固体物理第二章习题答案

合集下载

固体物理答案-第二章

固体物理答案-第二章
NaCl晶体
N0=6.0221023,与N0对应的质量应为
M=23+35.5=58.5(g)
Na原子量
Cl原子量
阿伏加德罗常数
面心立方,最近邻原子有12个, 由N个惰性气体原子构成的分子晶体,其总互作用势能可表示为
(2)计及最近邻和次近邻,次近邻有6个。
2.14 KCl晶体的体积弹性模量为 相邻离子间距缩小0.5%,需要施加多大的压力。 ,若要使晶体中 解:根据体积弹性模量K的定义, 得 ,因而 设R为相邻离子间的距离。KCL具有NaCL结构,平均每体 才有一个离子,若晶体中共含N个离子,则晶体体积 积
式中,V为晶体体积,N为晶体包含的原子数,v为每个原子平 均占据的体积。若以
表示晶体包含的晶胞数,
中每个晶胞的体积,n表示晶胞中所含的粒子数,则(1)式完全 等效于
解:题给
表示晶体
(1)
于是得
(2)
R为离子间的最短距离。题给的各种晶格均为立方格子,如令
证明:
选取负离子O为参考离子,相邻两离子间的距离用R表示。
第j个离子与参考离子的距离可表示为
对于参考
离子O,它与其它离子的互作用势能为
马德隆常数
2.3 设两原子间的互作用能可由 表述。 式中第一项为吸引能,第二项为排斥能; 均为正的常数。证明,要使这两原子系统处于平衡状态,必须n>m。 且 即当 时, 证明:相互作用着的两原子系统要处于稳定平衡状态,相应 于平衡距离 处的能量应为能量的极小值,
为常数,试求
(1)平衡时原子间的最短距离;
(2)平衡时晶体体积;
(3)平衡时体积弹性模量;
(4)抗张强度。
解:
(1)


01

黄昆版固体物理学课后答案解析答案

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

固体物理第一二章习题解答

固体物理第一二章习题解答

第一章习题1.画出以下晶体的惯用原胞和布拉菲格子,指明各晶体的结构和惯用原胞、初基原胞中的原子个数和配位数。

(1)氯化钾;(2)氯化钛;(3)硅;(4)砷化镓;(5)碳化硅(6)钽酸锂;(7)铍;(8)钼;(9)铂。

解:名称分子式结构惯用元胞布拉菲格子初基元胞中原子数惯用元胞中原子数配位数氯化钾KCl NaCl结构fcc 2 8 6 氯化钛TiCl CsCl结构sc 2 2 8 硅Si 金刚石fcc 2 8 4 砷化镓GaAs 闪锌矿fcc 2 8 4碳化硅 SiC 闪锌矿fcc 2 8 4钽酸锂LiTaO 3钙钛矿sc552、6、12O 、Ta 、Li铍Behcp简单六角2612钼 Mo bccbcc 1 2 8铂 Pt fccfcc 1 4 122. 试证明:理想六角密堆积结构的128 1.6333c a ⎛⎫== ⎪⎝⎭。

若是实际的ca值比那个数值大得多,能够把晶体视为由原子密排平面所组成,这些面是疏松堆垛的。

证明:如右图所示,六角层内最近邻原子间距为a ,而相邻两层的最近邻原子间距为:212243⎪⎪⎭⎫ ⎝⎛+=c a d 。

当d =a 时组成理想密堆积结构,现在有:212243⎪⎪⎭⎫ ⎝⎛+=c a a ,由此解出:633.13821=⎪⎭⎫⎝⎛=a c 。

假设633.1>ac时,那么表示原子平面的层间距较理想结构的层间距大,因此层间堆积不够紧密。

3. 画出立方晶系中的以下晶向和晶面:[101]、[110]、[112]、[121]、(110)、(211)、(111)、(112)。

解:4. 考虑指数为(100)和(001)的面,其晶格属于面心立方,且指数指的是立方惯用原胞。

假设采纳初基原胞基矢坐标系为轴,这些面的指数是多少?解:如右图所示:在立方惯用原胞中的(100)晶面,在初基原胞基矢坐标系中,在1a 、2a 、3a 三个基矢坐标上的截距为()2,,2∞,那么晶面指数为(101)。

固体物理习题答案PPT课件

固体物理习题答案PPT课件
上述八个矢量的垂直平分面,形成了第一布里渊 区。
5 解: A2 b c,B 2 c a,C 2 a b
V c
V c
V c
V A (B C ) (2)3( b c )[ c ( a ) ( a b )] V c
A (B C )(A C )B (A B )C
6解:当 KCl 取 ZnS 结构时,晶体总相互作用
能为 utotN(zeRR q2)
已知:N=6.023*1023/mol, ρ=0.326埃,αZnS=1.6381,(见P103) 为NaCl结构时,Zλ=2.05*10-8erg, Z=6 当为ZnS 结构时,Z=4, Zλ=(4/6)*2.05*10-8erg
设ZnS 结构时,其晶格常数与NaCl结构相同, (为原子最近邻距离)
即 a=6.294埃(见P20,图20配位数为6,参见表10,表11, a=2*1.33+1.81=6.2埃),31/2a/4=2.72埃(为原子最近邻距
离)
u to 6 . 0 t 1 2 2 [ 3 0 6 4 2 2 . 0 1 5 8 e 0 0 2 . 3 . 7 2 2 1 . 6 6 2 . ( 3 7 4 . 8 1 8 2 1 8 0 1 0 e 1 5 0 0 ) 3 ] s 1 u . 8 K 5/ m 3 C
第二章 习题答案
3解:
(c)衍射先只出现在同时满足以下二个方程的方
向上:(1)acosθ1=nλ,(2) bcosθ2=mλ
(
a,b
为二个方向矢量)
所以在二个锥面的交线上出现衍射极大。当底板
//原子面时,衍射花样为二个锥面的交线与底板
的交点。
(d)反射式低能电子衍射(LEED)中,只有表面 层原子参与衍射,故为二维衍射,衍射点的周期 大小与晶体表面原子排列方向上周期大小成反比。

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

固体物理习题带答案

固体物理习题带答案

第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有

r
m


rn
。证明:要使两原子处于平衡状

r
m


rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2

2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m

r0
m 1
n

r0
n 1
。所以
m nm r0 。 n
0
r0



d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r


黄昆版固体物理学课后答案

黄昆版固体物理学课后答案

黄昆版固体物理学课后答案《固体物理学》习题解答黄坤原著韩汝琦改编(陈志远答案,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n和小球体积v所得到的小球总体积nv与晶体原胞体积vc之比,即:晶体原胞的空间利用率,x?(1)对于简立方结构:(见教材p2图1-1)nvvc43?r、 vc=a3,n=134343?RR33∴十、0.526a38r3a=2r,v=(2)对于体心立方:晶胞的体对角线bg=3a?4r?a?n=2,vc=a343x32?∴十、434? r2??r33330.688a3433(R)3(3)对于面心立方:单元面对角线BC=2A?4r,?A.22rn=4,vc=a3444??r34??r3233x0.74336a(22r)(4)对于六角密排:a=2r晶胞面积:s=6?s?abo?6?晶胞的体积:v=s?c?a?asin60332a=223328a?a?32a3?242r323n=1212?11?2??3=6个6246??r323x0.7436242r(5)对于金刚石结构,晶胞的体对角线bg=3a?4?2r?a?8r3n=8,vc=a3一448??r38??r33?33x0.346a3833r33c81。

2.测试:在六角形紧密堆积结构中?()1/2? 一点六三三a3证明:在六角密堆积结构中,第一层硬球a、b、o的中心联线形成一个边长a=2r 的正三角形,第二层硬球n位于球abo所围间隙的正上方并与这三个球相切,于是:na=nb=no=a=2r.也就是说,图中的Nabo形成一个正四面体1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

A.a1?2(j?k)A.证明了:(1)面心立方的法向晶格基向量(固体物理的原胞基向量):?a2?(i?k)2aa3?2(i?j)??2(a2?a3)由倒格子基矢的定义:b1??0,aa1?(a2?a3)?,2a,2a,20,a,2a?i,2aa3a???,a2?a3?,242a0,2?j,0,a,2?kaa2(?i?j?k)240?4a2???2?b1?2??3?(?i?j?k)?(?i?j? k)a4a?2.b2?(I?J?K)a类似地:2即面心立方的倒格子基矢与体心立方的正格基矢相同。

黄昆版固体物理学课后答案解析答案 (2)

黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.证明两种一价离子组成的一维晶格的马德隆常数为2ln 2α=.
证 设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r 表示相邻离子间的距离,于是有
(1)1111
2[...
]234j
ij r
r r r r r
α
±'
==-+-+∑ 前边的因子2是因为存在着两个相等距离i r 的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为
2
34
(1) (34)
n x x x x x x +=-+-+
当X=1时,有111
1 (2234)
n -
+-+= 2.3 若一晶体的相互作用能可以表示为()m
n
u r r
r
α
β
=-
+
求 1)平衡间距0r 2)结合能W (单个原子的) 3)体弹性模量 4)若取
02,10,0.3,4m n r nm W eV ==== ,计算,αβ值。

解 1)晶体内能()()2m n N U r r r
αβ=
-+ 平衡条件
0r r dU
dr
== 1100
0m n m n r r αβ
++-+= 1
0()n m n r m βα-= 2) 单个原子的结合能01
()2
W u r =-
0()()m n r r u r r r αβ
==-+ 1(1)(2m n m
m n W n m β
αα--=-
3) 体弹性模量0
202()V U
K V V
∂=⋅∂ 晶体的体积3
V NAr =—— A 为常数,N 为原胞数目
晶体内能()()2m n N U r r r αβ=
-+ 112
1()23m n N m n r r NAr αβ++=-
22112
1[()]23m n U N r m n V V r r r NAr αβ++∂∂∂=-∂∂∂ 1112[1...]234α=-+-+n α∴=
体弹性模量0202(
)V U
K V V ∂=⋅∂
2222
200000
1[]29m n m n V V U
N m n m n V V r r r r αβαβ=∂=-+-+∂ 由平衡条件
112000
1()023m n V V U
N m n V
r r NAr αβ++=∂=
-=∂
00
m n m n r r αβ=
2222
2
000
1[]29m n V V U
N m n V V r r αβ
=∂=-+∂ 体弹性模量0202()V U K V V ∂=⋅∂ 000()2m
n N U r r αβ
=-+
22222
0001[]29m n V V U
N m n V V r r αβ=∂=-+∂
22
20001[]29m n
V V U
N m n m n V V r r αβ
=∂=
-+∂

00m n m n r r αβ=) 2000
[]29m
n N nm V r r αβ
=--+ 0
202
20()9V V U mn U V V =∂=
-∂ 0
9mn
K U V = 4)00
m n m n r r αβ
= 1
0()n m n r m βα-= 1(1)()2m
n m
m n W n m βαα--=-
1002
W r β=
95
101.1810e V m β-=⨯⋅ 20100
[
2]r W r
β
α=+ 192
9.010e V m α-=⨯⋅。

相关文档
最新文档