∈R ,所以x=0时,f(x)=k(1−a2).又由对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立,所以函数必须为连续函数,即在x=0附近的左右两侧函数值相等,易知k≤0时,结合图象可知,不符合题意.所以k>0,且(3−a)2=k(1−a2),即(k+1)a2−6a+9−k=0有实数解,所以△=62−4(k+1)(9−k)≥0,解得k<0或k≥8.又因为k>0,所以k的取值范围为[8,+∞).37. C【解析】①中x2−y2=1是一个等轴双曲线,它不存在"自公切线";②如图所示,曲线在点(−12,−14)和点(12,−14)处的切线重合;③y=3sinx+4cosx=5sin(x+φ)(tanφ=43).如图,在所有的最高点处的切线重合,所以③存在"自公切线";④中曲线如图所示,不存在"自公切线".38. B【解析】对于①:因为f(x)=∣x∣是偶函数,所以当x=0时,对于∀c∈R,都有f(x+c)=f(x−c)成立,所以该函数不具有性质P;对于②:对于∀常数c>0,当x+c=−π2时,有f(x+c)≤f(x−c)成立,故该函数也不具有性质P;对于③:因为 f (x )=x 3−x 在 (−∞,−√33),(√33,+∞) 上单调递增,在 (−√33,√33) 上单调递减,所以 ∃ 常数 c >√33>0,对 ∀x ∈R ,有 f (x +c )>f (x −c ) 成立,所以该函数具有性质 P .39. A 【解析】f (x )=(x −a )(x −b )−2 的图象是由 f (x )=(x −a )(x −b ) 的图象向下平移 2 个单位得到的,如图:由图可得 α<a <b <β. 40. D【解析】函数图象可由 y =lnx 向左平移一个单位得到:当 x ∈(0,+∞) 时,函数 f (x )=ln (x +1) 为上凸的增函数,∣EF ∣=f (x 1)+f (x 2)2,∣EG ∣=f (x 1+x 22),∣EF ∣<∣EG ∣.41. C【解析】函数f(x)的图象如图所示,再由题关于x的方程[f(x)]2+bf(x)+c=0有7个不同的实数解,所以,关于f(x)的方程有两个不同解,且[f(x)]1=0,[f(x)]2>0,因此,c=0且b<0.42. D【解析】因为f(−x)=−x1+∣x∣=−f(x),所以f(x)为奇函数,故A正确;方程∣f(x)∣=m根的个数,就是函数y=∣f(x)∣与函数y=m的图象交点的个数,由图2可得B对;当x≥0时fʹ(x)=1(1+x)2>0,则f(x)在(0,+∞)为增函数,又因为f(x)为奇函数,所以f(x)在(−∞,0)上也为增函数,可得C对;对于D中,当x>0时,f(x)−kx=0,解得x=0或x=1k −1,由x=1k−1>0,得0<k<1,故D错.43. D【解析】作出函数y=∣log a x∣(a>1)的图象(如图),。

2022届高考数学一轮复习(新高考版) 第8章 强化训练10 圆锥曲线中的综合问题

2022届高考数学一轮复习(新高考版) 第8章 强化训练10 圆锥曲线中的综合问题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
由题意可知O→A⊥O→B,即O→A·O→B=0, ∴x1·x2+y1·y2=(1+k2)x1·x2+2k(x1+x2)+4=0, ∴121+1+4kk22-13+2k42k2+4=0, 解得 k2=4>34, ∴|AB|= 1+k2|x1-x2|= 1+k2· x1+x22-4x1x2
= 1+k2·4 1+4k42-k2 3=41765. 综上,直线 l 的方程为 2x-y+2=0 或 2x+y-2=0,|AB|=41765.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
技能提升练
13.焦点为F的抛物线C:y2=4x的对称轴与准线交于点E,点P在抛物线C
所以△PAB的面积
S△PAB=12|PM|·|y1-y2|=342
y02 4x0
3
2.
因为 x20+y420=1(-1≤x0<0),
所以 y20-4x0=-4x20-4x0+4∈[4,5],
所以△PAB 面积的取值范围是6
2,15
4
10.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
7.已知双曲线 C:ax22-by22=1,且圆 E:(x-2)2+y2=1 的圆心是双曲线 C 的右焦点.若圆 E 与双曲线 C 的渐近线相切,则双曲线 C 的方程为 __x32_-__y_2_=__1__.
解析 ∵c=2⇒a2+b2=4.
12.已知椭圆 L:ax22+by22=1(a>b>0)的离心率为 23,短轴长为 2. (1)求椭圆L的标准方程; 解 由 e2=ac22=a2-a2b2=1-ba22=34,得 a2=4b2, 又短轴长为2,可得b=1,a2=4, ∴椭圆 L 的标准方程为x42+y2=1.

压轴高考数学复习导数大题精选10题附详细解答

压轴高考数学复习导数大题精选10题附详细解答

高考压轴导数大题例1.已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.例3已知函数()θθcos 163cos 3423+-=x x x f ,其中θ,R x ∈为参数,且πθ20≤≤.(1)当时0cos =θ,判断函数()x f 是否有极值;(2)要使函数()f x 的极小值大于零,求参数θ的取值范围;例4.已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =的图象经过点(1,0),(2,0).求:(Ⅰ)0x 的值;(Ⅱ),,a b c 的值.例5设3=x 是函数()()()R x e b ax x x f x ∈++=-32的一个极值点.(Ⅰ)求a 与b 的关系式(用a 表示b ),并求()x f 的单调区间;(Ⅱ)设0>a ,()x e a x g ⎪⎭⎫ ⎝⎛+=4252.若存在[]4,0,21∈εε使得()()121<-εεg f 成立, 求a 的取值范围例6已知函数321()(2)13f x ax bx b x =-+-+ 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<.(1)证明0a >;(2)若z =a +2b ,求z 的取值范围。

1. 已知函数21()22f x ax x =+,()g x lnx =.(Ⅰ)如果函数()y f x =在[1,)+∞上是单调增函数,求a 的取值范围;(Ⅱ)是否存在实数0a >,使得方程()()(21)g x f x a x '=-+在区间1(,)e e 内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.2. 如果()0x f 是函数()x f 的一个极值,称点()()00,x f x 是函数()x f 的一个极值点.已知函数()()()00≠≠-=a x e b ax x f x a 且(1)若函数()x f 总存在有两个极值点B A ,,求b a ,所满足的关系;(2)若函数()x f 有两个极值点B A ,,且存在R a ∈,求B A ,在不等式1<x 表示的区域内时实数b 的范围.(3)若函数()x f 恰有一个极值点A ,且存在R a ∈,使A 在不等式⎩⎨⎧<<e y x 1表示的区域内,证明:10<≤b .3 已知函数3221()ln ,()3(,,R)32f x x x g x x ax bx c a b c ==-+-+∈.(1)若函数()()()h x f x g x ''=-是其定义域上的增函数,求实数a 的取值范围;(2)若()g x 是奇函数,且()g x 的极大值是3g ,求函数()g x 在区间[1,]m -上的最大值;(3)证明:当0x >时,12()1x f x e ex '>-+.4已知实数a 满足0<a ≤2,a ≠1,设函数f (x )=13x 3-12a +x 2+ax . (Ⅰ) 当a =2时,求f (x )的极小值;(Ⅱ) 若函数g (x )=x 3+bx 2-(2b +4)x +ln x (b ∈R )的极小值点与f (x )的极小值点相同.求证:g (x )的极大值小于等于5/4例1解(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-2104x x <-≤.于是2044a b <-,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16. (II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--, 因为切线l 在点(1())A f x ,处空过()y f x =的图象,所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点. 而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<). 当11m x <<时,()0g x <,当21x m <<时,()0g x >;或当11m x <<时,()0g x >,当21x m <<时,()0g x <.设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则当11m x <<时,()0h x >,当21x m <<时,()0h x >;或当11m x <<时,()0h x <,当21x m <<时,()0h x <.由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102a h =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.例3解(Ⅰ)当cos 0θ=时,3()4f x x =,则()f x 在(,)-∞+∞内是增函数,故无极值.(Ⅱ)2'()126cos f x x x θ=-,令'()0f x =,得12cos 0,2x x θ==. 由(Ⅰ),只需分下面两种情况讨论.①当cos 0θ>时,随x 的变化'()f x 的符号及()f x 的变化情况如下表: x(,0)-∞ 0 cos (0,)2θ cos 2θ cos (,)2θ+∞ '()f x + 0 - 0 + ()f x ↗ 极大值↘ 极小值 ↗因此,函数()f x 在2x =处取得极小值f()2,且3cos 13()cos 2416f θθθ=-+.要使cos ()02f θ>,必有213cos (cos )044θθ-->,可得30cos θ<<由于30cos θ≤≤3116226ππππθθ<<<<或. ②当时cos 0θ<,随x 的变化,'()f x 的符号及()f x 的变化情况如下表: xcos (,)2θ-∞ cos 2θ cos (,0)2θ 0 (0,)+∞ '()f x+ 0 - 0 + ()f x 极大值 极小值因此,函数()0f x x =在处取得极小值(0)f ,且3(0)cos .16f θ= 若(0)0f >,则cos 0θ>.矛盾.所以当cos 0θ<时,()f x 的极小值不会大于零.综上,要使函数()f x 在(,)-∞+∞内的极小值大于零,参数θ的取值范围为311(,)(,)6226ππππ⋃.例4解法一:(Ⅰ)由图像可知,在(),1-∞上()'0f x >,在()1,2上()'0f x <,在()2,+∞上()'0f x >,故()f x 在∞∞(-,1),(2,+)上递增,在(1,2)上递减, 因此()f x 在1x =处取得极大值,所以01x =(Ⅱ)'2()32,f x ax bx c =++由'''f f f (1)=0,(2)=0,(1)=5,得320,1240,5,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解得2,9,12.a b c ==-=解法二:(Ⅰ)同解法一(Ⅱ)设'2()(1)(2)32,f x m x x mx mx m =--=-+又'2()32,f x ax bx c =++所以3,,232m a b m c m ==-= 32|3()2,32m f x x mx mx =-+ 由(1)5f =,即325,32m m m -+=得6,m =所以2,9,12a b c ==-=例5解(Ⅰ)f `(x)=-[x 2+(a -2)x +b -a ]e 3-x ,由f `(3)=0,得 -[32+(a -2)3+b -a ]e 3-3=0,即得b =-3-2a ,则 f `(x)=[x 2+(a -2)x -3-2a -a ]e 3-x =-[x 2+(a -2)x -3-3a ]e 3-x =-(x -3)(x +a+1)e 3-x .令f `(x)=0,得x 1=3或x 2=-a -1,由于x =3是极值点,所以x+a+1≠0,那么a ≠-4.当a <-4时,x 2>3=x 1,则在区间(-∞,3)上,f `(x)<0, f (x)为减函数;在区间(3,―a ―1)上,f `(x)>0,f (x)为增函数;在区间(―a ―1,+∞)上,f `(x)<0,f (x)为减函数.当a >-4时,x 2<3=x 1,则在区间(-∞,―a ―1)上,f `(x)<0, f (x)为减函数;在区间(―a ―1,3)上,f `(x)>0,f (x)为增函数;在区间(3,+∞)上,f `(x)<0,f (x)为减函数.(Ⅱ)由(Ⅰ)知,当a >0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)], 而f (0)=-(2a +3)e 3<0,f (4)=(2a +13)e -1>0,f (3)=a +6,那么f (x)在区间[0,4]上的值域是[-(2a +3)e 3,a +6].又225()()4x g x a e =+在区间[0,4]上是增函数,且它在区间[0,4]上的值域是[a 2+425,(a 2+425)e 4], 由于(a 2+425)-(a +6)=a 2-a +41=(21-a )2≥0,所以只须仅须(a 2+425)-(a +6)<1且a >0,解得0<a <23. 故a 的取值范围是(0,23).例6解(Ⅰ)由函数()f x 在1x x =处取得极大值,在2x x =处取得极小值,知12x x ,是()0f x '=的两个根.所以12()()()f x a x x x x '=--当1x x <时,()f x 为增函数,()0f x '>,由10x x -<,20x x -<得0a >.(Ⅱ)在题设下,12012x x <<<<等价于(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩ 即202204420b a b b a b b ->⎧⎪-+-<⎨⎪-+->⎩.化简得203204520b a b a b ->⎧⎪-+<⎨⎪-+>⎩.此不等式组表示的区域为平面aOb 上三条直线:203204520b a b a b -=-+=-+=,,.所围成的ABC △的内部,其三个顶点分别为:46(22)(42)77A B C ⎛⎫ ⎪⎝⎭,,,,,. z 在这三点的值依次为16687,,. 所以z 的取值范围为1687⎛⎫ ⎪⎝⎭,. 1解:(Ⅰ)当0a =时,()2f x x =在[1,)+∞上是单调增函数,符合题意. 当0a >时,()y f x =的对称轴方程为2x a =-,由于()y f x =在[1,)+∞上是单调增函数, 所以21a -≤,解得2a ≤-或0a >,所以0a >. 当0a <时,不符合题意.综上,a 的取值范围是0a ≥.(Ⅱ)把方程()()(21)g x f x a x '=-+整理为2(21)lnx ax a x =+-+,即为方程2(12)0ax a x lnx +--=. b a 21 2 4 O 4677A ⎛⎫ ⎪⎝⎭,(42)C , (22)B ,设2()(12)H x ax a x lnx =+-- (0)x >, 原方程在区间(1,e e )内有且只有两个不相等的实数根, 即为函数()H x 在区间(1,e e )内有且只有两个零点.1()2(12)H x ax a x '=+--22(12)1(21)(1)ax a x ax x x x +--+-==令()0H x '=,因为0a >,解得1x =或12x a =-(舍)当(0,1)x ∈时, ()0H x '<, ()H x 是减函数;当(1,)x ∈+∞时, ()0H x '>,()H x 是增函数.()H x 在(1,e e )内有且只有两个不相等的零点, 只需min 1()0,()0,()0,H e H x H e ⎧>⎪⎪<⎨⎪>⎪⎩即2222212(12)10,(1)(12)10,(12)1(2)(1)0,a a a e a e e e e H a a a ae a e e e a e ⎧--++++=>⎪⎪⎪=+-=-<⎨⎪+--=-+->⎪⎪⎩ ∴22,211,1,2e e a e a e a e e ⎧+<⎪-⎪⎪>⎨⎪-⎪>-⎪⎩ 解得2121e e a e +<<-, 所以a 的取值范围是(21,21e e e +-) .2(1)x a x a e x a b ax e a x f ⋅--+⋅=))(()('2令()0f x '=得20x ax b -+= 240a b ∴-> 又 00a x ≠≠且204a b b ∴<≠且(2)20x ax b -+=在(1,1)-有两个不相等的实根. 即2401121010a b a a b a b ⎧∆=->⎪⎪-<<⎪⎨⎪++>⎪-+>⎪⎩ 得 22441b a a b ⎧>⎪<⎨⎪<-⎩110b b ∴-<<≠且(3)由①2()00f x x ax b '=⇒-+=(0)x ≠ ①当()220a xx ax b b f x a e x -+'==⋅⋅在x a =左右两边异号(,())a f a ∴是()y f x =的唯一的一个极值点 由题意知2110()a a e a b e e <<≠⎧⎨-<-<⎩且- 即 220111a a ⎧<<⎨-<<⎩ 即 201a <<存在这样的a 的满足题意 0b ∴=符合题意②当0b ≠时,240a b ∆=-=即24b a = 这里函数()y f x =唯一的一个极值点为(,())22a a f由题意12102()2a a a e b e e ⎧<≠⎪⎪⎨⎪-<-<⎪⎩且即 211222042a a e b e ⎧<<⎪⎨-<-<⎪⎩ 即 1122044b e b e <<⎧⎪⎨⎪-<<⎩01b ∴<<综上知:满足题意 b 的范围为[0,1)b ∈.3解:(1)()ln 1f x x '=+ ,2()23g x x ax b '=-+-,所以2()ln 231h x x x ax b =+-++, 由于()h x 是定义域内的增函数,故1()40x h x x a '=+-≥恒成立,即14x a x ≤+对0x ∀>恒成立,又144xx +≥(2x =时取等号),故(,4]a ∈-∞. (2)由()g x 是奇函数,则()()0g x g x +-=对0x ∀>恒成立,从而0a c ==, 所以323()3g x x bx =--,有2()23g x x b '=--. 由()g x 极大值为3g ,即3(0g '=,从而29b =-;因此32233()g x x x =--,即23323()22(g x x x x '=-+=--+, 所以函数()g x 在3(,-∞和3()+∞上是减函数,在33(上是增函数.由()0g x =,得1x =±或0x =,因此得到:当10m -<<时,最大值为(1)0g -=; 当30m ≤<32233()g m m m =-+; 当3m ≥时,最大值为343(g =.(3)问题等价于证明2()ln x xe ef x x x =>-对0x >恒成立;()ln 1f x x '=+,所以当1(0,)e x ∈时,()0f x '<,()f x 在1(0,)e 上单调减;当1(,)e x ∈+∞时,()0f x '>,()f x 在1(,)e+∞上单调增; 所以()f x 在(0,)+∞上最小值为1e -(当且仅当1e x =时取得) 设2()(0)x xe e m x x =->,则1()x x e m x -'=,得()m x 最大值1(1)e m =-(当且仅当1x =时取得), 又()f x 得最小值与()m x 的最大值不能同时取到,所以结论成立.4(Ⅰ) 解: 当a =2时,f ′(x )=x 2-3x +2=(x -1)(x -2).列表如下:x(-∞,1) 1 (1,2) 2 (2,+∞) f ′(x )+ 0 - 0 + f (x )单调递增 极大值 单调递减 极小值 单调递增所以,f (x )极小值为f (2)=23.(Ⅱ) 解:f ′(x )=x 2-(a +1)x +a =(x -1)(x -a ).g ′(x )=3x 2+2bx -(2b +4)+1x =2(1)[3(23)1]x x b x x -++-.令p (x )=3x 2+(2b +3)x -1,(1) 当 1<a ≤2时,f (x )的极小值点x =a ,则g (x )的极小值点也为x =a ,所以p (a )=0,即3a 2+(2b +3)a -1=0,即b =21332a a a --,此时g(x)极大值=g(1)=1+b-(2b+4)=-3-b=-3+23312a aa+-=313222aa--.由于1<a≤2,故313222aa--≤32⨯2-14-32=54.(2) 当0<a<1时,f (x)的极小值点x=1,则g(x)的极小值点为x=1,由于p(x)=0有一正一负两实根,不妨设x2<0<x1,所以0<x1<1,即p(1)=3+2b+3-1>0,故b>-52.此时g(x)的极大值点x=x1,有g(x1)=x13+bx12-(2b+4)x1+ln x1<1+bx12-(2b+4)x1=(x12-2x1)b-4x1+1(x12-2x1<0)<-52(x12-2x1)-4x1+1=-52x12+x1+1=-52(x1-15)2+1+110(0<x1<1)≤11 10<54.综上所述,g(x)的极大值小于等于54.。

2011高考数学单元复习训练10:反函数

2011高考数学单元复习训练10:反函数

课时训练10 反函数【说明】 本试卷满分100分,考试时间90分钟.一、选择题(每小题6分,共42分)1.(2010河南实验中学模拟,3)函数y=2x+1(-1≤x<0)的反函数是( )A.y=1+log 2x(x>0)B.y=-1+log 2x(x>0)C.y=1+log 2x(1≤x<2)D.y=-1+log 2x(1≤x<2)答案:D解析:∵-1≤x<0,∴1≤2x+1<2,排除A 、B 又y=2x+1,故x=log 2y=1,即f -1(x)=-1+log 2x,选D.2.设f(x)=1+5x-10x 2+10x 3-5x 4+x 5,则f(x)的反函数的解析式是( )A.f -1(x)=1+5xB.f -1(x)=1+52-xC.f -1(x)=-1+52-xD.f -1(x)=1-52-x答案:B解析:f(x)=x 5-5x 4+10x 3-10x 2+5x-1+2=(x-1)5+2.其反函数为f -1(x)=1+52-x .3.函数y=1-x +2(x ≥1)的反函数图象是( )答案:C解析:原函数的反函数为y=(x-2)2+1(x ≥2),故选C.4.函数f(x)有反函数f -1(x),已知f(x)图象经过点(0,-1),则f(x+4)的反函数图象必经过点( )A.(-1,-4)B.(-4,-1)C.(0,-5)D.(-5,0) 答案:A解析:f(x)的图象(0,-1),∴f(x+4)过(-4,-1).∴f(x+4)的反函数的图象过(-1,-4).故选A.5.(2010全国大联考,1)已知函数f(x)=a x (a>0,且a ≠1)的反函数为y=f -1(x),若f -1(2)+ f -1(5)=1,则a 等于( ) A.101 B.2 C.5 D.10 答案:D解析:∵f -1(x)=log a x,又log a 2+log a 5=1,∴a=10.6.(2010河南开封一模,5)已知函数f(x)=-24x -的反函数为f -1(x)= 24x -,则f(x)的定义域为( )A.(-2,0)B.[-1,2]C.[-2,0]D.[0,2] 答案:D解析:因f -1(x)=24x -的值域为[0,2],故选D.7.(2010全国大联考,5)已知f(x)的定义域是(-∞, +∞),且f(x)是奇函数;若当x<0时,f(x)=3x ,则f -1(-91)的值等于( ) A.2 B.21 C.-2 D.-21 答案:A 解析:依题意可求得当x>0时,f(x)=-3-x .设f -1(-91)=a,则f(a)=-91,即-3-a =-91,∴a=2. 二、填空题(每小题5分,共15分)8.若函数f(x)=xb ax +3的图象关于直线y=x 对称,则a 、b 应满足的条件是________________. 答案:a=0且b ≠0 解析:y=f(x)=x b ax +⇒f -1(x)=a x b -,故x b ax +=a x b -⇒a=0且b ≠0. 9.设f(x)=4x -2x+1(x ≥0),则f -1(0)=__________________.答案:1解析:令4x -2x+1=0,则x=1,即f -1(0)=1.10.(2010江西九校模拟,15)若函数y=x 2-2ax+a 在x ∈[1,3]上存在反函数,且|a-1|+|a-3|≤4,则a 的取值范围为___________________.答案:0≤a ≤1或3≤a ≤4解析:若函数y=x 2-2ax+a 在x ∈[1,3]存在反函数,则[1,3]必在函数图象的对称轴一侧,其对称轴为x=a,∴a ≤1或a ≥3.解|a-1|+|a-3|≤4得0≤a ≤4综合可得.三、解答题(11—13题每小题10分,14题13分,共43分)11.(1)已知f(x-1)=x 2-2x+3,x ≤0,求f -1(x+1).(2)求函数f(x)=⎩⎨⎧<-≥-)0(12),0(12x x x x 的反函数.解析:(1)令x-1=t,则x=t+1,又∵x ≤0,∴t ≤-1,有f(t)=(t+1)2-2(t+1)+3=t 2+2,即f(x)=x 2+2(x ≤-1).由y=x 2+2,得x 2=y-2,∵x ≤-1,∴x=-2-y ,y ≥3,得f -1(x)=-2-x (x ≥3).∴f -1(x+1)=-1-x (x ≥2).(2)①由y=x 2-1,x ≥0知y ≥-1,且y=1+y . ∴y=x 2-1(x ≥0)的反函数是y=1+x (x ≥-1). ②由y=2x-1(x<0)知y<-1且x=21+y , ∴y=2x-1(x<0)的反函数是y=21+x (x<-1). 由(1)(2)知所求反函数为f -1(x)=⎪⎩⎪⎨⎧-<+-≥+).1(21),1(1x x x x 12.已知函数f(x)=a+b x-1(b>0,b ≠1)的图象经过点A (1,3),函数f -1(x+a)的图象经过点B(4,2),试求f -1(x)的表达式.解析:由y=a+b x-1(b>0,b ≠1),得x-1=log b (y-a).∵b x-1>0,则a+b x-1>a.∴y>a,∴f -1(x)=1+log b (x-a)(x>a).∴f -1(x+a)=1+log b x(x>0).∵点A 在f(x)的图象上,点B 在f -1(x+a)的图象上,∴⎩⎨⎧==⎩⎨⎧=+=+-.4,2.214log ,311b a b a b 得 ∴f -1(x)的表达式为f -1(x)=log 4(x-2)+1(x>2).13.已知函数f(x)=(11+-x x )2(x ≥1),f -1(x)是f(x)的反函数,记g(x)=x x f +-)(11+2,求: (1)f -1(x);(2)求g(x)的最小值.解析:(1)∵x ≥1,∴0≤11+-x x <1⇒0≤(11+-x x )2<1. ∴0≤y<1,且y yx y x x -+=⇒=+-1121.∴f -1(x)=xx-+11(0≤x<1). (2)g(x)= x x x++-11+2=x +12+1+x .当且仅当1+x =2即x=3-22∈[0,1]时取“=”. ∴g(x)的最小值为22.14.(2010全国大联考,21)设f(x)=x x a a -+11(a>0,a ≠1).(1)求f(x)的反函数f -1(x);(2)讨论f -1(x)在(1,+∞)上的单调性,并加以证明;(3)令g(x)=1+log a x,当[m,n ] (1, +∞)(m<n)时,f -1(x)在[m,n ]上的值域是 [g(n),g(m)],求a 的取值范围.解析:(1)f -1(x)=log a 11+-x x (x>1或x<-1)(2)设1<x 1<x 2, ∵)1)(1()(2111121212211++-=+--+-x x x x x x x x <0当0<a<1时,f -1(x 1)>f -1(x 2),∴f -1(x)在(1,+∞)上是减函数,当a>1时,f -1(x 1)<f -1(x 2),∴f -1(x)在(1,+∞)上是增函数.(3)当0<a<1时,∵f -1(x)在(1,+∞)上是减函数,∴⎪⎩⎪⎨⎧==--).()(),()(11n g n f m g m f由log a 11+-x x =1+log a x 得11+-x x =ax,即ax 2+(a-1)x+1=0可知方程的两个根均大于1,即 ⎪⎪⎩⎪⎪⎨⎧>->-<<⇒>>∆,121,1.2230,0)1(,0a aa a f 时当∵f -1(x)在(1,+∞)上是增函数,∴⇒⎩⎨⎧+=-+=-⇒⎪⎩⎪⎨⎧==--am am n n anam n m m g n f n g m f 1,1)()(),()(11a=-1(舍去).综上,得0<a<3-22.。

高考数学复习考点题型专题讲解10 数列的递推关系与通项

高考数学复习考点题型专题讲解10 数列的递推关系与通项

高考数学复习考点题型专题讲解专题10 数列的递推关系与通项1.求数列的通项公式是高考的重点内容,等差、等比数列可直接利用其通项公式求解,但有些数列是以递推关系给出的,需要构造新数列转为等差或等比数列,再利用公式求解.2.利用数列的递推关系求数列的通项,常见的方法有:(1)累加法,(2)累乘法,(3)构造法(包括辅助数列法,取倒数法,取对数法等).类型一利用a n与S n的关系求通项1.已知S n求a n的步骤(1)先利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,若符合,则数列的通项公式合写;若不符合,则应该分n=1与n≥2两段来写.2.S n与a n关系问题的求解思路(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.例1 (1)已知数列{a n}为正项数列,且4S1a1+2+4S2a2+2+…+4S nan+2=S n,求数列{a n}的通项公式;(2)已知数列{a n}的各项均为正数,且S n=12⎝⎛⎭⎪⎫an+1an,求数列{a n}的通项公式.解(1)由题知4S1a1+2+4S2a2+2+…+4S nan+2=S n,①则4S1a1+2+4S2a2+2+…+4S n-1an-1+2=S n-1(n≥2,n∈N*),②由①-②可得4S nan+2=a n,即4S n=a2n+2a n,n≥2,n∈N*,在已知等式中令n=1,得4S1a1+2=S1,则4S1=a1(a1+2),③满足上式,所以4S n=a2n+2a n,④则4S n-1=a2n-1+2a n-1(n≥2),⑤④-⑤可得4a n=a2n+2a n-a2n-1-2a n-1⇔2(a n+a n-1)=a2n-a2n-1. 因为a2n-a2n-1=(a n+a n-1)(a n-a n-1),a n>0,所以a n-a n-1=2,所以{a n}为公差是2的等差数列,由③可解得a1=2,所以a n=2+(n-1)×2=2n(n∈N*).(2)由S n=12⎝⎛⎭⎪⎫an+1an,得当n ≥2时,S n =12⎝ ⎛⎭⎪⎫S n -S n -1+1S n -S n -1,所以2S n =S n -S n -1+1S n -S n -1,即S n +S n -1=1S n -S n -1,所以S 2n -S 2n -1=1,所以{S 2n }为公差是1的等差数列,所以S 2n =S 21+(n -1).在S n =12⎝ ⎛⎭⎪⎫a n +1a n 中,令n =1可得S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,解得a 1=1,所以S 2n =n ,所以S n =n ,所以a n =⎩⎨⎧S n -S n -1,n ≥2,S 1,n =1=⎩⎨⎧n -n -1,n ≥2,1,n =1,所以a n =n -n -1(n ∈N *).训练1 已知正项数列{a n +2n -1}的前n 项和为S n ,且4S n =a 2n +(2n +2)a n +4n -1+2n -3.求数列{a n }的通项公式.解 由题知4S n =a 2n +(2n +2)a n +4n -1+2n -3=(a n +2n -1)2+2(a n +2n -1)-3, 令b n =a n +2n -1, 则4S n =b 2n +2b n -3,①当n ≥2时,4S n -1=b 2n -1+2b n -1-3,②由①-②,得4b n =b 2n -b 2n -1+2b n -2b n -1, 整理得(b n -b n -1-2)(b n +b n -1)=0. 因为b n >0,所以b n -b n -1=2(n ≥2). 又4S 1=b 21+2b 1-3, 即b 21-2b 1-3=0,解得b 1=3或b 1=-1(舍去),所以数列{b n }是以3为首项,2为公差的等差数列, 则b n =2n +1,所以a n =b n -2n -1=2n +1-2n -1(n ∈N *). 类型二 构造辅助数列求通项(1)形如a n =pa n -1+q (p ≠1,q ≠0)的形式,通常可构造出等比数列a n +q p -1=p ⎝⎛⎭⎪⎫a n -1+q p -1,进而求出通项公式. (2)形如a n =pa n -1+q n ,此类问题可先处理q n ,两边同时除以q n ,得a nq n =pa n -1q n+1,进而构造成a n q n =p q ·a n -1q n -1+1,设b n =a n q n ,从而变成b n =pqb n -1+1,从而将问题转化为第(1)个问题.(3)形如qa n -1-pa n =a n a n -1,可以考虑两边同时除以a n a n -1,转化为q a n -pa n -1=1的形式,进而可设b n =1a n,递推公式变为qb n -pb n -1=1,从而转变为上面第(1)个问题.(4)形如a n =ma n -1k (a n -1+b )(其中n ≥2,mkb ≠0)取倒数,得到1a n =k m ·⎝ ⎛⎭⎪⎫1+b a n -1⇔1a n=kb m ·1a n -1+km,转化为(1)中的类型. (5)形如a n =pa r n -1(n ≥2,a n ,p >0)两边取常用对数,得lg a n =r lg a n -1+lg p ,转化为(1)中的类型. 考向1 构造法求通项例2 (1)在数列{a n }中,a 1=12,a n =2a n +1-⎝ ⎛⎭⎪⎫12n(n ∈N *),求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,且a 1=1,S n +1-2S n =1,n ∈N *,求数列{a n }的通项公式. 解 (1)由a n =2a n +1-⎝ ⎛⎭⎪⎫12n,得2n a n =2n +1a n +1-1,所以数列{2n a n }是首项和公差均为1的等差数列, 于是2n a n =1+(n -1)×1=n , 所以a n =n2n (n ∈N *).(2)因为S n +1-2S n =1, 所以S n +1+1=2(S n +1),n ∈N *. 因为a 1=S 1=1, 所以可推出S n +1>0,故S n +1+1S n +1=2, 即{S n +1}为等比数列. 因为S 1+1=2,公比为2, 所以S n +1=2n , 即S n =2n -1.因为S n -1=2n -1-1(n ≥2),所以当n ≥2时,a n =S n -S n -1=2n -1, 又a 1=1也满足此式, 所以a n =2n -1(n ∈N *). 考向2 取倒数法求通项 例3 已知数列{a n }满足a n +1=a n a n +3,a 1=2,求数列{a n }的通项公式.解 对a n +1=a na n +3两边取倒数,可得1a n +1=3a n+1,由1a n +1+12=3⎝ ⎛⎭⎪⎫1a n +12. ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +12是首项为1,公比为3的等比数列,∴1a n +12=3n -1, 则a n =22·3n -1-1(n ∈N *). 考向3 取对数法求通项例4 设正项数列{a n }满足a 1=1,a n =2a 2n -1(n ≥2).求数列{a n }的通项公式. 解 对a n =2a 2n -1两边取对数得log 2a n =1+2log 2a n -1, ∴log 2a n +1=2(log 2a n -1+1), 设b n =log 2a n +1,则{b n }是以2为公比,1为首项的等比数列,所以b n =2n -1, 即log 2a n +1=2n -1, 故a n =22n -1-1(n ∈N *).训练2 (1)若数列{a n }中,a 1=3,且a n +1=a 2n ,则a n =________. (2)已知数列{a n }中,a 1=1,a n =a n -12a n -1+1,则a n =________.答案 (1)32n -1(n ∈N *) (2)12n -1(n ∈N *) 解析 (1)易知a n >0,由a n +1=a 2n 得lg a n +1=2lg a n , 故{lg a n }是以lg 3为首项,以2为公比的等比数列, 则lg a n =lg a 1·2n -1=lg 32n -1, 即a n =32n -1(n ∈N *). (2)由a n =a n -12a n -1+1,取倒数得1a n =2+1a n -1,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以2为公差,1为首项的等差数列,所以1a n=1+2(n -1)=2n -1,即a n =12n -1(n ∈N *).(3)在数列{a n }中,a 1=1,a n +1=12a n +1,求数列{a n }的通项公式.解 因为a n +1=12a n +1,所以a n +1-2=12(a n -2),所以数列{a n -2}是以-1为首项,12为公比的等比数列,所以a n -2=-1×⎝ ⎛⎭⎪⎫12n -1,所以a n =2-⎝ ⎛⎭⎪⎫12n -1,n ∈N *.一、基本技能练1.(2022·湖北新高考协作体联考)已知数列{a n }的首项a 1=2,其前n 项和为S n ,若S n +1=2S n +1,则a 7=________. 答案 96解析 因为S n +1=2S n +1, 所以S n =2S n -1+1(n ≥2), 两式相减得a n +1=2a n (n ≥2),又因为a 1=2,S 2=a 1+a 2=2a 1+1,得a 2=3, 所以数列{a n }从第二项开始成等比数列, 因此其通项公式为a n =⎩⎨⎧2,n =1,3·2n -2,n ≥2, 所以a 7=3×25=96.2.已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为________. 答案a n =2n (n +1)(n ∈N *)解析 由S n =n 2a n 可得, 当n ≥2时,S n -1=(n -1)2a n -1, 则a n =S n -S n -1=n 2a n -(n -1)2a n -1,即(n2-1)a n=(n-1)2a n-1,故anan-1=n-1n+1,所以a n=anan-1·an-1an-2·an-2an-3·…·a3a2·a2a1·a1=n-1n+1·n-2n·n-3n-1·…·24×13×1=2n(n+1).当n=1时,a1=1满足a n=2n(n+1).故数列{a n}的通项公式为a n=2n(n+1),n∈N*.3.已知正项数列{a n}满足a1=2,a n+1=a n,则a n=________.答案221-n(n∈N*)解析将a n+1=a n两边取以2为底的对数得log2a n+1=12log2an,∴数列{log2an}是以1为首项,12为公比的等比数列,故log2an=1×⎝⎛⎭⎪⎫12n-1=21-n,即a n=221-n(n∈N*).4.数列{a n}的首项a1=2,且a n+1=3a n+2(n∈N*),令b n=log3(a n+1),则b n=________. 答案n(n∈N*)解析由a n+1=3a n+2(n∈N*)可知a n+1+1=3(a n+1),又a1=2,知a n+1≠0,所以数列{a n+1}是以3为首项,3为公比的等比数列,因此a n+1=3·3n-1=3n,故b n =log 3(a n +1)=n .5.(2022·南京调研)在数列{b n }中,b 1=-1,b n +1=b n 3b n +2,n ∈N *,则通项公式b n =________.答案 12n -3(n ∈N *)解析 由b n +1=b n 3b n +2,且b 1=-1.易知b n ≠0,得1b n +1=2b n+3.因此1b n +1+3=2⎝ ⎛⎭⎪⎫1b n +3,1b 1+3=2, 故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n +3是以2为首项,2为公比的等比数列,于是1b n+3=2·2n -1,可得b n =12n-3,n ∈N *. 6.在数列{a n }中,a 1=1,a n =2a n -1+ln 3(n ≥2),则数列{a n }的通项a n =________. 答案 (1+ln 3)·2n -1-ln 3(n ∈N *)解析 由a n =2a n -1+ln 3得a n +ln 3=2(a n -1+ln 3), 则{a n +ln 3}是以1+ln 3为首项,2为公比的等比数列, 所以a n +ln 3=(1+ln 3)·2n -1, 因此a n =(1+ln 3)·2n -1-ln 3(n ∈N *).7.已知数列{a n }满足:a 1=1,a 2=3,a n +2=a n +1+2a n .某同学已经证明了数列 {a n +1-2a n }和数列{a n +1+a n }都是等比数列,则数列{a n }的通项公式是a n =________. 答案 2n +1-(-1)n -13(n ∈N *)解析因为a n+2=a n+1+2a n,所以当n=1时,a3=a2+2a1=5.令b n=a n+1-2a n,则{b n}为等比数列. 又b1=a2-2a1=1,b2=a3-2a2=-1,所以等比数列{b n}的公比q=b2b1=-1,所以b n=(-1)n-1,即a n+1-2a n=(-1)n-1.①令c n=a n+1+a n,则{c n}为等比数列,c1=a2+a1=4,c2=a3+a2=8,所以等比数列{c n}的公比q1=c2c1=2,所以c n=4×2n-1=2n+1,即a n+1+a n=2n+1.②联立①②,解得a n=2n+1-(-1)n-13.8.(2022·青岛二模)已知数列{a n},{b n}满足a1=12,a n+b n=1,b n+1=bn1-a2n,则b2 023=________.答案2 023 2 024解析因为a n+b n=1,b n+1=bn1-a2n,所以1-a n+1=1-a n(1-a n)(1+a n),a n +1=1-11+a n =a n1+a n ,所以1a n +1=1a n+1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,其公差为1,首项为1a 1=2,所以1a n=2+(n -1)×1=n +1,所以a n =1n +1, 所以b n =n n +1,所以b 2 023=2 0232 024.9.已知数列{a n }的前n 项和S n 满足2S n -na n =3n (n ∈N *),且S 3=15,则S 10=________. 答案 120解析 当n =1时,2S 1-a 1=3, 解得a 1=3. 又2S n -na n =3n ,①当n ≥2时,2S n -1-(n -1)a n -1=3(n -1),② 所以①-②得(n -1)a n -1-(n -2)a n =3,③ 当n ≥3时,(n -2)a n -2-(n -3)a n -1=3,④ 所以④-③得(n -1)·a n -1-(n -2)a n =(n -2)a n -2-(n -3)a n -1, 可得2a n -1=a n +a n -2,所以数列{a n }为等差数列,设其公差为d .因为a 1=3,S 3=3a 1+3d =9+3d =15, 解得d =2, 故S 10=10×3+10×92×2=120. 10.已知数列{a n }满足a n +1=2a n -n +1(n ∈N *),a 1=3,则数列{a n }的通项公式为________.答案a n =2n +n (n ∈N *) 解析∵a n +1=2a n -n +1, ∴a n +1-(n +1)=2(a n -n ), ∴a n +1-(n +1)a n -n=2,∴数列{a n -n }是以a 1-1=2为首项,2为公比的等比数列, ∴a n -n =2·2n -1=2n , ∴a n =2n +n (n ∈N *).11.数列{a n }满足a n +1=3a n +2n +1,a 1=-1,则数列{a n }的前n 项和S n =________. 答案3n +12-2n +2+52(n ∈N *)解析∵a n +1=3a n +2n +1, ∴a n +12n +1=32·a n2n+1, ∴a n +12n +1+2=32⎝ ⎛⎭⎪⎫a n 2n +2, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +2是以a 12+2=32为首项,32为公比的等比数列,∴a n 2n +2=32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n,∴a n =3n -2n +1,∴S n =(31+32+…+3n )-(22+23+…+2n +1)=3-3n +11-3-4-2n +21-2=3n +12-2n +2+52(n ∈N *).12.已知在数列{a n }中,a 1=1,a 2=2,a n +1=2a n +3a n -1,则{a n }的通项公式为________. 答案a n =3n -(-1)n4(n ∈N *)解析∵a n +1=2a n +3a n -1, ∴a n +1+a n =3(a n +a n -1),∴{a n +1+a n }是以a 2+a 1=3为首项,3为公比的等比数列, ∴a n +1+a n =3×3n -1=3n .① 又a n +1-3a n =-(a n -3a n -1),∴{a n +1-3a n }是以a 2-3a 1=-1为首项,-1为公比的等比数列, ∴a n +1-3a n =(-1)×(-1)n -1=(-1)n ,② 由①-②得4a n =3n -(-1)n , ∴a n =3n -(-1)n4(n ∈N *).二、创新拓展练13.(2022·金丽衢12校联考)已知数列{a n }满足a 1=1,且T n =a 1a 2…a n ,若T n +1=a n T na 2n +1,n ∈N *,则( )A.a 50∈⎝ ⎛⎭⎪⎫112,111B.a 50∈⎝ ⎛⎭⎪⎫111,110C.a 10∈⎝ ⎛⎭⎪⎫18,17D.a 10∈⎝ ⎛⎭⎪⎫16,15答案 B解析 因为T n =a 1a 2…a n , 所以a n +1=T n +1T n. 因为T n +1=a n T na 2n +1, 所以a n +1=a n a 2n +1,所以1a n +1=a n +1a n.因为a 1=1>0,所以1a n +1>1a n >0,a 2=12, 所以0<a n +1<a n ≤1, 所以1a 2n +1=a 2n +1a 2n+2,所以a 2n +2=1a 2n +1-1a 2n ∈⎝ ⎛⎦⎥⎤2,94,n ≥2.由累加法可得1a 210-1a 22∈(16,18),所以1a 10∈(20,22),所以a 10∈⎝ ⎛⎭⎪⎫2222,510,同理可得a 50∈⎝⎛⎭⎪⎫1121,110=⎝ ⎛⎭⎪⎫111,110,故选B. 14.(多选)(2022·武汉调研)已知数列{a n }满足a 1=1,a n +1=a n 2+3a n(n ∈N *),则下列结论正确的是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3为等比数列 B.{a n }的通项公式为a n =12n +1-3C.{a n }为递增数列D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =2n +2-3n -4答案 ABD 解析 因为1a n +1=2+3a na n =2a n+3, 所以1a n +1+3=2⎝ ⎛⎭⎪⎫1a n +3, 又1a 1+3=4≠0,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3是以4为首项,2为公比的等比数列,所以1a n+3=4×2n -1,则a n =12n +1-3, 所以{a n }为递减数列,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =(22-3)+(23-3)+…+(2n +1-3)=22+23+…+2n +1-3n =4(1-2n )1-2-3n =2n +2-3n -4,故ABD 正确.15.(多选)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,……,设各层球数构成一个数列{a n },则( )A.a 4=12B.a n +1=a n +n +1C.a 100=5 050D.2a n +1=a n ·a n +2答案 BC解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n , 故a n =n (n +1)2,∴a 4=4×(4+1)2=10,故A 错误;a n +1=a n +n +1,故B 正确; a 100=100×(100+1)2=5 050,故C 正确;2a n +1=(n +1)(n +2),a n ·a n +2=n (n +1)(n +2)(n +3)4,显然2a n +1≠a n ·a n +2,故D 错误.16.(多选)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依次类推,第n 项记为a n ,数列{a n }的前n 项和为S n ,则( ) A.a 60=16 B.S 18=128 C.a k 2+k 2=2k -1D.S k 2+k 2=2k -k -1答案 AC解析 由题意可将数列分组: 第一组为20, 第二组为20,21, 第三组为20,21,22, ……,则前k 组一共有1+2+…+k =k (1+k )2个数.第k 组第k 个数为2k -1, 故a k 2+k 2=2k -1,所以C 正确.因为10×(10+1)2=55,所以a 55=29,又11×(11+1)2=66,则a 60为第11组第5个数,第11组为20,21,22,23,24,25,26,27,28,29,210, 故a 60=24=16,所以A 正确.每一组数的和为20+21+…+2k -1=2k -12-1=2k -1,故前k 组数之和为21+22+ (2)-k =2(2k -1)2-1-k =2k +1-2-k ,S k 2+k 2=2k +1-k -2,所以D 错误.S 15=26-5-2=57,S 18=S 15+20+21+22 =26-5-2+7=64,所以B 错误.故选AC. 17.已知数列{a n }满足a 1=3,a n +1=7a n -2a n +4,则该数列的通项公式a n =________. 答案4·6n -1-5n -12·6n -1-5n -1(n ∈N *)解析 由a n +1-1a n +1-2=7a n -2a n +4-17a n -2a n +4-2=7a n -2-(a n +4)7a n -2-2(a n +4)=65·a n -1a n -2,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -1a n -2是首项为a 1-1a 1-2=2,公比为65的等比数列,所以a n -1a n -2=2×⎝ ⎛⎭⎪⎫65n -1,解得a n =12×⎝ ⎛⎭⎪⎫65n -1-1+2=4·6n -1-5n -12·6n -1-5n -1,n ∈N *.18.(2022·徐州考前卷)设各项均为正数的数列{a n }的前n 项和为S n ,写出一个满足S n =⎝ ⎛⎭⎪⎫2-12n -1a n 的通项公式:a n =________.答案 2n (答案不唯一)解析 当a n =2n时,S n =2(1-2n )1-2=2n +1-2,⎝ ⎛⎭⎪⎫2-12n -1a n =⎝⎛⎭⎪⎫2-22n 2n=2n +1-2=S n ,∴a n =2n 满足条件.。

2023年数学高考复习真题演练(2021-2022年高考真题)10 对数与对数函数 (含详解)

2023年数学高考复习真题演练(2021-2022年高考真题)10 对数与对数函数 (含详解)

专题10 对数与对数函数【考点预测】 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log N a ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象【方法技巧与总结】 1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数运算及对数方程、对数不等式 题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域)) 题型四:对数函数中的恒成立问题 题型五:对数函数的综合问题 【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++; (2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45. 例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212ab c+=;(2)若60a =3,60b =5,求12(1)12a bb ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则( ) A .a +b =100B .b -a =ea 增大a 增大C .28ln 2ab <D .ln6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=( ) A .2 B .4 C .6 D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <- C .01b a << D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为( ) A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x x f x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是( )A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2∞⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( ) Ab a <<B.b a <Ca b <D.a b <<例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是( ) A .0 B .1C .2D .a 例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是( ) A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围. 例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +. (1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =. (1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0,∞+的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为( )A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是( ).A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则( )A.sin sin a b > B .11a b> C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则( ) A .a c <B .b a <C .c a <D .a b <例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则a b的取值可以是( ) A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2x f x x x -=+-的零点,则020e ln xx -+=_______.【过关测试】一、单选题 1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)( ) A .1393.1610s ⨯ B .1391.5810s ⨯ C .1401.5810s ⨯D .1403.1610s ⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为( ) A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则( ) A .111x y z+=B .111y z x+= C .112x y z += D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ( )A .是奇函数,且在0,1上单调递增B .是奇函数,且在0,1上单调递减C .是偶函数,且在0,1上单调递增D .是偶函数,且在0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点 A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为( ) A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是( ) A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( )A b a <<B .b a <C a b <D .a b <<二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是( ) A .11a b+的最小值是4 B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是( ) A .2ab bc ac +=B .ab bc ac +=C .4949b b a c ⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是( )A .()(lg f x x =B .()2f x x ax =+C .()21xaf x e =-- D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为( )AB C D三、填空题13.(2022·天津·二模)已知()4log 41log x y +=+2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论: ①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--; ④函数()y f x =在()(),1k k k +∈Z 上单调递减. 其中所有正确结论的序号为______. 四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ] (m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1axf x x -=-在其定义域上是奇函数,a 为常数. (1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M . (1)当t e =时,求切线l 的方程;(2)O为坐标原点,记AMO的面积为S,求面积S以t为自变量的函数解析式,写出其定义域,并求单调增区间.专题10 对数与对数函数【考点预测】 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log N a ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象【方法技巧与总结】 1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数运算及对数方程、对数不等式 题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域)) 题型四:对数函数中的恒成立问题 题型五:对数函数的综合问题 【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++; (2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45. 【答案】(1)7;(2)109;(3)2a bb+-. 【解析】(1)利用对数恒等式和对数的运算法则计算即可; (2)利用指对互化可得实数x 的值;(3)先求出a ,再利用换底公式结合对数的运算法则求得结果.【详解】(1)原式=()23lg 510lg25lg51lg26lg5lg26lg107++⨯+=+++=++=+=;(2)因为()23log log lg 1x ⎡⎤=⎣⎦,所以()3log lg 2x =,所以2lg 39x ==,所以x =109;a 增大a 增大(3)因为185a =,所以18log 5a =,所以()()()181818183618181818log 59log 45log 5log 9log 45log 36log 182log 18log 189⨯+====⨯+÷1818181818log 5log 9log 18log 18log 92a bb++=+--.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35 【答案】(1)18;(2)21a bb ++. 【解析】 【分析】(1)首先根据题意得到原式()()()2352log 53log 23log 3=-⋅⋅-,再利用换底公式化简即可得到答案.(2)首先根据题意得到3log 7b =,3log 52=a ,再利用换底公式化简即可得到答案. 【详解】(1)原式()()()1233232355log 5log 2log 32log 53log 23log 3--=⋅⋅=-⋅⋅-lg5lg 2lg31818lg 2lg3lg5=⋅⋅⋅=(2)由37b =得到3log 7b =, 由9log 5=a ,得到31log 52=a ,即3log 52=a . 33321333log 35log 5log 72log 35log 21log 7log 31a bb ++===++.【点睛】本题主要考查对数的换底公式,同时考查指数、对数的互化公式,属于中档题.例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c+=;(2)若60a =3,60b =5,求12(1)12a bb ---的值. 【答案】(1)详见解析;(2)2. 【解析】【分析】(1)设3461a b c k ===>,应用指对数的互化有346log ,log ,log a k b k c k ===,进而应用换底公式及对数的运算性质分别求21a b +、2c,即可证结论;(2)应用指对数互化有6060log 3,log 5a b ==,应用对数的运算性质求12(1)a bb ---,进而可求12(1)12a b b ---的值.【详解】(1)设346a b c k ===,则1k >. ∴346log ,log ,log a k b k c k ===,∴3421212log 3log 4log 9log 4log 362log 6log log k k k k k k a b k k+=+=+=+==, 而6222log 6log k c k==, ∴212a b c+=. (2)由题设知:6060log 3,log 5a b ==,得606011log 5log 12b -=-=,60606011log 3log 5log 4a b --=--=, ∴60121260log 42log 21log 22(1)2log 122a b b --===-, 则121log 22(1)12122a b b ---==.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则( ) A .a +b =100 B .b -a =e C .28ln 2ab < D .ln6b a ->【答案】D 【解析】 【分析】利用指数和对数互化,得到a ,b 后逐项判断. 【详解】对于A ,由e 4a =,e 25b =,得ln 4a =,ln 25b =,所以ln 4ln 25ln100a b +=+=,故A 错误;对于B ,25ln 25ln 4ln4b a -=-=,故B 错误; 对于C ,2ln 4ln 252ln 2ln168ln 2ab =⨯>⨯=,故C 错误;对于D ,25ln 25ln 4lnln 64b a -=-=>,故D 正确. 故选:D .例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=( ) A .2 B .4 C .6 D .8【答案】C 【解析】 【分析】 根据y x x y =得到lg lg x xy y =,再利用换底公式得到2x y=,利用lg 2lg x y =,即2x y =,求出4x =,2y =,所以6x y +=.【详解】由y x x y =,得lg lg y x x y =,lg lg x xy y=. 由log 4y x x y +=,lg log lg y x x y =,所以lg 4lg x x y y+=, 所以4x xy y +=,解得:2x y=,则lg 2lg x y =,即2x y =, 所以4x =,2y =,所以6x y +=, 故选:C.例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞【答案】C 【解析】 【分析】由二次函数的性质判断()f x 区间单调性,根据解析式知()f x 恒过(4,2)且(0)2f =,进而确定区间值域,再由对数函数性质求2log y x =的对应区间值域,即可得不等式解集. 【详解】由题设,()f x 对称轴为2x =且图象开口向下,则()f x 在(0,2)上递增,(2,)+∞上递减, 由2()42(4)2f x ax ax ax x =-+=-+,即()f x 恒过(4,2)且(0)2f =, 所以(0,4)上()2f x >,(4,)+∞上()2f x ,而2log y x =在(0,)+∞上递增,且(0,4)上2y <,(4,)+∞上2y >,所以2()log f x x >的解集为(0,4). 故选:C例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.【答案】12x x ⎧⎫>⎨⎬⎩⎭【解析】 【分析】 分1x ≤、12x <≤和2x >,依次解不等式,再取并集即可.【详解】当1x ≤时,不等式()(1)f x f x <-为2211(1)x x -<--,解得112x <≤; 当12x <≤时,不等式()(1)f x f x <-为212log 1(1)x x <--,易知21122log log 10,1(1)0x x <=--≥,解得12x <≤;当2x >时,不等式()(1)f x f x <-为1122log log (1)x x <-,解得2x >;综上,解集为:12x x ⎧⎫>⎨⎬⎩⎭.故答案为:12x x ⎧⎫>⎨⎬⎩⎭.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可) 【答案】12log x,(log a x ,(0<a <1)都对)【解析】 【分析】满足第一个条件,表示函数是单调递减函数,第二个条件正好是符合对数的运算性质; 【详解】对于条件①,不妨设12x x <,则210x x ->,∵()()21210f x f x x x -<-,∴()()210f x f x -<∴12()()f x f x >,∴()f x 为()0,+∞上的单调递增函数,对于条件②,刚好符合对数的运算性质,故这样的函数可以是一个单调递减的对数函数. 故答案为:12log x.(log ax ,(0<a <1)都对)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值. 【答案】(1)9x =或181x =;(2)2a =. 【解析】 【分析】(1)根据给定条件求出m 值,并代入方程,再解方程即得.(2)由给定解集借助对数函数单调性求出()f x 范围,换元借助一元二次不等式即可得解. 【详解】(1)由已知得()31f =,即log 31m =,则3m =,于是得()3log f x x =, 方程222()(1)()10()2()80f x m f x m f x f x +-+-=⇔+-=, 从而得()2f x =或()4f x =-,即3log 2x =或3log 4x =-,9x =或181x =, 所以原方程的根为9x =或181x =; (2)依题意,函数()3log f x x =中,1,93x ⎛⎫∈ ⎪⎝⎭,从而得()3log 1,2x ∈-.又()()()()3310log 1log 0f x a f x x x a +⋅->⇔+⋅-<⎡⎤⎡⎤⎣⎦⎣⎦,令3log x t =, 即一元二次不等式()()10t t a +⋅-<的解集为()1,2-,因此有-1,2是关于t 的方程()()10t t a +⋅-=的两根,则2a =, 所以实数a 的值为2.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <-C .01b a <<D .log 0a b >【答案】C 【解析】 【分析】结合函数()f x 的图象可得1a >和10b -<<,然后逐项分析即可求出结果. 【详解】由图象可知()f x 在定义域内单调递增,所以1a >,令()()log 0a f x x b =-=,即1x b =+,所以函数()f x 的零点为1b +,结合函数图象可知011b <+<,所以10b -<<,因此0a b +>,故A 错误;0-<<a ab ,又因为1a >,所以1a -<-,因此1ab <-不一定成立,故B 错误;因为10b a a a -<<,即11b a a <<,且101a<<,所以01b a <<,故C 正确; 因为01b <<,所以log log 1a a b <,即log 0a b <,故D 错误, 故选:C.例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为( ) A.3-B .1C . 3+D .2+【答案】C 【解析】 【分析】由对数函数的性质,可得()2,1A --,可得21m n +=,再根据基本不等式“1”的用法,即可求出结果.【详解】解:因为函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点()2,1A --,所以210m n --+=,即21m n +=, 所以()1111223n m m n m n m n m n⎛⎫+=++=++ ⎪⎝⎭, 又0mn >,所以0,0n mm n>>所以2333n m m n ++≥=,当且仅当2n m m n =,即1n =时取等号.故选:C.(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤【答案】BCD 【解析】 【分析】对于A 结合对数型函数图像相关知识求解;对于B 运用定义法判断()f x 是否在R 上是奇函数;对于C 运用定义法判断函数单调性;对于D 通过作差法并对式子变形即可判断. 【详解】对于A ,由图像可知,函数()()log a g x x k =+(0a >且1a ≠)在()2,-+∞上单调递增,所以1a >,因为()g x 经过()1,0-,所以()()1log 10a g k -=-+=,所以01a k =-+,2k =,故A 错误.对于B ,()x x f x a a -=-,定义域R 关于原点对称,()()x xf x a a f x --=-=-,所以()f x 在R 上是奇函数,故B 正确.对于C ,对于()x xf x a a -=-,由题意不妨令1212,,x x x R x R >∈∈,则()()()()()121212121212121212111x x x x x x x x x x x x x x x x a a a a a f x f x a a a a a a a a ++++--⎛⎫⎛⎫-=---=-+=⎪ ⎪⎝⎭⎝⎭,因为1212,,x x x R x R >∈∈,1a >,所以12121210,0,0x x x x x x a a a a +++>>->,即()()12f x f x >,所以()f x 在R 上是单调递增函数,故C 正确.对于D ,()()()()()()()()()2222222x x x x x x x x x x x x x x a a a a a a a a a a a a a x f a f x --------=---=---+--=-()()()()22322221111112x x x x x x xx xxxa a a a a a a a a aa----+-⎛⎫⎛⎫--=⎪-==⎪⎝⎭⎝⎭,因为1a >,0x ≥,所以()3210,010,xxxa a a +≥>->,所以()()23101x x xa a a-+-≤,当且仅当0x =时等号成立,即当0x ≥时,()()22f x f x ≤成立,故D 正确.故选:BCD例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______. 【答案】ln 31[,)3e【解析】 【分析】由分段函数解析式,结合导数研究|()|f x 的性质,再将问题转化为|()|f x 与(1)y a x =+有3个不同交点,应用数形结合的思想有(1)y a x =+与|()|f x 在02x ≤≤上至少有2个交点,最后由导数求它们相切或(1)y a x =+过(2,ln 3)时参数a 的值,即可知a 的取值范围. 【详解】由题设,20x -≤<上239()2()48f x x =--+,故值域为[14,0]-且单调递增;02x ≤≤上()f x '=101x -<+,故()f x 值域为[ln 3,0]-且单调递减; ∴|()|f x 在20x -≤<上值域为[0,14]且单调递减;在02x ≤≤上值域为[0,ln 3]且单调递增; 要使()g x 与x 轴有3个不同的交点,即|()|f x 与(1)y a x =+有3个不同交点,它们的图象如下:∴由图知:要使函数图象有3个交点,则(1)y a x =+与|()|f x 在02x ≤≤上至少有2个交点, 由02x ≤≤,1()|()|ln1g x f x x ==-+,则1()|()|1g x f x x '==+,此时,若|()|f x 与(1)y a x =+相切时,切点为(,(1))m a m +, ∴111ln (1)1a m a m m ⎧=⎪⎪+⎨⎪-=+⎪+⎩,可得1e a =,当(1)y a x =+过(2,ln 3)时,有3ln3a =,得ln 33a =, ∴ln 313ea ≤<. 故答案为:ln 31[,)3e【点睛】关键点点睛:根据已知研究|()|f x 的性质,并将问题转化为|()|f x 与(1)y a x =+的交点问题,应用导数的几何意义、数形结合的思想求参数范围.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2∞⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭【答案】C 【解析】【分析】先求出函数的定义域,再利用复合函数单调性法则“同增异减”即可求解.【详解】函数()22log 43y x x=+-的定义域为()1,4-.要求函数()22log 43y x x =+-的一个单调增区间,只需求243y x x =+-的增区间,只需32x <. 所以312x -<<. 所以函数()22log 43y x x =+-的一个单调增区间是31,2⎛⎫- ⎪⎝⎭. 故选:C例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】分函数()f x 在R 上的单调递减和单调递增求解. 【详解】当函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调递减函数,所以01112514a aa ⎧⎪<<⎪⎪≥⎨⎪⎪-≥-⎪⎩,解得1142a ≤≤,因为0a >且1a ≠,所以当1x ≤时,()f x 不可能是增函数,所以函数()f x 在R 上不可能是增函数,综上:实数a 的取值范围为11,42⎡⎤⎢⎥⎣⎦,故选:B例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( ) Ab a << B.b a < Ca b < D.a b <<【答案】A 【解析】 【分析】对33log log 4log log 3a b a b -=-利用换底公式等价变形,得333311log log log log -<-b a b a,结合1y x x=-的单调性判断b a <,同理利用换底公式得343411log log log log b a b a ->-,即34log log b a >,再根据对数运算性质得4log log log a =>3log y x =单调性,b >解. 【详解】由33log log 4log log 3a b a b -=-可得333343111log log log log log log b a a b a a-=-<-, 因为1y x x=-在(,0),(0,)-∞+∞上单调递增,且3log a ,3log (0,)b ∈+∞,所以33log log b a <,即b a <, 其次,343411log log log log b a b a->-,所以34log log b a >,又因为4log log log a =>3log y x =单调递增,所以由3log log b >b >b a <. 故选:A例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是( ) A .0 B .1 C .2 D .a【答案】C 【解析】【分析】根据对数函数的单调性可求出结果. 【详解】∵0<a <1,∴f (x )=log ax 在[a 2,a ]上是减函数, ∴f (x )max =f (a 2)=log aa 2=2. 故选:C例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A .⎫⎪⎪⎝⎭B .C .⎛ ⎝⎭D .)+∞【答案】A 【解析】 【分析】根据对数函数的性质可得()()0,11,a ∈+∞且23410x ax -+->,则0∆>,即可求出a 的大致范围,再令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =,对a 分两种情况讨论,结合二次函数、对数函数的单调性判断即可; 【详解】解:依题意()()0,11,a ∈+∞且23410x ax -+->,所以216120a ∆=->,解得a >a <()1,a ⎫∈+∞⎪⎪⎝⎭,令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =,若()1,a ∈+∞,则log a y u =在定义域上单调递增,()2341u x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫⎪⎝⎭上单调递减,根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫ ⎪⎝⎭上单调递减,函数不存在最小值,故舍去;若a ⎫∈⎪⎪⎝⎭,则log a y u =在定义域上单调递减,()2341u x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递增,在22,3a x ⎛⎫ ⎪⎝⎭上单调递减,根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递减,在22,3a x ⎛⎫ ⎪⎝⎭上单调递增,所以函数在23a x =取得最小值,所以a ⎫∈⎪⎪⎝⎭; 故选:A【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是( ) A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<【答案】A 【解析】 【分析】根据对数函数的图象与性质,分1a >和01a <<两种情况分类讨论,结合函数的单调性,列出不等式,即可求解. 【详解】当1a >时,由1(0,)2x ∈,可得log 0a x <,则log 0a x ->,又由20x >,此时不等式2log 0a x x -<不成立,不合题意;当01a <<时,函数log a y x =在1(0,)2上单调递减,此时函数log a y x =-在1(0,)2上单调递增,又由2yx 在1(0,)2上单调递增,要使得不等式2log 0a x x -<在1(0,)2内恒成立,可得211()log 022a -≤,解得1116a ≤<.故选:A.例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2【答案】A 【解析】根据题意,先求得12a =,把不等式()()1122log 4log 2x x t t ⋅<-在[]1,2x ∈上恒成立,转化为402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立,结合指数幂的运算性质,即可求解. 【详解】由题意,函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,可得函数y 的最大值为116,当0a =时,函数2414x y -+⎛⎫= ⎪⎝⎭显然不存在最大值;当0a >时,函数22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递增,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递减,当1x a =时,函数y 有最大值,即12411416a a -+⎛⎫= ⎪⎝⎭,解得12a =; 当0a <时,22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递减,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递增,此时函数y 无最大值,所以()()1122log 4log 2x xt t ⋅<-在[]1,2x ∈上恒成立, 即402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立, 由40x t ⋅>在[]1,2x ∈上恒成立,可得0t >;由20x t ->在[]1,2x ∈上恒成立,即2x t <在[]1,2上恒成立,可得2t <; 由42x x t t ⋅>-在[]1,2x ∈上恒成立,即2114122x x x xt >=++在[]1,2上恒成立,令()122xxf x =+,可得函数()f x 在[]1,2上单调递增,所以()()min512f x f ==,即25t >, 综上可得225t <<,即实数t 的取值范围是2,25⎛⎫⎪⎝⎭.故选:A. 例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 【答案】13,4∞⎛⎤- ⎥⎝⎦【解析】 【分析】将问题转化为在对应区间上max max ()()f x g x ≥,结合对勾函数、对数函数的性质求()f x 、()g x 的区间最值,即可求a 的范围. 【详解】若()f x 在[3,4]上的最大值max ()f x ,()g x 在[4,8]上的最大值max ()g x , 由题设,只需max max ()()f x g x ≥即可.在[3,4]上,9()6f x x x =+≥=当且仅当3x =时等号成立, 由对勾函数的性质:()f x 在[3,4]上递增,故max 25()4f x =. 在[4,8]上,()g x 单调递增,则max ()3g x a =+, 所以2534a ≥+,可得134a ≤.故答案为:13,4∞⎛⎤- ⎥⎝⎦.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围. 【答案】12ea ≥. 【解析】 【分析】把不等式作等价变形,构造函数()ln g x x x =+,借助其单调性可得2e x a x ≥,分离参数构造函数并求出最大值作答. 【详解】函数()ln f x x x =-定义域为(0,)+∞,则(0,)∀∈+∞x :222()e ln 0e ln l 2n e ln ln x x x f x a a a a x a a x x x x++≥⇔+≥⇔+≥+++22e e )n ln(l x x a a x x ⇔≥++,令()ln g x x x =+,函数()g x 在(0,)+∞上单调递增,则有原不等式等价于()()2e xg a g x ≥22e e x xx a x a ⇔≥⇔≥, 令2()e x x h x =,0x >,求导得:212()exx h x -'=,当102x <<时,()0h x '>,当12x >时,()0h x '<, 因此,函数()h x 在1(0,)2上单调递增,在1(,)2+∞上单调递减,当12x =时,max 11()()22eh x h ==,则12ea ≥, 所以实数a 的取值范围是12ea ≥. 【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.例23.(2022·全国·高三专题练习)已知函数()log (0,1)xa f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +. (1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围. 【答案】(1)2;(2)1,5⎡⎫+∞⎪⎢⎣⎭【解析】 【分析】(1)根据指对数函数的单调性得函数()log (0,1)xa f x a x a a =+>≠在[1,2]上是单调函数,进而得260+-=a a ,解方程得2a =;(2)根据题意,将问题转化为对于任意的[2,)x ∈+∞,1()k f x ≥恒成立,进而求函数的最值即可. 【详解】解:(1)因为函数,log (0,1)xa y a y x a a ==>≠在[1,2]上的单调性相同, 所以函数()log (0,1)xa f x a x a a =+>≠在[1,2]上是单调函数,所以函数()f x 在[1,2]上的最大值与最小值之和为2log 26log 2a a a a ++=+,所以260+-=a a ,解得2a =和3a =-(舍) 所以实数a 的值为2.(2)由(1)得2()2log x f x x =+,因为对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,所以对于任意的[2,)x ∈+∞,1()k f x ≥恒成立, 当[2,)x ∈+∞时,2()2log x f x x =+为单调递增函数, 所以()()25f x f ≥=,所以11()5f x ≤,即15k ≥ 所以实数k 的取值范围1,5⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查指对数函数的性质,不等式恒成立求参数范围,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将问题转化为任意的[2,)x ∈+∞,1()k f x ≥恒成立求解.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠. (1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.【答案】(1)13a =;(2)()1,11,82⎛⎫⋃ ⎪⎝⎭. 【解析】 【分析】(1)由()32f =可求得log 3a 的值,进而可求得实数a 的值;(2)由()6f x >可得出log 3a x <-或log 1>a x ,分01a <<、1a >两种情况讨论,可得出关于实数a 的不等式,由此可解得实数a 的取值范围. (1)解:因为()32f =,所以()2log 32log 332a a ++=,所以()2log 310a +=,所以log 31a =-,解得13a =.(2)解:由()6f x >,得()2log 2log 30a a x x +->,即()()log 3log 10a a x x +->,即log 3a x <-或log 1>a x .当01a <<时,log 12log log 8a a a x ≤≤,则log 83a <-或log 121a >,因为log 12log 10a a <=,则log 121a >不成立,由log 83a <-可得318a ⎛⎫< ⎪⎝⎭,得112a <<;当1a >时,log 8log log 12a a a x ≤≤,则log 123a <-或log 81a >,因为log 12log 10a a >=,则log 123a <-不成立,所以log 81a >,解得18a <<. 综上,a 的取值范围是()1,11,82⎛⎫⋃ ⎪⎝⎭.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =. (1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;。

2013最新高考复习专题限时练习:数学第10讲 数列求和及数列应用

2013最新高考复习专题限时练习:数学第10讲 数列求和及数列应用

专题限时集训(十)[第10讲 数列求和及数列应用](时间:10分钟+35分钟)1.等比数列{an })的实部与虚部,则数列{an }的前10项的和为( )A .20B .210-1C .-20D .-2i2.3.若数列{an }的通项公式是an =(-1)n (3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-154.植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为( )A .①和⑳B .⑨和⑩C .⑨和⑪D .⑩和⑪1.设数列{an }是等差数列,且a 2是数列{an }的前n 项和,则( )A .S 10=S 11B .S 10>S 11C .S 9=S 10D .S 9<S 102.等比数列{an }的前n 项和为Sn ,若S 1,S 3,S 2成等差数列,则{an }的公比q 等于( )A .1 B.12C .-12D .2 3.已知数列{an }的通项公式an =log3n n +1(n ∈N *),设其前n 项和为Sn ,则使Sn <-4成立的最小自然数n 等于( )A .83B .82C .81D .804.“神七升空,举国欢庆”,据科学计算,运载“神七”的“长征二号”F 火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间大约是( )A .10秒钟B .13秒钟C .15秒钟D .20秒钟5.过圆x 2-5x +y 2=0内点P ⎝⎛⎭⎫52,32有n 条弦,这n 条弦的长度依次成等差数列{an },其中最短弦长为a 1,最长的弦长为an ,且公差d ∈⎝⎛⎭⎫15,12,那么n 的取值集合为( )A .{5,6}B .{4,5}C .{3,4,5}D .{3,4,5,6}6.{an }为等差数列,若a 11a 10<-1,且它的前n 项和Sn 有最大值,那么Sn 取得最小正值时,n 的值为( )A .11B .17C .19D .217.已知数列{an }的前n 项和Sn =n 2+2n -1,则a 1+a 3+a 5+…+a 25=________.8.在计算“11×2+12×3+…+1n (n +1)(n ∈N *)”时,某同学学到了如下一种方法: 先改写第k 项:1k (k +1)=1k -1k +1, 由此得,11×2=11-12,12×3=12-13,…,1n (n +1)=1n -1n +1, 相加,得11×2+12×3+…+1n (n +1)=1-1n +1=n n +1. 类比上述方法,请你计算“11×2×3+12×3×4+…+1n (n +1)(n +2)(n ∈N *)”,其结果为________________.9.已知以1为首项的数列{an }满足:an +1=⎩⎪⎨⎪⎧an +1(n 为奇数),an 2(n 为偶数)(n ∈N *). (1)写出a 2,a 3,a 4,并求数列{an }的通项公式;(2)设数列{an }的前n 项和Sn ,求数列{Sn }的前n 项和Tn .10.已知等差数列{}an 满足:a 3=7,a 5+a 7=26,{}an 的前n 项和为Sn .(1)求an 及Sn ;(2)令bn =1a 2n -1(n ∈N*),求数列{}bn 的前n 项和Tn .专题限时集训(十)【基础演练】1.A 【解析】 根据复数实部和虚部的概念求出这个等比数列的首项和公比,按照等比数列的求和公式进行计算.该等比数列的首项是2,公比是1,故其前10项之和是20.2.A 【解析】 由a n +1=3S n ⇒S n +1-S n =3S n ⇒S n +1=4S n ,所以数列{S n }是首项为1,公比为4的等比数列,所以S n =4n -1,所以a 6=S 6-S 5=45-44=3×44,所以选择A.3.A 【解析】 a 1+a 2+…+a 10=-1+4-7+10+…+(-1)10·(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9·(3×9-2)+(-1)10·(3×10-2)]=3×5=15.故选A.4.D 【解析】 从实际问题中考虑将树苗放在最中间的坑旁边,则每个人所走的路程和最小,一共20个坑,为偶数,在中间的有两个坑为10和11号坑,故答案选D.【提升训练】1.C 【解析】 设公差为d ,则d =5+815-2=1,所以a n =n -10,因此S 9=S 10是前n 项和中的最小值,选择C.2.C 【解析】 依题意,由2S 3=S 1+S 2得2(a 1+a 1q +a 1q 2)=a 1+a 1+a 1q ,解得q =-12,选择C. 3.C 【解析】 S n =log 31-log 32+log 32-log 33+…+log 3n -log 3(n +1)=-log 3(n +1)<-4,解得n >34-1=80.4.C 【解析】 设每一秒钟通过的路程依次为a 1,a 2,a 3,…,a n ,则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式得na 1+n (n -1)d 2=240,即2n +n (n -1)=240,解得n =15.故选C.5.B 【解析】 已知圆的圆心为Q ⎝⎛⎭⎫52,0,半径r =52.又|PQ |=32,∴a 1=2r 2-|PQ |2=4,a n =2r =5,∴d =a n -a 1n -1=1n -1∈⎝⎛⎭⎫15,12,∴n ∈(3,6),∴n =4或n =5. 6.C 【解析】 等差数列的前n 项和有最大值,则其公差为负值,数列单调递减,根据a 11a 10<-1可知一定是a 10>0,a 11<0,由此得a 11<-a 10,即a 11+a 10<0,S 19=a 1+a 192×19=19a 10>0,S 20=a 1+a 202×20<0,由于S n 在取得最大值后单调递减,根据已知S n 在[11,+∞)上单调递减,所以使得S n 取得最小正值的n 值为19.7.350 【解析】 a n =⎩⎪⎨⎪⎧2,n =1,2n +1,n ≥2,所以a 1+a 3+a 5+…+a 25=(a 1+1)+a 3+a 5+…+a 25-1=(3+51)2×13-1=350. 8.n 2+3n 4(n +1)(n +2) 【解析】 裂项1n (n +1)(n +2)=121n (n +1)-1(n +1)(n +2),相消得结果为n 2+3n 4(n +1)(n +2).=34n 2+12n +18·(-1)n -18(也可分奇数和偶数讨论解决). 10.【解答】 (1)设等差数列{}a n 的公差为d ,因为a 3=7,a 5+a 7=26,所以有⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2. 所以a n =3+2(n -1)=2n +1;S n =3n +n (n -1)2×2=n 2+2n . (2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14·1n (n +1)= 14·⎝⎛⎭⎫1n -1n +1, 所以T n =14·⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=14·⎝⎛⎭⎫1-1n +1=n 4(n +1), 即数列{}b n 的前n 项和T n =n 4(n +1).。

高考数学冲刺复习 数学精练10 试题

高考数学冲刺复习 数学精练10 试题

数学(shùxué)精练〔10〕1.全集(quánjí),集合(jíhé),,那么(nà me)集合( )〔A〕〔B〕〔C〕〔D〕【答案】A【解析】画出数轴可以求得答案为A.是虚数单位,那么设是虚数单位,那么 ( )A. B. C. D.【答案】C【解析】,应选C.3.某校高三一班有学生54人,二班有学生42人,如今要用分层抽样的方法从两个班抽出16人参加HY训表演,那么一班和二班分别被抽取的人数是( ) 〔A〕8,8 〔B〕10,6〔C〕9,7 〔D〕12,4【答案】C【解析(ji ě x ī)】一班(y ī b ān)被抽取的人数是人;二班被抽取(chōu q ǔ)的人数是人,应选(y īn ɡ xu ǎn)C.4.函数那么=( )A .B .eC .-e1D .-e【答案】A 【解析】因为,所以)]1([ef f =e1. 5.向量,,假设,那么的值是( )A .B .4C .D .【答案】C【解析】因为2=b a ,所以,解得2±.6.m 、n 是两条不同直线,是三个不同平面,以下命题中正确的选项是〔 〕 A .假设 B .假设C .假设D .假设【答案】D【解析】此题考察空间直线与直线,直线与平面的平行、垂直的断定,容易看出选项D 正确.7.假设(jiǎshè)实数x,y满足(mǎnzú)不等式组:,那么该约束条件所围成的平面(píngmiàn)区域的面积是 ( )A.3 B.C.2 D.【答案(dá àn)】C【解析】可行域为直角三角形,其面积为8.由直线上的点向圆引切线,那么切线长的最小值为( )A. B. C. D.【答案】B到直线2y的最短间隔 .所以+=x9.如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图〔其中为数字0—9中的一个〕,去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为,那么一定有〔〕A.B.,a a的大小不确定C.D.12【答案(dá àn)】B【解析(jiě xī)】.10.在上是奇函数,且满足(mǎnzú)当时,,那么(nà me)等于 ( )A. B.2 C. D. 98【答案】A【解析】因为(2)(),f x f x+=-所以,所以4是()f x的周期,所以(2011)f===-2,应选A. 参考答案内容总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学冲刺复习
数学精练(10)
1.已知全集U =R ,集合{10}A x x =+<,
{30}B x x =-<,那么集合()U C A B = ( )
(A ){13}x x -≤< (B ){13}x x -<< (C ){1}x x <- (D ){3}x x > 【答案】A
【解析】{10}{1},A x x x x =+<=<-{30}{3},B x x x x =-<=<画出数轴可以求得答案为A.
2.设i 是虚数单位,则设i 是虚数单位,则3
1i i
=- ( )
A.
1122
i - B.112
i +
C.
1122
i + D.112i
-
【答案】C 【解析】
2
2
12
1)
1)(1()1(113
i i i i i i i
i i
i +
=
+=
-+-⋅=
+=
-,故选C.
3.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出
16人参加军训表演,则一班和二班分别被抽取的人数是( ) (A )8,8 (B )10,6
(C )9,7 (D )12,4 【答案】C
【解析】一班被抽取的人数是5416996
⨯=人;二班被抽取的人数是4216796

=人,故选C.
4.已知函数⎩⎨⎧><=,
0,ln ,0,)(x x x e x f x 则)]1
([e f f =( )
A .
e
1 B .e C .-
e 1 D .-e
【答案】A
【解析】因为1
1
()ln
1f e e ==-,所以)]1([e f f =(1)f -=e
1
. 5.已知向量()1,2a =,(),4x b =,若2=b a ,则x 的值为( )
A .2
B .4
C .2±
D .4±
【答案】C
【解析】因为2=b a ,
=解得x =2±.
6.已知m 、n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是 ( )
A .若//,//,//m n m n αα则
B .若,,//αγβγαβ⊥⊥则
C .若//,//,//m m αβαβ则
D .若,,//m n m n αα⊥⊥则
【答案】D
【解析】本题考查空间直线与直线,直线与平面的平行、垂直的判定,容易看出选项D 正确.
7.若实数x ,y 满足不等式组:⎪⎩

⎨⎧≤-≥+-≥-3311y x y x y x ,则该约束条件所围
成的平面区域的面积是 ( )
A .3
B .
2
5 C .2 D .
22
【答案】C
【解析】可行域为直角三角形,其面积为
1 2.2S =
⨯=
8.由直线2+=x y 上的点向圆()()2
2
421x y -++= 引切线,则切线长的最小值为( )
A .30
B .31
C .24
D .33 【答案】B
【解析】切线长的长短由该点到圆心的距离来确定.即圆心()4,2-到直线2+=x y 的最短
距离.d ===
9.如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m 为数字 0—9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为
12,a a ,则一定有
( )
A .12a a >
B .21a a >
C .12a a =
D .12,a a 的大小不确定
【答案】B
【解析】1284,85a a ==.
10.已知()f x 在R 上是奇函数,且满足(2)(),f x f x +=-当(0,2)x ∈时,2
()2f x x =,则
(2011)f 等于 ( )
A. 2-
B.2
C. -98
D. 98 【答案】A
【解析】因为(2)(),f x f x +=-所以(4)(2)[()]()f x f x f x f x +=-+=--=,所以4是
()f x 的周期,所以(2011)f =(20083)(3)f f +==(12)(1)f f +=-=-2,故选A.
参考答案。

相关文档
最新文档