最优化模型

合集下载

多目标最优化数学模型

多目标最优化数学模型

第六章 最优化数学模型§1 最优化问题1.1 最优化问题概念 1.2 最优化问题分类1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值 2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划§4 最优化问题数值算法 4.1 直接搜索法 4.2 梯度法 4.3 罚函数法§5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法 5.5 投资收益风险问题第六章 最优化问题数学模型 §1 最优化问题1.1 最优化问题概念 (1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。

而求解最优化问题的数学方法被称为最优化方法。

它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。

最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。

最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。

(2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。

一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。

设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X 表示。

(3)约束条件在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。

例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。

在研究问题时,这些限制我们必须用数学表达式准确地描述它们。

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

数学建模最优化模型

数学建模最优化模型

数学建模最优化模型随着科学与技术的不断发展,数学建模已经成为解决复杂实际问题的一种重要方法。

在众多的数学建模方法中,最优化模型是一种常用的方法。

最优化模型的目标是找到最佳解决方案,使得一些目标函数取得最大或最小值。

最优化模型的基本思想是将实际问题抽象为一个数学模型,该模型包含了决策变量、约束条件和目标函数。

决策变量是需要优化的变量,约束条件是对决策变量的限制条件,目标函数是优化的目标。

最优化模型的求解方法可以分为线性规划、非线性规划和整数规划等。

线性规划是最优化模型中最基本的一种方法,其数学模型可以表示为:max/min c^T xs.t.Ax<=bx>=0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右边向量。

线性规划的目标是找到最优的决策变量向量x,使得目标函数的值最大或最小。

非线性规划是最优化模型中更为复杂的一种方法,其数学模型可以表示为:max/min f(x)s.t.g_i(x)<=0,i=1,2,...,mh_i(x)=0,i=1,2,...,p其中,f(x)是目标函数,g_i(x)是不等式约束条件,h_i(x)是等式约束条件。

非线性规划的求解过程通常需要使用迭代的方法,如牛顿法、拟牛顿法等。

整数规划是最优化模型中另一种重要的方法,其数学模型在线性规划的基础上增加了决策变量的整数限制。

max/min c^T xs.t.Ax<=bx>=0x是整数整数规划的求解通常更为困难,需要使用特殊的算法,如分支定界法、割平面法等。

最优化模型在实际问题中有着广泛的应用,如资源调度、生产计划、路线选择、金融投资等。

通过建立数学模型并求解,可以得到最优的决策方案,提高效益和效率。

总结起来,最优化模型是数学建模的重要方法之一、通过建立数学模型,将实际问题转化为数学问题,再通过求解方法找到最佳解决方案。

最优化模型包括线性规划、非线性规划和整数规划等方法,应用广泛且效果显著。

最优化模型(第五讲)

最优化模型(第五讲)

数学建模讲义主讲人:穆学文西安电子科技大学数学系Email:xdmuxuewen@ 最优化模型---最优化方法的概念参考书目1. 陈宝林。

最优化理论与算法。

清华大学出版社.2. 谢金星,薛毅。

优化建模与lindo/lingo优化软件. 清华大学出版社. 背景知识基本概念及其应用最优化问题举例最优化方法的概念优化问题的数学模型及其分类 最优解与极值点常用的数学软件§1背景知识•运筹学理论的一部分•最早起源于中国古代¾公元前6世纪孙武所著的《孙子兵法》¾孙膑“斗马术”,田忌与齐王赛马,博弈论¾运筹帷幄之中,决胜千里之外”。

这千古名句也可以说是对张良运筹思想的赞颂和褒奖。

•国外起源与发展¾1896年,V.Pareto首次从数学角度提出多目标优化问题,引进了Pareto最优的概念。

¾1935-38年,英国为了正确地运用新研制的雷达系统来对付德国飞机的空袭,在皇家空军中组织了一批科学家,进行新战术试验和战术效率评价的研究,并取得了满意的效果。

他们把自己从事的这种工作命名为“Operational Research”(背景知识(续)Operational Research(运筹学,或直译为作战研究)。

¾1939年,苏联的Л.В.Канторович总结了他对生产组织的研究,写了《生产组织与计划中的数学方法》一书,是线性规划应用于工业生产问题的经典著作¾1947年,G.B.Dantzig提出了单纯形方法后,线性规划便迅速形成为一个独立的分支。

并逐级发展起来。

¾英国运筹学会1948年成立(1948-53年是运筹学俱乐部,1953年11月起改名为学会)。

¾二次大战胜利后,美英各国不但在军事部门继续保留了运筹学的研究核心,而且在研究人员、组织的配备及研究范围和水平上,都得到了进一步的扩大和发展,同时筹学方法也向政府和业等部门扩展背景知识(续)运筹学方法也向政府和工业等部门扩展。

非线性最优化模型

非线性最优化模型

案例二:生产调度优化的应用
总结词
生产调度优化是利用非线性最优化模型来安排生产计划 ,以提高生产效率和降低生产成本。
详细描述
生产调度问题需要考虑生产线的配置、工人的排班、原 材料的采购等多个因素。非线性最优化模型能够综合考 虑这些因素,并找到最优的生产调度方案,提高生产效 率,降低生产成本,并确保生产计划的可行性。
04
非线性最优化模型的实例分析
投资组合优化模型
投资组合优化模型
通过非线性最优化方法,确定最佳投资组合配置,以实现预期收 益和风险之间的平衡。
目标函数
最大化预期收益或最小化风险,通常采用夏普比率、詹森指数等 作为评价指标。
约束条件
包括投资比例限制、流动性约束、风险控制等。
生产调度优化模型
01
生产调度优化模型
非线性最优化模型
• 非线性最优化模型概述 • 非线性最优化模型的分类 • 非线性最优化模型的求解方法 • 非线性最优化模型的实例分析 • 非线性最优化模型的挑战与展望 • 非线性最优化模型的应用案例
01
非线性最优化模型概述
定义与特点
定义
非线性最优化模型是指用来描述具有 非线性特性的系统或问题的数学模型 。
多目标非线性优化模型
多目标
多目标非线性优化模型中存在多个目标函数,这些目标函 数之间可能存在冲突。
01
求解方法
常用的求解方法包括权重法、帕累托最 优解法、多目标遗传算法等,这些方法 通过迭代过程逐步逼近最优解。
02
03
应用领域
多目标非线性优化模型广泛应用于各 种领域,如系统设计、城市规划、经 济分析等。
通过非线性最优化方法,合理安 排生产计划和调度,以提高生产 效率和降低成本。

多目标最优化模型

多目标最优化模型
可视化分析:多目标最优化模型可以通过可视化技术展示各目标之间的关联和影 响,使得分析结果更加直观易懂。
缺点
计算复杂度高
求解速度慢
难以找到全局最优 解
对初始解依赖性强
多目标最优化模 型的发展趋势
算法改进
进化算法:如遗传算法、粒子群算法等,在多目标优化问题中表现出色,能够找到多个非支配解。
机器学习算法:如深度学习、强化学习等,在处理大规模、高维度多目标优化问题时具有优势,能 够自动学习和优化目标函数。
金融投资
风险管理:多目标最 优化模型用于确定最 优投资组合,降低风 险并最大化收益。
资产配置:模型用于 分配资产,以实现多 个目标,例如最大化 收益和最小化风险。
投资决策:模型帮助 投资者在多个投资机 会中选择最优方案, 以实现多个目标。
绩效评估:模型用于评 估投资组合的绩效,以 便投资者了解其投资组 合是否达到预期目标。
混合算法:将多种算法进行融合,形成新的优化算法,以适应不同类型和规模的多目标优化问题。
代理模型:利用代理模型来近似替代真实的目标函数,从而加速多目标优化问题的求解过程。
应用拓展
人工智能领域的应用
金融领域的应用
物流领域的应用
医疗领域的应用
未来研究方向
算法改进:研究更高效的求解多目标最优化问题的算法 应用拓展:将多目标最优化模型应用于更多领域,如机器学习、数据挖掘等 理论深化:深入研究多目标最优化理论,提高模型的可解释性和可靠性 混合方法:结合多种优化方法,提高多目标最优化模型的性能和适用范围
资源分配
电力调度:多目标最优化模型用于协调不同区域的电力需求和供应,实现电力资源的 合理分配。
金融投资:多目标最优化模型用于确定投资组合,以最小风险实现最大收益,优化金 融资源分配。

最优化模型

最优化模型
时 间 所需营业员人数 28 人 15 人 24 人 25 人 19 人 31 人 28 人
星期日 星期一 星期二 星期三 星期四 星期五 星期六
2、模型
决策变量:设x j为第j天开始休息的人数( j 1, 2,, 7)
目标函数: min x1 x2 x3 x4 x5 x6 x7 约束条件: x1 x2 x3 x4 x5 28 x2 x3 x4 x5 x6 15 x3 x4 x5 x6 x7 24 x4 x5 x6 x7 x1 25 x5 x6 x7 x1 x2 19 x6 x7 x1 x2 x3 31 x7 x1 x2 x3 x4 28 x1 , x2 , x3 , x4 , x5 , x6 , x7 0, 整数

例(挑选球员问题)某篮球教练要从8名业余队员中 挑选3名队员参加专业球队,使平均身高达到最高。 队员的号码、身高及所擅长的位置如下。要求:中 锋1人;后卫1人;前锋1人,但1号、3号与6号队员 中必须保留1人给业余队。
号码 1 2 3 4 5 6 7 8 身高(米) 1.92 1.91 1.90 1.86 1.85 1.83 1.80 1.79 位置 中锋 中锋 前锋 前锋 前锋 后卫 后卫 后卫 挑选变量 x1 x2 x3 x4 x5 x6 x7 x8


例(选址问题)设有n个市场,第j个市场的位置为(aj,bj), 对某种货物的需要量为qj, j=1,…,n,现计划建立m个仓库, 第i个仓库的容量为ci,i=1,…,m,试确定仓库的位置,使各 仓库到各市场的运输量与路程乘积之和最小. 解:设第i个仓库的位置为(xi,yi),运输量为wij.
min n m w ( x a ) 2 ( y b ) 2 i j i j j 1 i 1 ij n s.t. j 1 wij ci i 1, 2, , m m i 1 wij q j j 1, 2, , n wij 0 i 1, 2, , m j 1, 2, , n

最优化模型.

最优化模型.

华北电力大学数理学院
School of mathematics & physics
一、简单优化问题
* p 利润U(p)达到最大值的最优价格 满足:
dU dI dC a bq 2bp 0 dp dp dp
得到:
q a p 2 2b
*
最优价格一部分是成本的一半,另一部分与“绝对需求” 成正比,与市场需求对价格的敏感系数成反比。
一、简单优化问题
3、模型求解及其结果分析
需求函数是售价的减函数,通常是根据实际销售
情况定出。现在,假设它是线性函数,即
x f ( p) a bp, a, b 0
其中, a--代表这种产品免费供应(p=0)时的社会需求
量,也称为绝对需求量;
幅度。它反映市场需求对价格的敏感程度。
dx b 表示价格上涨一个单位时销售量下降的 dp
(3) 由于市场需求变化,每千克A1产品的获利增加到30 元,是否应改变生产计划?
二、模型分析 生产计划就是每天生产多少A1和多少A2,获利润最大。或 者是每天用多少桶牛奶生产A1和用多少桶牛奶生产A2,获 利润最大。
当技术参数、价值系数为常数时,此为线性规划模型。
华北电力大学数理学院
School of mathematics & physics
二、数学规划模型
四、模型的建立
目标:设每天收入z元。则 z 24 3x1 16 4 x2
约束条件:
原料限制
劳动时间限制
x1 x2 50
12x1 8x2 480
设备能力限制
3x1 100
决策变量的非负性 x1 , x2 0
华北电力大学数理学院
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据目标函数,约束条件的特点将最优 化方法包含的主要内容大致如下划分:
线性规划 整数规划 非线性规划
动态规划
多目标规划
2014-8-28 数学建模
两个引例
问题一:某工厂在计划期内要安排生产I、II两种产品, 已知生产单位产品所需的设备台时及A、B两种原材料的 消耗,如下表所示
I 设备 1 II 2 8台时
几个概念
• 最优化是从所有可能方案中选择最合理的一种
以达到最优目标的学科。 • 最优方案是达到最优目标的方案。 • 最优化方法是搜寻最优方案的方法。 • 最优化理论就是最优化方法的理论。
2014-8-28
数学建模
经典极值问题
包括:
①无约束极值问题
②约束条件下的极值问题
2014-8-28
数学建模
1、无约束极值问题的数学模型
假设:产品合格且能及时销售出去;工作无等待情况等
数学建模
s.t.
2014-8-28
问题二: 某厂每日8小时的产量不低于1800件.为了进行质量
控制,计划聘请两种不同水平的检验员.一级检验员的标准为: 速度25件/小时,正确率98%,计时工资4元/小时;二级检验员 的标准为:速度15件/小时,正确率95%,计时工资3元/小时.检 验员每错检一次,工厂要损失2元.为使总检验费用最省,该工 厂应聘一级、二级检验员各几名?
原材料A
原材料B
4
0
0
4
16kg
12kg
该工厂每生产一件产品I可获利2元,每生产一件产品 II可获利3元。问应如何安排计划使该工厂获利最多?
2014-8-28 数学建模
解:该工厂生产产品I x1件,生产产品II x2件, 我们可建立如下数学模型:
max
z 2 x1 3x2
x1 2 x2 8 4 x 16 1 4 x2 12 x1 , x2 0
例 1 求 x = 2 e x sin x 在 0< x <8 中的最小值与最大值 .
主程序为: f='2*exp(-x).*sin(x)'; fplot(f,[0,8]); %作图语句 [xmin,ymin]=fminbnd (f, 0,8) f1='-2*exp(-x).*sin (x)'; [xmax,ymax]=fminbnd (f1, 0,8)
数学家对最优化问题的研究已经有很多年的 历史。 以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。 计算机技术的出现,使得数学家研究出了许 多最优化方法和算法用以解决以前难以解决的问 题。
2014-8-28 数学建模
output= iterations: 108 funcCount: 202 algorthm: 'Nelder-Mead simplex direct search '
2014-8-28 数学建模
有约束最优化
最优化方法分类
(一)线性最优化:目标函数和约束条件都是线 性的则称为线性最优化。 非线性最优化:目标函数和约束条件如果含 有非线性的,则称为非线性最优化。 (二)静态最优化:如果可能的方案与时间无关, 则是静态最优化问题。 动态最优化:如果可能的方案与时间有关, 则是动态最优化问题
①前期分析:分析问题,找出要解决的目标,约束条件,并 确立最优化的目标。 ②定义变量,建立最优化问题的数学模型,列出目标函数和 约束条件。
③针对建立的模型,选择合适的求解方法或数学软件。④编写程序,利用 Nhomakorabea算机求解。
⑤对结果进行分析,讨论诸如:结果的合理性、正确性,算 法的收敛性,模型的适用性和通用性,算法效率与误差等。
[X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b)
X= 10.0000
15.0000
FVAL =
2014-8-28
-175.0000
数学建模
线



设某工厂有甲、乙、丙、丁四个车间,生产A、B、 C、D、E、F六种产品。根据机床性能和以前的生产情 况,得知每单位产品所需车间的工作小时数、每个车间 在一个季度工作小时的上限以及单位产品的利润,如下 表所示(例如,生产一个单位的A产品,需要甲、乙、丙 三个车间分别工作1小时、2小时和4小时) 问:每种产品各应该每季度生产多少,才能使这个工厂 每季度生产利润达到最大。
数学建模
• 在实际生活当中,人们做任何事情,不管是分 析问题,还是进行决策,都要用一种标准衡量 一下是否达到了最优。 (比如基金人投资)
• 在各种科学问题、工程问题、生产管理、社会
经济问题中,人们总是希望在有限的资源条件
下,用尽可能小的代价,获得最大的收获。
(比如保险)
2014-8-28 数学建模
2014-8-28 数学建模
2.多元函数无约束优化问题
标准型为:min F ( X )
命令格式为: (1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 ) (2)x= fminunc(fun,X0 ,options); 或x=fminsearch(fun,X0 ,options) (3)[x,fval]= fminunc(...); 或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...); 或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...); 或[x,fval,exitflag,output]= fminsearch(...)
2 建立无约束优化模型为:min y =- (3 2 x) x , 0< x <1.5
先编写M文件如下: function f=fun0(x) f=-(3-2*x).^2*x; 主程序为 [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fval 运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边 长为0.5m时水槽的容积最大,最大容积为2m3.
2014-8-28 数学建模
x
1、无约束极值问题的求解
例 1 :求函数 y=2x3+3x2-12x+14 在区间 [-3,4] 上的最 大值与最小值。 解:令f(x)=y=2x3+3x2-12x+14 f’(x)=6x2+6x-12=6(x+2)(x-1) 解方程f’(x)=0,得到x1= -2,x2=1,又 由于f(-3)=23,f(-2)=34,f(1)=7,f(4)=142,
解 设需要一级和二级检验员的人数分别为x1、x2人, 则应付检验员的工资为:
8 4 x1 8 3 x2 32 x1 24 x2
因检验员错检而造成的损失为:
(8 25 2% x1 8 15 5% x2 ) 2 8x1 12 x2
2014-8-28 数学建模
2014-8-28
数学建模
线



某豆腐店用黄豆制作两种不同口感的豆腐出售。 制作口感较鲜嫩的豆腐每千克需要0.3千克一级 黄豆及0.5千克二级黄豆,售价10元;制作口感 较厚实的豆腐每千克需要0.4千克一级黄豆及0.2 千克二级黄豆,售价5元。现小店购入9千克一级 黄豆和8千克二级黄豆。 问:应如何安排制作计划才能获得最大收益。
最优化模型
1、最优化方法概述 2、无约束最优化 3、有约束最优化 4、多目标最优化
2014-8-28
数学建模
最优化方法概述
1、最优化理论和方法是近二十多年来发展十分迅
速的一个数学分支。 2、在数学上,最优化是一种求极值的方法。 3、最优化已经广泛的渗透到工程、经济、电子技
术等领域。
2014-8-28
综上得,
函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7
2014-8-28 数学建模
2014-8-28
数学建模
用MATLAB解无约束优化问题
1. 一元函数无约束优化问题: min f ( x )
常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options) (3)[x,fval]= fminbnd(…) (4)[x,fval,exitflag]= fminbnd(…)
运行结果: xmin = 3.9270 xmax = 0.7854
ymin = -0.0279 ymax = 0.6448
2014-8-28
数学建模
例2 有边长为3m的正方形铁板,在四个角剪去相等的正方形以 制成方形无盖水槽,问如何剪法使水槽的容积最大?

设剪去的正方形的边长为 x ,则水槽的容积为: (3 2 x) 2 x
min f ( x)
x
2、约束条件下极值问题的数学模型
min f ( x)
s.t. gi ( x) 0, i 1, 2,..., m hi ( x) 0, i 1, 2,..., n
x
其中,极大值问题可以转化为极小值问题来 进行求解。如求: max f ( x)
x
可以转化为: min f ( x)
s.t.
0.5x1 0.2 x2 8 x1 , x2 0
2014-8-28
数学建模
用Matlab编程求解程序如下:
[X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b) f = -[10 5]; A = [0.3 0.4;0.5 0.2]; B = [9;8];
相关文档
最新文档