隧道变形监测方案-新
隧道监测方案

隧道监测方案隧道监测方案隧道是一种地下建筑工程,由于其特殊的地理环境和使用条件,隧道的安全监测尤为重要。
隧道监测方案是为了及时掌握隧道工程的变形、变化及其他相关信息,以确保隧道的安全使用和正常运营。
下面是一个隧道监测方案的示例,旨在为隧道监测工作提供一些建议和指导。
一、监测目标和内容1. 监测目标:隧道结构的变形及其他相关信息。
2. 监测内容:地表下沉量、隧道内部位移、支撑结构变形、地下水位变化等。
二、监测设备和技术1. 监测设备:选择高精度的监测仪器,包括全站仪、位移传感器、倾斜仪、应变计等。
2. 监测技术:采用远程监测技术,将监测数据实时传输到监测中心,以便实时分析和处理。
三、监测点的选择和布置1. 监测点的选择:根据隧道结构的特点和变形的可能性,选择合适的监测点。
2. 监测点的布置:监测点应均匀分布在隧道结构上,包括入口、出口、墙板、顶板、地基等位置。
四、监测频率和周期1. 监测频率:根据具体情况确定监测频率,一般为每天、每周或每月进行一次。
2. 监测周期:监测周期一般为整个工程周期,从隧道开工到竣工。
五、数据处理和分析1. 数据处理:采集到的监测数据应进行整理和归档,并进行数据质量检查,确保数据的准确性和可靠性。
2. 数据分析:对监测数据进行分析和解读,判断隧道工程的变形和变化情况,提出相应的安全措施和建议。
六、应急响应和措施1. 应急响应:制定隧道监测的应急预案,一旦发生异常情况,能够及时响应和处理。
2. 安全措施:根据监测数据和分析结果,采取相应的安全措施,包括加固支撑结构、降低地下水位、减少车辆通行等。
隧道监测方案是隧道工程中不可或缺的一部分,它能够帮助工程师对隧道的运行状况进行实时监测和及时处理。
在隧道监测方案中,选择合适的监测设备和技术、布置合理的监测点、确定适当的监测频率和周期,以及进行数据处理和分析,都是保障隧道安全和正常运营的重要环节。
此外,制定应急响应和安全措施,能够在发生异常情况时及时采取措施,保护人员和设备的安全。
隧道检测实施方案

隧道检测实施方案隧道是交通基础设施中重要的组成部分,隧道的安全性和稳定性对交通运输具有重要意义。
为了确保隧道的安全运营,需要对隧道进行定期的检测和评估。
本文将介绍隧道检测的实施方案,包括检测内容、方法和注意事项。
一、检测内容1. 结构安全检测:包括隧道结构的稳定性、裂缝和变形情况等。
2. 环境监测:包括隧道内部的通风情况、空气质量和水质情况等。
3. 设备状态检测:包括隧道内部的照明、通风设备、消防设施等的运行情况。
4. 涵洞检测:对涵洞结构、排水系统和防护设施进行检测。
二、检测方法1. 监测设备:使用高精度的监测设备,如激光扫描仪、测量仪器等,对隧道进行全面的测量和监测。
2. 现场勘察:对隧道进行现场勘察,了解隧道的实际情况,包括结构、设备和环境等方面。
3. 数据分析:对监测数据进行分析和处理,找出隧道存在的问题和隐患。
4. 专业评估:邀请专业的隧道结构工程师和环境工程师进行评估,提出改进建议和措施。
三、注意事项1. 安全第一:在进行隧道检测时,要确保安全措施到位,避免发生安全事故。
2. 数据准确性:监测设备要保持准确校准,确保监测数据的准确性和可靠性。
3. 维护保养:隧道设备要进行定期的维护保养,确保设备的正常运行。
4. 及时处理:一旦发现隧道存在安全隐患,要及时采取措施进行处理,避免事故发生。
5. 定期检测:隧道检测工作要进行定期的周期性检测,确保隧道的安全稳定运行。
综上所述,隧道检测是确保隧道安全运营的重要工作,需要进行全面、准确的检测和评估。
只有做好隧道检测工作,才能确保隧道的安全性和稳定性,为交通运输提供良好的基础设施保障。
希望隧道管理部门和相关工作人员能够重视隧道检测工作,确保隧道的安全运营。
变形监测工程施工方案

变形监测工程施工方案1. 项目背景变形监测工程是指为了观测和记录土地、建筑物、桥梁、隧道、水利工程等工程物体在受力或受外部因素影响时产生的形变变化,及时发现并研究工程物体的形变规律,采取相应的措施,以确保工程的安全。
变形监测工程是土木工程领域的重要内容,对工程质量和安全具有重要意义。
本文将围绕变形监测工程的施工方案进行详细介绍和讨论。
2. 工程范围变形监测工程通常包括以下几个方面的内容:土建结构的变形监测、地下隧道及地下工程的地表沉降监测、边坡和河岸的变形监测、管线和电缆的变形监测等。
需要根据实际工程情况,对变形监测工程的范围进行具体确定,并组织相应的监测方案和工艺设计。
3. 工程方法变形监测工程的方法通常包括传统的地面测量和现代化的无人机、激光雷达、卫星定位等高新技术手段。
根据工程的具体情况,选择合适的监测方法,并进行相应的监测点设置和数据采集。
传统地面测量主要包括水准测量、测角测量、距离测量等方法,适用于一些无法使用高新技术手段的场合。
无人机、激光雷达等现代化技术则可以实现对大范围、多角度的监测,并具有高效、精准的特点。
4. 监测点设置在进行变形监测工程的施工过程中,需要根据工程的具体情况,合理设置监测点。
监测点应当尽可能覆盖整个工程范围,并且应当考虑到监测点的密度和分布,以确保监测结果的可靠性和准确性。
在设置监测点时,需要考虑到监测点的稳定性和安全性,并根据需要进行相应的支撑和固定工程。
5. 数据采集与处理在变形监测工程的施工过程中,需要根据监测点的设置,进行相应的数据采集工作。
数据采集工作应当严格按照监测方案和技术要求进行,确保数据的真实性和准确性。
采集到的监测数据需要进行相应的处理和分析工作。
数据处理包括数据的校正、去噪、验证等工作,以确保数据的可信度。
数据分析则包括对数据的整合、趋势分析、异常点识别等工作,以保证对工程变形情况的准确掌握。
6. 施工组织变形监测工程的施工组织工作是保证工程顺利进行的重要环节。
变形监测实施方案

变形监测实施方案一、引言。
变形监测是指对工程结构或地质体进行形变、位移等变化的监测和分析。
在工程建设、地质灾害防治等领域,变形监测具有重要的意义。
本文旨在制定一套科学合理的变形监测实施方案,以确保监测数据的准确性和可靠性,为工程安全和地质灾害防治提供可靠的数据支持。
二、监测对象。
变形监测的对象包括但不限于建筑物、桥梁、隧道、坝体、边坡、地基等工程结构,以及山体、岩体、土体等地质体。
三、监测内容。
1. 变形监测应包括的内容:(1)位移监测,包括水平位移、垂直位移等。
(2)形变监测,包括轴向形变、横向形变等。
(3)应力监测,包括受力构件的应力监测等。
2. 监测方法:(1)传统监测方法,包括测量法、观测法等。
(2)现代监测方法,包括卫星定位技术、遥感技术、激光扫描技术等。
四、监测方案。
1. 监测方案的制定应考虑以下因素:(1)监测目的,明确监测的目的和需求。
(2)监测对象,确定监测对象的类型和特点。
(3)监测内容,明确监测的内容和范围。
(4)监测方法,选择合适的监测方法和技术手段。
(5)监测周期,确定监测的周期和频率。
(6)监测标准,制定监测的标准和要求。
(7)监测方案,综合考虑以上因素,制定科学合理的监测方案。
2. 监测方案的实施步骤:(1)确定监测方案,根据监测对象的特点和监测需求,确定监测方案。
(2)监测仪器设备的选择,选择适合监测对象和监测内容的监测仪器设备。
(3)监测点布设,根据监测方案,合理布设监测点,确保监测数据的全面性和代表性。
(4)监测数据采集,按照监测方案和要求,进行监测数据的采集和记录。
(5)监测数据处理,对采集到的监测数据进行处理和分析,得出监测结果。
(6)监测报告编制,根据监测结果,编制监测报告,提出监测分析和建议。
五、监测质量控制。
1. 监测质量控制的要求:(1)仪器设备的准确性和稳定性。
(2)监测数据的准确性和可靠性。
(3)监测过程的规范性和科学性。
2. 监测质量控制的措施:(1)严格按照监测方案和要求进行监测。
隧洞工程安全监测方案

隧洞工程安全监测方案一、前言隧洞工程建设是一个复杂的工程项目,其施工和运营都需要严格的安全监测。
隧洞工程的安全监测是为了保障隧道及其周边的安全,防止发生地质灾害和工程事故,保证周围环境和人民的安全。
本方案将详细介绍隧洞工程安全监测的内容、管理机构及职责、监测方法和技术手段,以及监测结果的应用。
二、监测内容1. 地质环境监测隧洞工程的建设需要充分了解周围地质环境的情况,包括地层结构、岩土性质、地下水情况等。
对于已经建成的隧道,需要定期监测地下水位、地表的沉降情况,以及地质变化趋势,防止地质灾害的发生。
2. 结构安全监测隧洞工程的结构安全监测是为了检测隧道结构的变形、裂缝、渗水等情况,防止发生结构破坏或崩塌。
需要监测隧道内壁的裂缝状况,以及隧道地表的沉降情况,及时发现问题并采取相应的维护措施。
3. 设备运行监测隧道内部的设备运行情况也需要进行监测,包括通风系统、照明系统、沥青路面、排水系统等,保证设备的正常运转,确保隧道的安全通行。
4. 安全生产监测隧洞工程施工和运营过程中,需要进行安全生产监测,包括工人的行为安全监测、施工作业安全监测、设备安全监测等,以避免发生工程事故。
三、管理机构及职责1. 监测方案编制单位由专业的工程监测公司进行隧洞工程的安全监测方案编制,包括监测内容、频次、监测点的选取,及监测数据的分析及应用。
2. 监测单位负责隧洞工程的实际监测工作,包括安装监测仪器设备、实时监测数据的采集及处理,以及对监测结果的分析和报告。
3. 监理单位监测单位的监测结果需要由监理单位进行审查和确认,监督监测单位按照监测方案执行,确保监测数据的准确性和可靠性。
4. 建设单位负责隧洞工程安全监测的技术保障和资金支持,对监测结果给予有效的响应和采取相应的改善措施。
四、监测方法和技术手段1. 地质环境监测地质环境监测可以采用地质勘探、地下水位监测、地质雷达探测等技术手段,了解隧道周围地质环境的情况。
监测点需要选择在隧道周围地下水、地表地质、岩土等方面状况较为典型的地点,以获取准确的监测数据。
隧道施工期间的变形监测

TRANSPOWORLD 2011No.9(May)206B RIDGE&TUNNEL桥梁隧道隧道监测作为新奥法的重要内容之一,在隧道施工中起着非常重要的作用。
某隧道(DK2+450~DK4+036)地处龙岩闹市区,具有埋深浅、地表建筑密集、地下管线众多、围岩破碎、施工对地表建筑及地下管线影响大等诸多施工不利因素。
在施工期间对地表位移、建筑变形及爆破震动等进行监测,监测成果除了为评价施工对建筑的影响服务外,监测成果还可反馈施工,为施工方案及爆破设计参数等的优化提供重要依据,测试成果对确保施工安全、加快施工进度、降低施工成本具有重要意义。
监控测量的目的在施工期间对隧道进行监控测量,可掌握围岩和支护的动态信息并及时反馈,指导施工作业;通过对围岩和支护的变位、应力测量,修改支护系统设计,提供二次支护的最佳时间;在位移——时间曲线中如出现以下反常现象,表明围岩和支护呈不稳定状态,应加强监视。
隧道洞内外观测隧道开挖工作面的观测在每个开挖面进行,特别是在软弱破碎围岩条件下,开挖后由隧道工程师和地质工程师立即进行地质调查,观察后绘制开挖工作面略图(地质素描),填写工作面状态记录表及围岩级别判定卡。
开挖后未被支护围岩的观测,如节理裂隙发育程度及其方向;开挖工作面的稳定状态,顶板有无坍塌;涌水情况:位置、水量、水压等;底板是否有隆起现象。
对开挖后已支护的围岩的观测,如对已施工区段的观察每天至少进行一次,观察内容包括有无锚杆被拉断或垫板脱离围岩现象;喷射混凝土有无裂隙和剥离或剪切破坏;钢拱架有无被压变形情况;锚杆注浆和喷射混凝土施工质量是否符合规定的要求;观察围岩破坏形态并分析。
洞外观察洞外观察包括洞口地表情况、地表沉陷、边坡及仰坡的稳定以及地表水渗透等的观察,观察结果记录在工程施工日志及相关表格中。
隧道位移及变形量测地表下沉量测根据图纸要求洞口段应在施工过程中可能产生地表塌陷之处设置观测点,如图1所示。
地表下沉观测点按普通水准基点埋设,并在预计破裂面以外3~4倍洞径处设至少两个水准基点,以便互相校核,基点应和附近原始水准点多次联测,确定原始高程,作为各观测点高程测量的基准,从而计算出各观测点的下沉量。
隧道工程监测方案

隧道工程监测方案一、前言隧道工程是一项复杂的工程,涉及到许多因素,如地质条件、水文条件、施工工艺等。
为了确保隧道工程的安全和质量,监测是必不可少的一项工作。
通过监测,可以及时发现隧道工程中存在的问题,及时采取措施进行修复,避免事故的发生,确保隧道工程的顺利进行。
二、隧道工程监测的目的1.保隧道工程的安全通过监测,可以及时发现隧道工程中存在的问题,如地质变化、水文情况变化等,及时采取措施进行修复,避免隧道工程发生事故,确保工程安全。
2.保隧道工程的质量通过监测,可以对隧道工程的施工过程进行监控,及时发现施工质量不达标的情况,及时进行整改,保隧道工程的质量。
三、隧道工程监测方案1.监测内容隧道工程监测内容应包括地质条件监测、水文条件监测、结构变形监测、环境监测等。
地质条件监测:包括地质勘察、地质雷达探测、地下水位监测等。
水文条件监测:包括地下水位监测、地下水压力监测、隧道渗水监测等。
结构变形监测:包括隧道内部变形监测、隧道支护结构变形监测等。
环境监测:包括隧道周边环境监测、隧道施工对周边环境的影响监测等。
2.监测方法地质条件监测:可采用地质雷达、地下水位监测仪等设备,对隧道的地质情况进行监测。
水文条件监测:可采用压力传感器、测井仪等设备,对隧道的水文情况进行监测。
结构变形监测:可采用位移传感器、应变计等设备,对隧道的结构变形情况进行监测。
环境监测:可采用环境监测站、气象站等设备,对隧道周边的环境情况进行监测。
3.监测频率地质条件监测和水文条件监测应每日进行,结构变形监测应每周进行,环境监测应每月进行。
4.报告和处理监测数据应及时整理成报告,并交由工程负责人进行审阅。
如发现问题,应及时采取措施进行处理,并将处理结果整理成报告。
四、结语隧道工程的监测是对工程安全和质量的保障,是一项重要的工作。
通过科学合理的监测方案,可以及时发现工程中存在的问题,并及时进行处理,从而确保隧道工程的安全和质量。
希望每一位工程从业者都能够重视隧道工程的监测工作,做好监测工作,确保工程的安全和质量。
隧道变形监测技术的方法和原理

隧道变形监测技术的方法和原理隧道是现代城市基础设施中不可或缺的一部分,随着城市的不断扩大和交通网络的建设,隧道的数量也在不断增加。
然而,隧道的安全性与稳定性一直是人们关注的焦点。
为了解决隧道的变形问题,隧道变形监测技术应运而生。
本文将对隧道变形监测技术的方法和原理进行探讨,并介绍相关的监测设备和应用。
一、综述隧道变形监测技术是通过合理设置监测装置,实时监测隧道的变形并及时报警,从而保证隧道的安全运行。
主要方法包括全站仪法、位移传感器法、管线法等,下面将逐一进行介绍。
二、全站仪法全站仪是一种可以测量水平角、垂直角和距离的仪器,通过在固定位置测量隧道内部固定点的坐标,从而获得隧道的变形情况。
该方法具有高精度、实时性强的特点,但是对设备的要求较高。
三、位移传感器法位移传感器法是通过安装位移传感器在隧道内部的关键部位,通过测量传感器的位移,从而判断隧道的变形情况。
传感器可以采用光纤传感器、电阻应变片等,具有灵敏度高、精确度高的特点。
这种方法可以实时监测隧道的变形情况,并能够提供详细的数据分析,对隧道的安全性评估具有重要意义。
四、管线法管线法是通过在隧道内铺设一条管线,通过测量管线的变形来判断隧道的变形情况。
这种方法操作简便,成本相对较低,但是对于较长的隧道来说,精度相对较低。
因此,管线法主要适用于小型隧道的监测。
五、监测设备在实际应用中,隧道变形监测需要使用一些专门的设备。
常见的设备包括全站仪、测量仪器、数据采集器和计算机等。
这些设备能够提供高精度的监测数据,并能够将数据进行分析和处理。
六、应用隧道变形监测技术已经广泛应用于隧道建设和维护中。
通过实时监测隧道的变形情况,可以及时发现隧道存在的安全隐患,并采取相应的措施进行修复。
此外,还可以通过对监测数据的分析,对隧道的安全性进行评估,并制定相应的维护和管理方案。
七、挑战和前景隧道变形监测技术在应用中还存在一些挑战。
首先,设备的精度和可靠性需要不断提高,以满足隧道变形监测的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隧道变形监测方案
1、目的
为明确隧道内变形观测的作业内容,规范技术细节及作业程序,总结隧道结构变形规律,为隧道结构维修养护提供依据,指导津滨轻轨隧道变形观测工作进行,从而保证行车安全,特制订本预案。
2、适用范围
2.1适用于津滨轻轨隧道变形观测的相关工作;
2.2线桥室从事变形观测的相关工作人员须依据本方案开展各项变形观测工作。
3、职责分工
隧道变形工作由线桥室主任及安技主管进行监督指导,桥梁维修主管负责变形观测工作的全面管理与协调,桥梁检测工程师协同隧道工程师、桥梁维修工程师负责隧道变形观测的相关技术工作,并由桥隧检测工区负责具体实施。
4、参考依据
《建筑变形测量规程》
《地下铁道、轨道交通工程测量规范》
《地下铁道工程施工及验收规范》
5、变形观测工作内容
5.1隧道沉降观测
监测隧道结构的沉降,主要是监测隧道结构的底板沉降,实质上是对道床的监测,主要包括区间隧道的沉降监测以及隧道与地下车站交接处的沉降差异监测。
运营测量采用的坐标系统、高程系统、图式等与原施工测量相同。
5.1.1监测基准网
监测基准网是隧道沉降监测的参考系,由水准基点和工作基点构成,网形布设成附合水准路线或沿上、下行线隧道布设成结点水准路线形式,采用国家二等水准测量的观测标准进行。
水准基点采用隧道线路两端远离测区的国家II等水准点,在沿线车站内和联络通道处布设工作基点,每个车站布设4个工作基点,联络通道处布设2个工作基点,水准基点与车站内、联络通道处工作基点共同构成监测基准网,如图1所示。
基准网的高程值由国家水准点引入,每季度校核一
次,分析工作基点的稳定性;然后,再通过车站内两侧的工作基点,采用附合水准路线对每段隧道结构进行沉降观测。
图1 监测基准网示意图
5.1.2沉降监测点
津滨轻轨地下结构由明挖段和盾构组成,明挖段沉降监测点按施工浇筑段每段设4个点,分别布设在左右两侧墙上。
具体布置见图2。
图2 明挖段沉降监测点布置示意图
为方便以后长期的位移监测工作,隧道内沉降监测点布设在隧道中线的道床上,隧道直线段每隔30m设一个测点,曲线处根据曲线半径大小设置测点间距,半径为400m曲线处每隔12m设一个测点,半径为800m曲线处每隔18m设一个测点,半径为2000m曲线处每隔30m设一个测点。
具体布置见图3。
图3 隧道内沉降监测点布置示意图
5.1.3隧道与地下车站交接处得沉降差异监测
在隧道与地下车站交接缝两侧约1m处的道床上布设一对沉降监测点,如图4所示,用精密水准测量方法监测交接缝两侧点之间的高差变化,当高差变化量大于±3mm时应预警,变化量大于±5mm时则应报警。
图4 车站与隧道交接处沉降差异点布设示意图
5.2隧道横向位移变形监测
5.2.1横向位移监测点的布设
隧道横向位移监测点的布设与沉降监测断面距离相同,即位移监测点和沉降监测点设于同一断面上,并利用部分沉降点作为位移监测的坐标基点。
基点的坐标值由地上国家坐标点引入,每季度校核一次。
盾构区间每个断面布设四处点位,重要点位粘贴反射片,其余点位做好油漆标记;明挖区间每个断面监测2个点位,
重复使用沉降观测点作为位移测点使用。
点位布置详见图5。
图5 盾构区间位移监测点布设示意图
5.2.2位移监测的开展
由于位移基标点与沉降基标点共有一个,初期需要对各个基标点进行测量,以获取隧道中线初始数据,初始数据与设计隧道中线坐标进行对比。
待此项工作完成后,可将全站仪置于需要测量的断面所在的基标点上,任意其他基标作为后视点建立坐标系,依次对隧道断面进行位移监测,每次的监测数据与初始数据进行对比。
5.2.3监测标准
横向位移的监测标准定位警戒值±5mm,控制值±10mm。
5.3隧道变形监测周期
运营第一年每季度观测一次,第二年开始每半年至少观测一次,直至沉降量小于1mm/100d止,中远期可减至1次/年。
当隧道出现显著变形时,应缩短观测频率。
5.4特殊加密测量
5.4.1保护区内大型施工监测
保护区内出现大型施工时,应对结构进行加密监测。
加密措施包括点位密度及监测频率,测量范围应在施工范围内前后各延伸100m。
施工范围内的监测区域加密至直线12m一个断面,曲线5~10m一个断面,同时增加隧道拱顶及相应断面的地上监测点,监测频率视施工进度和内容确定。
各点位布置详见图6。
图6拱顶下沉和地表沉降观测点布设示意图
5.4.2变形异常地段的监测
在常规测量过程中,出现变形较为明显的地段,应加密测量。
加密措施包括增加拱顶及地上点位,同时将监测频率加密至2次/月。
5.5监测数据的分析
5.5.1累积沉降量曲线图
5.5.2沉降量速率曲线图。