提升机系统

合集下载

副井提升机直流调速系统的设计

副井提升机直流调速系统的设计

引言刮板输送机、提升机以及带式输送机等均为煤矿生产的关键运输设备,对于上述设备而言其电控系统的稳定性和安全性直接决定综采工作面的运输能力,继而影响整个煤矿的生产能力。

经实践应用及调研可知,提升机传统电控系统存在故障率高、线路老化严重、系统能耗较大、维护困难以及维护成本高等缺陷[1],因此,为满足当前煤矿综采工作面高效开采现状,需从根本上提高提升机的运输能力和运输效率。

本文将从提升机电气控制系统着手将传统电控系统改进为直流调速系统。

1提升机电控系统的设计要求根据《煤炭安全规程》的相关要求,要求提升机电气控制系统对设备的速度控制曲线满足生产要求。

因此,对提升机电气控制系统提出如下要求:1)提升机能够根据其实时负载进行电动或者制动状态的控制,即其满足四象限运行的能力;2)要求提升机电气控制系统能够实现平滑调速,并根据运输对象的不同进行分等级运输,且要求其具有较高的提升能力;简单地说,对提升机传统电气控制系统的改造,主要目的是对提升机速度控制功能进行优化,对其自适应速度控制提出更高的要求,在保证其在实时载荷下正常工作的同时,达到降低能耗、平稳调速的目的,并且改造后提升机电气控制系统的维护成本可以降低。

在当前多种调速方式优劣势的综合比对下,本文拟采用直流调速系统对传统电控系统进行升级改造。

2提升机直流调速系统的设计基于直流调速系统实现提升机速度与电流的双闭环控制,以达到对提升速度控制的精确性和稳定性。

本文所采用直流调速系统的核心装置为全数字化直流调速装置,该装置可根据现场情况对提升参数进行设定;根据提升参数的采集完成对给定值和反馈的设定,其中可采用模拟量和数字量同时对输入量进行设置;具有较高的检测精度;基于全数字化直流调速装置在实现其与其他调速装置进行通信的要求外,还可与上位机和PLC 控制器等实现通信;基于全数字化直流调速装置可实现对提升机系统运行参数的状态显示、监控以及报警等功能[2]。

针对提升机直流调速系统的控制需求,本文所选择的全数字直流调速装置的具体系列为DCS 系列,且为实现其四象限调速控制功能,最终所选全数字直流调速装置的系列为DCS600。

矿井提升机控制系统

矿井提升机控制系统

第一章概述第一节提升机电力拖动的特点及对拖动控制装置的要求矿井提升机(又称绞车、卷扬机)是矿井生产的关键设备。

提升机电控系统技术性能如何,将直接影响矿井生产的效率及安全。

欲掌握提升机电控系统的原理,首先要了解提升机对电控系统的要求,以及各种电气传动方案的特点。

矿井提升机为往复运动的生产机械,有正向和反向提升,又有正向和反向下放。

对于不同水平的提升,在每次提升循环中,容器的上升或下降的运动距离可能是相同的,也可能是不同的。

在每一提升周期都要经过从起动、加速、等速、减速、爬行到停车的运动过程,因此提升机对电控系统一般有下述一些要求。

1、要求满足四象限运行设提升机正向提升时,拖动电动机工作在第一象限。

而在减速下放时,如果是正力减速,拖动电动机也工作在第一象限,但如果为负力减速,则拖动电动机就工作在第二象限。

同样当提升机反向提升时,拖动电动机工作在第三象限。

而在减速下放时,如果是正力减速,拖动电动机也工作在第三象限,但如果为负力减速,则拖动电动机就工作在第四象限。

因此,提升机的运行必须能满足四象限运行的要求。

2、必须平滑调节速度且有精度较高的调节精度提升工艺要求电控系统须能满足运送物料(达到额定速度)、运送人员(可能要求低于额定速度)、运送炸药(2m/s)、检查运行(0.3~1.0m/s)和低速爬行(0.1~0.5m/s)等各种要求,所以要求提升机电控系统必须能平滑连续调节运行速度。

对于调速精度,为了在不同负载下的减速段的距离误差尽可能地小,要求提升机的静差率s越小越好(一般在高速下s<1%)。

这样可以使爬行段距离尽可能设计得小,来减少低速爬行段的时间,从而缩短提升周期,获得较大的提升能力。

3、要求设置准确可靠的速度给定装置提升工艺要求电控系统的加减速度平稳。

根据安全规程,对矿井提升机的加、减速度都有一定的限制。

对竖井来说,提物时加减速度小于1.2m/s2;提人时加减速度小于0.7m/s2;对斜井,提人时加减速度小于0.5m/s2。

矿井提升机系统介绍

矿井提升机系统介绍
4)液压站可为调绳离合器提供所需要的压力油。

第三十二页, 共52页。
五、制动系统
❖ 井口一级安全制动: 当发生故障的地点距离停车点非常近即井 口时,制动系统应立即投入一级紧急制动,盘形制动器的全部油 压值迅速回到零,使提升系统处于全制动状态,确保提升机能可 靠地制动,避免发生过卷或者过放事故。 ❖ 井中二级安全制动: 当电液比例溢流阀出现故障,不能正常工 作,或出现其他不可控事故导致恒减速制动失效时,需要立即投 入二级制动。盘形制动器的油压迅速降到预先调定的某一值,经 延时后,盘形制动器的全部油压值迅速回到零,使提升系统处于 全制动状态。
第十八页, 共52页。
第十九页, 共52页。
5 提升速度要求
❖ 立井中用罐笼升降人员时的加速度和减速度, 都不 得超过0.75m/s2, 其最大速度不得超过 所求v得 的0.5数值H, 且最大不得超过12m/s。
❖ 斜井提升容器升降人员或者物料时的速度, 都不得 超过5m/s, 并不得超过人车设计的最大允许速度。 升降人员时的加速度和减速度不得超过0.5m/s2。
第十四页, 共52页。
第十五页, 共52页。
3 多绳摩擦式提升机与单绳缠绕式提升机对比
❖ 优点 ❖ 1)摩擦式提升机一般采用多根钢丝绳。在相同条件下, 每根钢丝 绳直径较细, 摩擦轮直径也相应较小, 宽度也较窄, 整个提升机尺寸 减小, 质量减轻。 ❖ 2)由于摩擦轮直径小, 在相同提升速度时, 可以使用较高转速的 电机和较轻的减速器。 ❖ 3)多根钢丝绳同时提升, 安全性能好。 ❖ 4)偶数根钢丝绳, 钢丝绳捻向是左右各半, 消除了提升容器在提 升过程中的转动, 减轻了容器罐耳对罐道的摩擦。
矿井提升机系统介绍
第一页,共5Leabharlann 页。主要内容一. 矿井提升机的定义及基本任务

多绳摩擦式提升机系统

多绳摩擦式提升机系统

多绳摩擦式提升机系统多绳摩擦式提升机广泛用于煤炭、有色金属、黑色金属、非金属、化工等矿山的竖井、斜井的提升系统用作提升矿物、升降人员和物料及设备等,是矿井系统设备的咽喉,也可做其他牵引运输设备。

1 工作原理多绳摩擦式提升机采用柔性体摩擦传动原理。

钢丝绳围绕在摩擦轮上,利用钢丝绳与摩擦衬垫间的摩擦力来提升或下方重物或人员。

设钢丝绳在摩擦轮的围包角围α,钢丝绳两端的张力分别围T1、T2,钢丝绳与摩擦衬垫间的摩擦系数为μ,钢丝绳与衬垫间的摩擦力为F。

在T1>T2的条件下,钢丝绳刚要沿着摩擦轮滑动时的平衡条件为F=T1-T2。

欧拉公式阐明了T1、T2、μ、α各参数之间的关系。

T1/T2=eμα式中:e——自然对数的底,e≈2.718 本公式即为多绳摩擦式提升机的基本工作原理。

多绳摩擦式提升机以电动机为动力源,通过减速器、主导轮装置等传动系统和工作系统,利用摩擦力F,实现提升机容器在井筒中的升降。

采用盘式制动器、液压油组成的制动系统来控制提升机的减速和停车;用测速发电装置、离心限速器等来控制提升机的运行速度;用配置编码器、模拟柱状显示器、数显表示来反映提升机在井筒中的位置。

通过一系列电气、机械、液压的控制、保护系统来保证机器安全运行。

2主要结构2.1总体组成减速器:(Ⅰ)型为双力线中心传动减速器,(Ⅱ)型为行星减速器,(Ⅲ)型为低速电机直联。

主导轮装置:整体式或剖分式的焊接卷筒,采用滚动轴承支撑。

盘式制动器:用碟形弹簧产生制动力,液压开闸。

液压站:配置双泵、双电液调压装置。

深度指示器:牌坊式深度指示器或模拟柱状显示器、数显等。

测速发电式限速和测速反馈装置。

集中控制的操纵台。

发动机。

2.2主要特点主导轮装置采用全焊接式摩擦轮,GM-3摩擦衬垫,用双列向心球面滚子轴承。

天轮装置采用焊接式结构或铸钢轮体,轮槽装有聚氨脂衬垫,用双列向心球面滚子轴承。

采用盘式制动器和带有恒力矩或恒减速功能的液压制动系统。

(Ⅰ)型为双力线中心传动减速器,(Ⅱ)型为行星减速器,(Ⅲ)型为低速电机直联,多种型式可供用户选择。

提升系统(提升机和天轮)

提升系统(提升机和天轮)

矿井提升机和天轮技术培训一、矿井提升机的分类:缠绕式提升机:Array是较早出现的一种,它工作可靠,结构简单,但仅适用于浅井及中等深度的矿井,且终端载荷不能太大。

对于深井且终端载荷较大时,提升钢丝绳和提升机卷筒的直径很大,从而造成体积庞大,重力猛增,使得提升钢丝绳和提升机在制造、运输和使用上都有诸多不便。

因此在一定程度上限制了单绳缠绕式提升机在深井条件下的使用。

右图(图1)则为单绳缠绕式提升机。

摩擦式提升机:在一定程度上解决了单绳缠绕式提升机在深井条件下所出现的问题。

但是,图3. 塔式摩擦式提升机摩擦提升一般均采用尾绳平衡,以减小两端张力差,提高运行的可靠性。

因此,在容器与提升钢丝绳连接处的钢丝绳断面上,静应力将随容器的位置变化而变化。

矿井越深,静应力的波动值越大,因此,摩擦提升在深井的使用亦受到一定的限制,一般限制H<1400m 。

右图(图2)为落地多绳摩擦式提升机。

右图(图3)为塔式摩擦式提升机。

二、缠绕式提升机介绍工作原理:将两根提升钢丝绳的一端以相反的方向分别缠绕并固定在提升机的两个卷筒上;另一端绕过井架上的天轮分别与两个提升容器连接。

这样,通过电动机改变卷筒的转动方向,可将提升钢丝绳分别在两个卷筒上缠绕和松放,以达到提升或下放容器,完成提升任务的目的。

目前,单绳缠绕式提升机在我国矿山中使用较为普遍。

类型:按卷筒(滚筒)的数目,分为双卷筒和单卷筒。

1.双卷筒提升机:它的两个卷筒在与轴的连接方式上有所不同:其中一个卷筒通过楔键或热装与主轴固接在一起,称为固定卷筒,又称为死卷筒;另一个卷筒滑装在主轴上,通过离合器与主轴连接,故称之为游动卷筒,又称为活卷筒。

像我矿的A 区一、四、五、六号井都为双滚筒提升机。

采用这种结构的目的是考虑到在矿井生产过程中提升钢丝绳在终端载荷作用下产生弹性伸长,或在多水平提升中提升水平的转换,需要两个卷筒之间能够相对转动,以调节绳长,使得两个容器分别对准井口和井底水平。

矿井提升机的综合自动化控制系统

矿井提升机的综合自动化控制系统

矿井提升机的综合自动化控制系统摘要:矿井提升机为矿山咽喉设备,除电力传动系统可靠运行外,需对提升机电气设备及机械设备的运行状态进行监视及控制,提高电控系统的可靠性、控制精度和性能。

完善的综合自动化系统对提升机安全运行有着重要的意义。

关键词:提升机;自动化;控制前言提升机电气设备和机械设备比较复杂,运行可靠性要求高,故障检测处理及保护电路比较复杂,随着电力科技技术的发展,提升机电气控制、保护措施自动化系统已发展到第三代多PLC和智能化仪表数字控制以及上位机监控、数据采集及远程故障诊断编程系统。

1提升机操作系统1.1 操作台操作台为分体式结构,由控制台,制动台,仪表指示台组成,中间设有司机座椅。

控制台和制动台上设置有各类操控手柄、开关和按钮等。

仪表台上设置有各类仪表及指示信号等。

司机可操作操作台上的开关及按钮来控制提升机运行,并通过指示灯和显示仪表以及工业控制计算机及时了解提升机的运行状态及运行参数。

1.2上位机监控系统主要实现人机界面及画面显示,人-机通信、监视、控制与操作,各个子系统画面显示。

主要监控功能为提升系统动静态画面生成;故障自检显示、报警;各类报表生成;提供首次报警记录等。

2提升机控制系统2.1主控PLC系统主控PLC是网络控制系统的主站,主要用来实现逻辑联锁控制和安全监视、保护。

完成除闭环控制外的整个提升机电控系统的信号处理,数据运算,通信控制,系统管理等。

2.2 监控PLC系统主要实现安全监视和保护。

主要保护和闭锁功能(1)立即施闸类故障保护:(2)终端施闸类故障保护:(3)电气制动类故障保护(4)系统闭锁功能(5)部分行程参数信号逻辑运算处理,自动产生速度给定信号。

(6)控制提升容器停车精度<1cm。

(7)将信号处理成位置和在线速度显示等2.3 UPS不间断后备电源UPS电源用于控制,监控,等设备的电源后备支持。

当发生电源故障时,给闭环控制,以及PLC的供电将继续维持直到提升机停止且制动闸已经合上。

矿用提升机液压制动系统工作原理

矿用提升机液压制动系统工作原理

矿用提升机液压制动系统工作原理一、概述矿用提升机是矿山中用于运送矿石和矿工的重要设备,其安全性和稳定性对矿山生产起着至关重要的作用。

而液压制动系统作为提升机的重要组成部分,对提升机的安全运行和停车起着关键作用。

本文将详细介绍矿用提升机液压制动系统的工作原理。

二、液压制动系统的基本构成矿用提升机液压制动系统一般由主油缸、辅助油缸、油泵、油箱、溢流阀、压力表和控制系统等组成。

其中,主油缸和辅助油缸通过液压系统与提升机的制动机构相连,通过油泵提供的液压力来实现制动。

三、液压制动系统的工作原理1. 制动开始阶段当需要进行提升机的制动时,控制系统会发出制动信号,油泵开始供油,并通过主油缸将压力传输到制动机构上。

此时,制动机构开始受到液压力的作用,逐渐产生制动力,并逐渐接触主动轮来实现初步制动。

2. 制动加强阶段当提升机需要更快速的减速或停车时,控制系统会增大油泵的供油量,增加主油缸传输到制动机构的液压力。

辅助油缸也开始通过液压系统受到压力,同时增加制动力的输出,使提升机更快速地停稳。

3. 制动结束阶段当提升机需要完全停车时,控制系统将停止对油泵的供油信号,油泵停止供油,液压系统中的液压力逐渐消失,制动力逐渐减小。

直至制动机构与主动轮脱离接触,提升机完全停车。

四、液压制动系统的特点1. 稳定性好:液压制动系统通过液压力传递,制动力输出平稳可靠,不易受外界因素干扰,保证制动稳定性。

2. 调节性好:液压制动系统可以通过调节油泵的供油量,灵活地控制制动力的大小,使得制动力随时可以调整,适应不同速度和负载要求。

3. 轻便灵活:液压制动系统整体结构简单轻便,可靠性高,灵活性好,方便进行维护和保养。

五、液压制动系统的应用目前,矿用提升机液压制动系统已经成为矿山提升机的主要使用方式,其稳定可靠的特点受到了广大矿山企业的青睐。

不仅在矿山领域,液压制动系统还广泛应用于建筑起重机械、港口装卸设备、起重机、钢铁企业和机械加工等领域。

矿井提升机系统介绍

矿井提升机系统介绍

21
22
23
调绳离合器可分三种即齿 轮离合器、摩擦离合器、 蜗轮蜗杆离合器。KJ4m 提升机为风动齿轮式离合 器JK型提升机为液动齿 轮离合器
种类
作用
使游动滚筒与主轴连接或脱 开,以便在调节绳长或更换 提升水平时,使游动滚筒与 固定滚筒有相对运动。
按动力源分:风动、液动
24
3.减速器、联轴器 主轴转速10-60r/min.电动机转速480-960r/min 减速器:减速和传递动力 联轴器:有齿轮、蛇形弹簧、爪式棒綃、套式棒销 齿轮连轴器齿厚磨损量不超20%、键、螺栓不得松 动。蛇形弹簧联轴器套弹簧不得损坏,厚度磨损不超 10%
18
1.类型 •单滚筒:用于产量较小单钩小斜井 •双滚筒:双钩提升效率高、矿山应用最多. 有死滚筒/活滚筒两个滚筒;多水平同时提 升时,不如单钩方便。
19
缠绕式提升机是利用钢丝绳在滚筒上的缠绕和放 出,实现容器的提升和下放。钢丝绳的一端固定在滚 筒上,另一端绕过天轮与提升容器连接,当滚筒由电 动机拖动以不同的方向转动时,钢丝绳或在滚筒上缠 绕或放出,以带动提升容器。 缠绕式双卷筒提升机具有两个卷筒,每个卷筒上 固定一根钢丝绳,钢丝绳在两卷筒上的缠绕方向相反。
矿井提升系统
运转工区 王庆光 2015年7月30日
1
2

矿井重要环节、是联系地面和井下的咽喉要道 1)提升有用矿物,矿石、煤炭。 2)提升井下生产过程中产生的矸石、煤泥。 3)升降人员、运送设备和下放物料。
3

矿井提升系统的组成主要有:矿井提升机、电动机、 电气控制系统、制动系统、驱动系统、安全保护装 置、提升机信号系统、提升钢丝绳、平衡钢丝绳、 提升容器、井架、天轮、井筒设备及装载/卸载附 属、操车设备等组成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6脉动交交变频器的原理
12脉动交交变频器的原理
12脉动传动下的紧急状态运行
SIMOVERT SM150 主流传动系统的功率元件
SIMOVERT ML 半导体 功率元件 GTO 门可关断晶闸管
SIMOVERTSM150 IGCT 集成门整流晶闸管 IEGT IGBT 增强注入式门晶体管 绝缘门场效应晶体管
Phase modules
AI
闸手柄
速度手柄
DI/O
装矿操作箱 装矿站现场 信号
操作台
称重传感器1
称重传感器2
提升机电控系统图( 12脉动桥串)
M
TG
TG
操作台显示盘
操作台
电控柜排列图
系统主要特点




1 )全数字调速系统( C30 )和 PLC 系统对罐笼位置行程和故障 实现全数字冗余控制即:当PLC 正常时,C30和PLC冗余控制, 相互监控。而当PLC系统发生故障时,C30独立控制提升机简易 运行,实现罐笼的全数字行程控制(自动减速、停车)和故障保 护。 2)系统采用以太网和工业现场总线和光缆通讯,融提升系统和 信号系统、或称重系统为一体,实现信号连锁,实时在MMI屏幕 上监控、记录井口、井下车场设备状态;操作工艺先进,可进行 水平慢上、慢下对罐和主井全自动定量运行。 3)当一组电枢变流器出现故障时,通过选择开关,可实现系统 全载运行。 4)系统运行状态和故障监控的多重化(PLC、全数字传动、继电 回路相互监控)以及故障的分级处理。具有全数字系统的死机保 护。 5)可在各种提升种类(提人、提物、检修)和工作方式(自动、 半自动和手动、简易运行)下,均能保证系统运行速度图为最佳 S型曲线。
现已被全数字晶闸管拖动系 统淘汰。
性能优。 控制精 度高,已智能 化、网络化。
对 于 电 机 容 量 小 于 2500KW-3000KW 的 提 升 机 仍 占主导地位。自 80 年代开始 应用, 现已不断升级发展至第 三代。
产品介绍
一.QKTS系列矿用提升机计算机控制系统/6脉
波单桥四象限运行
系统特点
C) 调速范围宽(1:35),以满足各种速度的要求
Ⅱ Ⅲ

N Ⅳ
2) 传动系统的基本控制结构 a)速度控制:双闭环结构( 速度---电流)
b)伺服控制: 三闭环控制(位置---速度---电流)
一、提升机主传动的发展及选择
1.2 传动发展及分类:过程:传统交流传动→直流传动→变频传动
分 类 名 称 绕 线 式 异 步 电 机 转 子 串 接 电 阻调速 全 数 字 矢 量 控 制 式 交 交变频 代 表 产 品
—方案介绍
欢迎各位领导和同行指导工作

上海华菱暨LK 公司
提升机电控系统图(12脉动桥并)
PLC及通讯系统
主回路示意图( 12脉动桥并)
PG
PG
TG
M
电控装置布置图(12脉动桥并)
全数字调速系统软件框图(12脉动桥并)
提升机电控系统图(12脉动桥串)
CPU 液压系统
I/O
卸矿操作箱
光缆
CPU
直 流 提 升 机
电 动 机 - 发 电 机 组 供 电
性能差、 能耗 高。 国外现已 淘汰。 全部改 造为全数字 晶闸管传动 系统 性能好。 系统复杂, 参 数离散, 难调 试,故障率 高。 有谐波、 功率 因数低, 对电 网有污染。
已淘汰
模 拟 式 晶 闸 管 拖 动 系 统 全 数 字 晶 闸 管 直 流 传 动系统
晶体管模块
无缓冲电路 低功率门驱动 低切换损耗 对电机的du/dt高 单位元件的输出 功率有限
缺点
6 脉动交直交ARU供电的单机传动荡
功率流
4Q 传动
发电模式 电动模式
功率流
DC (+)
DC (NP)
Motor
DC (-)
EMC Filter or Reenforced EMC Filter (IFU)
IFU ARU
NP
CBU
INU
EXU
WCU
COU
Auxiliaries
Control CHU DIU
Cooling Water
Scope of ACS 6000
Motor
1U 1V 1W
SM
Options for control Interface: -
P T
Tacometer and position encoder Winding Temp /FLT/Alarm Bearing Supervision /FLT/Alarm Cond. Water Det. Space Heater FB Cooling Fans FB

优点
价格低、 适用的 电机容量小
缺点
性能差、 能耗 高。 国外于 50 年代开始应 用于提升机, 70 年代淘汰。 系统复杂、 谐 波大、 功率因 数低, 对电网 污染大。 只适 合低速电机。 价格高, 对电 机有特殊要 求。
趋势
逐步被能四象限运行的中压 和低压变频装置或全数字直 流装置替代。
交 流 提 升 机
描述 优点
软驱动 GTO
软切换设计 小 du/dt 对元件及电机的冲 击小
较大的缓冲电路 稍高的损耗
硬驱动 GTO
较小的缓冲电路 较低的切换损耗 单位元件输出功率高 对电机有较高的du/dt
压力包晶体管
无缓冲电路 低功率门驱动 低切换损耗 对电机的du/dt高 没有短路限制能力
四.QKTS系列矿用提升机计算机控制系 统/交-直-交变频四象限运行
Main Power Supply Auxiliary Power Supply MCB (Standard) (Pre)Trip Open/Close Excitation Power Supply Control Interface Options: - Oil level Alarm - Overtemp /FLT/Alarm - Gas relay /FLT/Alarm - Transformer supervision FLT/Alarm UPS Power Supply
二.QKTS系列矿用提升机计算机控制系 统/12脉波桥并四象限运行
系统特点



★操作方式:自动、半自动、手动. ★运行方式:正常、简易、应急、双桥运行、桥1运行、桥 2运行 ★提升种类:提人、提物、提矿、特运、检修 ★提升速度:根据提升种类和设计设定 ★提升高度: 根据设计而定 ★输出直流电流: ≥10000A ★正常工作时两桥并联工作,电流裕量大 ★当某桥故障时另一桥可单独工作,实现半载全速运行 ★谐波小,功率因数高,对电网污染小 ★适用于较大功率的提升系统




运行跟踪画面如:提升机运行速度、罐笼位置;电枢电流、 磁场电流、运行速度等实时数据,动态曲线。 信息记录库及画面; 系统对输入输出信号进行处理的同时,对某些重要数 据按时间序列或类别在硬盘上存储,以供系统响应要求输 出或定期输出时用。一般有: * 高压配电系统(高、低压电源断电、直流快速开关跳闸、 主回路过电压或接地) * 全数字传动系统的运行和异常状态如: 主回路元器件 状态(可控硅温度及快熔等)传动故障(超速、过流、测 速机断线、失磁等) * 发生故障时提升机的运行状态(如电枢电流、励磁电流、 给定速度、运行速度、提升种类、操作方式、发生时间 等)。
三.QKTS系列矿用提升机计算机控制系 统/12脉波桥串四象限运行
系统特点 ★操作方式:自动、半自动、手动





★运行方式:正常、简易、应急、双桥运行、桥1 运行、桥2运行 ★提升种类:提人、提物、提矿、特运、检修 ★提升速度:根据提升种类和设计设定 ★提升高度: 根据设计而定 ★输出直流电压: ≤1000V ★输出直流电流: ≤5200A ★当某桥故障时可通过切换开关切除故障桥,另一 桥可单独工作,实现全载半速运行 ★谐波小,功率因数高,对电网污染小 ★适用于较大功率和电机电压较高的提升系统
系统特性 ABB ACS6000SD 系列变频器;



供电电压:3160V,50 Hz; 功率:7、9、11 MVA 连续输出; 应用:同步电动机传动; 控制类型:DTC直接转矩控制; 标准:IEC 60146; 三电平自整电压源逆变器,带3电平ARU有源整流单元,不 带熔断器设计; ARU有源整流单元:每个额定连续功率: 7MVA、9MVA、 11MVA; INU逆变单元,对于7MVA每个额定输出电流:1650 A r.m.s 输出频率> 8 Hz 连续电流0-3 Hz, 1155 A 连续电流3-8 Hz, 从1155 至1650 A线性增加
MMI系统介绍




MMI采用配有 Windows NT平台、 MMI系统软件和应用软 件以及网卡的工控机。其主要作用: A) 监视、记录整个系统设备的工作动态及运行实时数 据;如:各水平设备的工作状态、罐笼的动态位置、闸 系统及系统其它信号的诊断和监视结果; B)系统报表的生成、存储、打印; 系统故障和操作信 息的定位、存储、打印。 一般设计下列部分动态画面(具体画面由用户确 认): 电源系统的配置画面如:高压配电系统、低压配电系统、 控制系统; 设备、部件监控画面如:闸系统、各水平车场状态、井 筒开关状态

★操作方式:自动、半自动、手动. ★运行方式:正常、简易、应急 ★提升种类:提人、提物、提矿、特运、检修 ★提升速度:根据提升种类和设计设定 ★提升速度:根据设计而定 ★输出直流电压: ≤1000V ★输出直流电流: ≤5200A ★结构简单,占地面积小 ★成本低,投资小 ★适用于较小功率的系统
相关文档
最新文档