优化模型.ppt

合集下载

数学建模中的优化模型ppt课件

数学建模中的优化模型ppt课件

2
3
4
• 制订月生产计划,使工厂的利润最大.
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变? 15
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
p(t)w(t) p(t)w(t) 4
每天利润的增值 每天投入的资金
保留生猪直到利润的增值等于每天的费用时出售
由 S(t,r)=3 若 1.8 w 2.2(10%), 则 7 t 13(30%) 建议过一周后(t=7)重新估计 p, p, w, w, 再作计算。
13
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 设r=2不变
t 3 20 g , 0 g 0.15 g
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
7
常用优化软件
1. LINGO软件 2. MATLAB优化工具箱 3. EXCEL软件的优化功能 4. SAS(统计分析)软件的优化功能 5. 其他
8
2.简单的优化模型
——生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80千克重的生猪体重增加2公斤。
市场价格目前为每千克8元,但是预测每天会降 低 0.1元,问生猪应何时出售。
均为整数,重新求解. 17
模型求解 整数规划(Integer Programming,简记IP)

第四讲---多变量优化模型

第四讲---多变量优化模型
雷达信号处理国防科技重点实验室45不等式约束的多变量优化问题45不等式约束的多变量优化问题优化模型优化模型33900100033990004001400000195225400000195225最大值点最大值点目标函数是双变量二次函数约束条件由个线性束条件由5个线性不等式约束构成约束二次规划约束二次规划可行解区域可行解区域雷达信号处理国防科技重点实验室约束二次规划约束二次规划45不等式约束的多变量优化问题45不等式约束的多变量优化问题不等式约束的多变量优化问题不等式约束的多变量优化问题min通过适当处理转通过适当处理转化成无约束优化化成无约束优化问题进行求解问题进行求解问题进行求解问题进行求解最速下降法最速下降法最速下降法最速下降法牛顿迭代法牛顿迭代法共轭梯度法共轭梯度法牛顿迭代法雷达信号处理国防科技重点实验室修正牛顿迭代法修正牛顿迭代法45不等式约束的多变量优化问题45不等式约束的多变量优化问题惩罚函数方法惩罚函数方法惩罚项惩罚项引进一个辅助函数惩罚项惩罚项可行解集合可行解集合可行解集合可行解集合当一个点不在可行解集合中时r个等式约束和s个不等式约束中至少有一个不成立
2
函数存在唯一的驻点
(1) A是正定矩阵
对称矩阵
xmin A 1b, f min c bT A 1b
(2) A是负定矩阵
(2) a>0, 抛物线开口向下,
xmax b 4ac b 2 arg max{ f ( x)} , f max x 2a 4a
xmax A 1b, f max c bT A 1b
问题描述的一般形式
可行解集合
S {x n : gi (x) ci , i 1, 2,, m}
min{ f ( x)} n
x

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

优化模型一:线性规划模型数学建模课件

优化模型一:线性规划模型数学建模课件
题的求解过程。
混合整数线性规划问题求解
要点一
混合整数线性规划问题的复杂性
混合整数线性规划问题是指包含整数变量的线性规划问题 。由于整数变量的存在,混合整数线性规划问题的求解变 得更加困难,需要采用特殊的算法和技术来处理。
要点二
混合整数线性规划模型的求解方 法
为了解决混合整数线性规划问题,可以采用一些特殊的算 法和技术,如分支定界法、割平面法等。这些方法能够将 问题分解为多个子问题,并逐步逼近最优解,从而提高求 解效率。
目标函数的类型
常见的目标函数类型包括最小化、最大化等。
确定约束条件
约束条件
01
约束条件是限制决策变量取值的条件,通常表示为数学不等式
或等式。
确定约束条件的原则
02
根据问题的实际情况,选择能够反映问题约束条件的条件作为
约束条件。
约束条件的类型
03
常见的约束条件类型包括等式约束、不等式约束等。
线性规划模型的建立
也可以表示为
maximize (c^T x) subject to (A x geq b) and (x leq 0)。
线性规划的应用场景
生产计划
物流优化
在制造业中,线性规划可以用于优化生产 计划,确定最佳的生产组合和数量,以满 足市场需求并降低成本。
在物流和运输行业中,线性规划可以用于 优化运输路线、车辆调度和仓储管理,降 低运输成本和提高效率。
初始基本可行解
在线性规划问题中,一个解被称为基 本可行解,如果它满足所有的约束条 件。
在寻找初始基本可行解时,可以采用 一些启发式算法或随机搜索方法,以 快速找到一个可行的解作为起点。
初始基本可行解是线性规划问题的一 个起始点,通过迭代和优化,可以逐 渐逼近最优解。

《非线性最优化模型》课件

《非线性最优化模型》课件

无约束优化模型
定义
无约束优化模型是指在没有任何约束条件限制下,寻找目标函数的最大值或最 小值。
求解方法
无约束优化模型的求解方法主要包括梯度法、牛顿法、拟牛顿法、共轭梯度法 等。这些方法通过迭代的方式逐步逼近最优解,利用目标函数的梯度信息或海 森矩阵进行搜索。
混合整数优化模型
特点
混合整数优化模型是指目标函数 和约束条件中同时包含连续变量 和整数变量,整数变量的取值只 能是整数。
《非线性最优化模型》ppt课 件
Байду номын сангаас
CONTENTS
• 非线性最优化模型概述 • 非线性最优化模型的分类 • 非线性最优化模型的求解方法 • 非线性最优化模型的实际应用
案例 • 非线性最优化模型的未来发展
与挑战
01
非线性最优化模型概述
定义与特点
总结词
非线性最优化模型是一种数学方法,用于解决具有非线性约束和目标的优化问题。
优点
收敛速度快,精度高。
缺点
对Hessian矩阵敏感,计算量大,可能面临数值稳定问题。
拟牛顿法
总结词
改进的牛顿法 01
详细描述
02 通过迭代更新Hessian矩阵近似值 ,构造拟牛顿矩阵,以实现牛顿 法的数值稳定性和收敛速度。
优点
数值稳定性好,收敛速度快。
03
缺点
04 需要存储和计算Hessian矩阵或其 近似值。
客户需求。
运输优化
非线性最优化模型可用于 优化运输路线和运输方式 ,降低运输成本并提高运
输效率。
采购优化
通过非线性最优化模型, 可以确定最佳供应商和采 购策略,以降低采购成本
并确保产品质量。

ppt4-最优化模型

ppt4-最优化模型

【条件设置】 总成本必须是最小值; 月末库存 = 月初库存 + 本月生产量 – 需求量 月初库存 = 上月末库存 储存成本是每月末库存量之和与单位储存成本 之乘积; 各种生产方式每月的产量必须大于等于0; 每月的库存量不能小于0; 各种生产方式的月生产量不能大于其月生产能 力。
【例】 某移动通讯公司准备在一城市建立发射塔,该 城有4个地区,现有4个建塔位置,每个位置对各 地区的覆盖情况和费用如单元格区域 C2:G7 所示 (其中:1表示能覆盖该区域)。 ( 1 )假设在每个位置都建塔,计算每个地区被 覆盖的次数和建塔总费用。 ( 2 )用规划求解工具求解最优建塔位置(必须 确给保覆盖所有地区)和总费用的最小值。【发 射塔规划】
200
销地3 6 5
产地A 产地B
【例】 某农场主拥有两个农场,分别有 80 和 100 亩耕 地。他可用两个农场的全部耕地来种植玉米和小 麦。根据高层需求,他今年的生产指标是玉米 20000千克和小麦50000千克。两个农场的产量及 成本如下所示。该农场主应如何合理安排种植面 积。 【规划求解1】
P103
1、最优化问题分类 ▲根据有无约束条件可以分为: 有约束条件的最优化问题 即在资源限定的情况下求解最佳目标。 无约束条件的最优化问题 即在资源无限的情况下求解最佳目标。 ▲根据决策变量在目标函数与约束条件中出现的 形式可分为: 线性规划问题 目标函数与约束条件函数都是线性的。 非线性规划问题 目标函数与约束条件函数都是非线性的。
最优化模型
在生产、经营和管理中,经常遇到求最大值和 最小值的问题,如经济订货量等,这些都属于最 优化问题。 最优化问题是运筹学的一个重要分支,根据其 形式又分为: 数学规划 动态规划 网络规划
一、最优化问题概述 最优化问题就是在给定的条件下寻找最佳方案 的问题。最佳的含义包括两个方面: 在资源给定时寻找最好的目标 在目标确定下使用最少的资源

第一讲 优化模型·

第一讲 优化模型·

• 0-1整数规划
0-1型整数规划
★变量xi 仅取值0或1,这时候 xi 成为0-1变量,或称二进制 变量(Excel中就是称作二进制变量)。 例 某8名实习生, 在生产流水线上按2人一队负责某产 品同一道工序, 共分成四队. 假设8名实习生两两之间组 队的工作效率如下表所示,由于对称性,只列出上三角部 分。为使工作效率最高, 问应如何组队?
1 2 B( b A( aij ) 4 0 i 0 4
1x1 2 x2 8 4 x1 0 x2 16 s.t . 8 0 x 4 x 12 1 2 ) 16 x 、 x 0 12 1 2
Ⅰ 设备 1 Ⅱ 2 8台时

一、引入决策变量
16kg 12kg
原材料A 原材料B
4 0
0 4
产品Ⅰ的生产量
x1
产品Ⅱ的生产量 x2
二、确定目标函数
max z 2 x1 3 x2

设备 原材料A 原材料B 1 4 0

2 0 4 8台时 16kg 12kg
从而,得到了如下模型:
三、约束条件的确定
优化模型的一般形式
目标
Min(或Max) z f ( x), x ( x1 , x n )T
约束
s.t . gi ( x) 0, i 1, 2,m
决策变量包含在数学表达式中
• 线性规划
线性规划
某工厂要安排生产Ⅰ、Ⅱ两种产品,已知生产单 位产品所需的设备台时及A、B两种原材料的消耗,如 表所示。该工厂生产一单位产品Ⅰ可获利2元,生产一 单位产品Ⅱ可获利3元,问应如何安排生产,使其获得 最多收益?
ordU( X ) (U ( X 1 ),U ( X 2 ),....,U ( X p ))T s.t. g i ( X ) 0 hj (X ) 0

数学建模之优化模型

数学建模之优化模型
自底向上求解
从最小规模的子问题开始,逐步求解更大规模的子问 题,最终得到原问题的最优解。
自顶向下求解
从原问题开始,将其分解为子问题,通过迭代求解子 问题,最终得到原问题的最优解。
状态转移方程
通过状态转移方程描述子问题之间的关系,从而求解 子问题和原问题。
动态规划模型的应用实例
最短路径问题
如Floyd-Warshall算法,通过动 态规划求解所有节点对之间的最 短路径。
遗传算法
03
模拟生物进化过程的自然选择和遗传机制,通过种群迭代优化
,找到最优解。
整数规划模型的应用实例
生产计划问题
通过整数规划模型优化生产计划,提高生产效 率、降低成本。
投资组合优化
通过整数规划模型优化投资组合,实现风险和 收益的平衡。
资源分配问题
通过整数规划模型优化资源分配,提高资源利用效率。
THANKS
需要进行调整和改进。
02
CATALOGUE
线性规划模型
线性规划模型的定义与特点
线性规划模型是数学优化模型的 一种,主要用于解决具有线性约 束和线性目标函数的优化问题。
线性规划模型的特点是目标函数 和约束条件都是线性函数,形式
简单且易于处理。
线性规划模型广泛应用于生产计 划、资源分配、投资决策等领域
背包问题
如0-1背包问题、完全背包问题和 多重背包问题等,通过动态规划 求解在给定容量的限制下使得总 价值最大的物品组合。
排班问题
如工作调度问题,通过动态规划 求解满足工作需求和工人技能要 求的最优排班方案。
05
CATALOGUE
整数规划模型
整数规划模型的定义与特点
定义
整数规划是一种特殊的线性规划,要求决策变量取整数值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最优解:x21 = x32 = x43 = x51 = 1, 成绩为4’17”7
乙~ 蝶泳、丙~ 仰泳、 原 甲~ 自由泳、乙~ 蝶泳、
丁~ 蛙泳、戊~ 自由泳
方 案
丙~ 仰泳、丁~ 蛙泳.
指派(Assignment)问题:每项任务有且只有一人承担,
每人只能承担一项,效益不同,怎样分派使总效益最大.
约束条件为:8 25 x1 815 x2 1800
8 8
25 15
x1 x2

1800 1800
x1 0, x2 0
线性规划模型:
min z 40x1 36x2
5x1 3x2 45
s.t.

x1 x2

9 15
x1 0, x2 0
6
问题三 混合泳接力队的选拔
5名候选人的百米成绩
蝶泳 仰泳 蛙泳 自由泳
甲 1’06”8 1’15”6 1’27” 58”6
乙 57”2 1’06” 1’06”4 53”
丙 1’18” 1’07”8 1’24”6 59”4
丁 1’10” 1’14”2 1’09”6 57”2
戊 1’07”4 1’11” 1’23”8 1’02”4
s.t.
0x.34x1x6
500 1.1x2
x3

800
0.5
x4

xi 0,i
1.2x5 1.3x6 1,2,,6

900
4
问题二: 某厂每日8小时的产量不低于1800件。为 了进行质量控制,计划聘请两种不同水平的检验员。 一级检验员的标准为:速度25件/小时,正确率98%, 计时工资4元/小时;二级检验员的标准为:速度15件/ 小时,正确率95%,计时工资3元/小时。检验员每错 检一次,工厂要损失2元。为使总检验费用最省,该工 厂应聘一级、二级检验员各几名?
要求至少选两门数学课、三门运筹学课和两门计算机课
解 设需要一级和二级检验员的人数分别为x1、 x2人, 则应付检验员的工资为:
8 4 x1 8 3 x2 32x1 24x2
因检验员错检而造成的损失为:
(8 25 2% x1 815 5% x2 ) 2 8x1 12x2 故目标函数为:
min z (32x1 24x 2 ) (8x1 12x2 ) 40x1 36x2 5
优化模型题,下面介绍几个简单的优化模型。
线性规划是运筹学的一个重要分支,它起源于工 业生产组织管理的决策问题。在数学上它用来确定多 变量线性函数在变量满足线性约束条件下的最优值; 随着计算机的发展,出现了如单纯形法等有效算法, 它在工农业、军事、交通运输、决策管理与规划等领 域中有广泛的应用。
3
解 设在甲车床上加工工件1、2、3的数量分别为x1、 x2、x3,在乙车床上加工工件1、2、3的数量分别为 x4、x5、x6。
可建立以下线性规划模型:
min z 13x1 9x2 10 x3 11x4 12 x5 8x6
x1 x4 400

x2

x5

600
丙 1’18” 1’07”8 1’24”6 59”4
丁 1’10” 1’14”2 1’09”6 57”2

1’07”4 1’11” 1’23”8 1’02”4
9
讨论 丁蛙泳c43 =69.675.2,戊自由泳c54=62.4
57.5, 方案是否调整?
c43, c54 的新数据重新输入模型,用LINDO求解
10
问题四 选课策略
课号
课名
学分
所属类别
先修课要求
1
微积分
5
数学
2
线性代数
4
数学
3
最优化方法
4
数学;运筹学 微积分;线性代数
4
数据结构
3
数学;计算机
计算机编程
5
应用统计
4
数学;运筹学 微积分;线性代数
6
计算机模拟
3
计算机;运筹学
计算机编程
7
计算机编程
2
计算机
8
预测理论
2
运筹学
应用统计
9
数学实验
3
运筹学;计算机 微积分;线性代数
END INT 20
最优解:x14 = x21 = x32 = x43 = 1, 其它变量为0;
成绩为253.2(秒)=4’13”2
甲~ 自由泳、乙~ 蝶泳、 丙~ 仰泳、丁~ 蛙泳.
蝶泳 仰泳 蛙泳 自由泳
甲 1’06”8 1’15”6 1’27” 58”6
乙 57”2 1’06” 1’06”4 53”
2
问题一 : 任务分配问题:某车间有甲、乙两台机床,可用于
加工三种工件。假定这两台车床的可工作时间分别为 800和900,三种工件的数量分别为400、600和500, 且已知车床甲加工单位数量三种工件所需的时间和加工 费分别为0.4、1.1、1和13、9、10,车床乙加工单位数 量三种工件所需的时间和加工费分别为0.5、1.2、1.3和 11、12、8。问怎样分配车床的加工任务,才能既满足 加工工件的要求,又使加工费用最低?
条件
4
xij 1, i 1,5
j 1
5
xij 1, j 1,4
i 1
8
模型求解 输入LINDO求解
MIN 66.8x11+75.6x12+87x13+58.6x14 +… … +67.4x51+71 x52+83.8x53+62.4x54
SUBJECT TO x11+x12+x13+x14 <=1 …… x41+x42+x43+x44 <=1 x11+x21+x31+x41+x51 =1 …… x14+x24+x34+x44+x54 =1
78
70
67.4
j=2
75.6
66
67.8
74.2
71
j=3
87
66.4
84.6
69.6
83.8
j=4
58.6
53
59.4
57.2
62.4
若选择队员i参加泳姿j 的比赛,记xij=1, 否则记xij=0
目标 函数
45
Min Z
cij xij
j 1 i1
约束 每人最多入选泳姿之一 每种泳姿有且只有1人
如何选拔队员组成4100米混合泳接力队?
丁的蛙泳成绩退步到1’15”2;戊的自由泳成绩进 步到57”5, 组成接力队的方案是否应该调整?
穷举法:组成接力队的方案共有5!=120种。
7
0-1规划模型 cij(秒)~队员i 第j 种泳姿的百米成绩
cij
i=1
i=2
i=3
i=4
i=5
j=1
66.8
57.2
相关文档
最新文档