高中数学会考知识点总结-(超级经典)
会考数学必修知识点总结

会考数学必修知识点总结一、函数与方程1.函数的概念与运算: 函数是一个或者多个输入所对应的唯一的输出的映射关系,一般用f(x)表示。
函数的运算是指函数之间的加减乘除等运算。
2.方程与不等式: 方程是含有未知数的等式,要求求得未知数的值;不等式是含有未知数的不等式关系,要求求解出未知数的取值范围。
3.一元二次方程: 一元二次方程是形如ax²+bx+c=0的方程,通过求根公式或者配方法进行求解。
二、数学关系1.集合及其运算: 集合是具有某种共同特征的对象组成的整体。
集合的运算有交集、并集、补集、差集等。
2.函数的图像与性质: 函数的图像是函数在平面直角坐标系上的展示,通过图像我们可以了解函数的性质。
3.数列和数列的性质: 数列是按照一定规律排列的数的有限或者无限序列,常见的有等差数列和等比数列。
三、解析几何1.直线和圆的方程: 直线和圆都是几何图形中重要的部分,它们有各自的方程来描述。
2.多边形的性质: 多边形是由线段组成的闭合图形,通过多边形的性质可以求解其面积和周长等问题。
3.向量及其运算: 向量是有大小和方向的量,向量的运算包括加减乘除等。
四、概率与统计1.概率的基本概念: 概率是指某一事件发生的可能性,通过数学的方法进行计算。
2.频率分布与统计图表: 统计图表是通过图表的方式展示数据的分布情况,有直方图、饼图、折线图等。
3.概率分布与数理统计: 概率分布是描述随机变量取值的规律,数理统计是根据样本数据对总体进行推断。
以上是数学必修知识点的概要总结,通过学习这些基础知识点,我们可以为进一步学习更高级的数学知识打下坚实的基础。
希望每一位学生都能够认真学习数学,提高自己的数学素养。
高中数学会考知识要点总结

高中数学会考知识要点总结
高中数学会考主要包括以下知识要点总结:
1. 几何学:直线和平面的性质和关系、三角形、四边形的性质和关系、圆的性质和关系、空间几何体的性质和关系等。
2. 代数学:多项式的运算和因式分解、一元二次方程、不等式和绝对值、函数的概念
和性质、函数的图像、函数的运算、复合函数、反函数等。
3. 数列与数学归纳法:数列的概念和性质、等差数列和等比数列、数列的推导、数学
归纳法的应用。
4. 解析几何:点、直线、平面的坐标表示、直线和平面的性质和关系、向量的概念和
运算、向量的坐标表示、向量的数量积和向量积。
5. 概率与统计:随机事件的概率、事件的独立性、全概率公式和贝叶斯定理、统计图
表的表示和分析、样本调查和数据分析等。
6. 三角函数:弧度制和角度制、正弦、余弦、正切函数的概念和性质、三角函数的图像、三角函数的运算、解三角方程等。
7. 微积分初步:函数的极限和连续性、导数和导数的应用、函数的积分和积分的应用、微分方程的基本概念、解微分方程的基本方法等。
以上是高中数学会考的主要知识要点总结,需要学生对这些知识点进行系统的学习和
掌握,才能在数学会考中取得好成绩。
高中数学会考重点整理--非常详细总结

高中数学会考重点整理--非常详细总结1. 代数部分- 多项式多项式- 一元多项式的定义和性质- 多项式的加减乘除运算- 一元多项式的整除性质和余式定理- 多项式的因式定理和因式分解- 方程与不等式方程与不等式- 一元二次方程的解法及其性质- 二次函数与二次方程的关系- 一次不等式、二次不等式的解法及其性质- 绝对值方程与绝对值不等式的解法及其性质- 函数函数- 线性函数、反比例函数和一次函数的性质和图像- 二次函数、指数函数和幂函数的性质和图像- 对数函数和指数函数的互反性质- 数列数列- 等差数列和等比数列的性质及其应用- 通项公式、求和公式和首项公式的推导和使用2. 几何部分- 平面几何平面几何- 长度、角度、面积、体积的计算方法及其应用- 相似三角形的性质和判定条件- 三角形内角和、外角和、中线、高线的性质和计算方法- 圆内接四边形和圆内接三角形的性质和判定条件- 立体几何立体几何- 空间几何图形的投影、旋转和平移等变换- 空间几何体的面积和体积计算方法及其应用- 空间几何体的表面积和体积计算方法及其应用- 球的性质、公式和计算方法3. 统计与概率部分- 统计统计- 数据的收集、整理和描述方法- 数据的频数、频率、平均数和离散程度计算- 图表和统计图的制作和解读- 抽样调查和统计推断的基本方法- 概率概率- 基本概率定理和计算方法- 事件的相互排斥和独立性判定条件- 概率问题的计算步骤和策略- 条件概率和事件的互斥性计算方法以上是高中数学会考的重点整理,希望能够帮助你复习和准备考试。
祝你取得好成绩!。
高三数学会考知识点总结大全

高三数学会考知识点总结大全一、函数与方程1. 一次函数- 一次函数的定义和表示- 一次函数的性质:线性关系、斜率、截距- 一次函数的图像和性质- 一次函数的应用2. 二次函数- 二次函数的定义和表示- 二次函数的性质:开口方向、顶点坐标、对称轴、最值点、零点- 二次函数的图像和性质- 二次函数的应用- 二次函数与一次函数的关系3. 指数与对数函数- 指数函数的性质:指数律、指数函数的图像- 对数函数的性质:定义、换底公式、对数函数的图像- 指数与对数函数的应用4. 三角函数- 常见三角函数的定义和性质:正弦函数、余弦函数、正切函数- 三角函数的图像与性质- 三角函数的应用和求解二、几何与向量1. 平面几何- 平面几何中的基本概念:点、线、面、角等- 由平行线和垂直线的性质推导出的定理- 相交线与四边形的性质- 三角形的相似性、共线性、面积等定理与性质2. 空间几何- 空间几何中的基本概念:点、直线、平面等- 空间直线与平面的位置关系与性质- 空间直线与曲线的位置关系与性质- 空间几何问题的解决方法和应用3. 向量与坐标- 向量的基本概念与表示方法- 向量的线性运算:加法、减法、数量积、向量积- 坐标系的建立与应用- 向量的应用:平移、共线性、垂直性、投影等三、数列与数理统计1. 数列- 数列的定义和表示方法- 通项公式和递推公式的推导和应用- 等差数列和等比数列的性质及应用- 数列的极限与收敛2. 概率与统计- 概率的基本定义和性质- 事件的概率计算与应用- 统计学中的基本概念和分析方法- 随机变量和分布函数的应用四、解析几何1. 坐标系与平面图形- 平面直角坐标系的建立与应用- 点、线、圆、椭圆、抛物线和双曲线的方程与性质- 平面图形的参数方程和极坐标方程2. 空间直角坐标系与立体图形- 空间直角坐标系的建立与应用- 点、直线、面、球的方程与性质- 空间图形的投影、截面、旋转等问题五、微积分1. 无穷小与极限- 无穷小的定义和性质- 极限的定义和性质- 极限计算和运算法则- 函数的连续性和间断点2. 导数与微分- 导数的定义和性质- 导数的计算:基本函数、复合函数、隐函数等- 函数的极值与最值点- 微分的定义和性质3. 积分与定积分- 不定积分的定义和性质- 定积分的定义和性质- 积分计算的方法:换元法、分部积分法等- 积分的应用:曲线长度、曲边梯形面积等以上是高三数学会考的知识点总结大全。
2024年高二会考数学知识点归纳5篇

高二会考数学知识点归纳5篇高二会考数学知识点归纳1第一章:三角函数。
考试必考题。
诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B的值和周期,及等变化时图像及性质的变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。
第二章:平面向量。
个人觉得这一章难度较大,这也是我掌握最差的一章。
向量的运算性质及三角形法则平行四边形法则难度都不大,只要在计算的时候记住要同起点的向量。
向量共线和垂直的数学表达,这是计算当中经常要用的公式。
向量的共线定理、基本定理、数量积公式。
难点在于分点坐标公式,首先要准确记忆。
向量在考试过程一般不会单独出现,常常是作为解题要用的工具出现,用向量时要首先找出合适的向量,个人认为这个比较难,常常找不对。
有同样情况的同学建议多看有关题的图形。
第三章:三角恒等变换。
这一章公式特别多。
和差倍半角公式都是会用到的公式,所以必须要记牢。
由于量比较大,记忆难度大,所以建议用纸写之后贴在桌子上,天天都要看。
而且的三角函数变换都有一定的规律,记忆的时候可以结合起来去记。
除此之外,就是多练习。
要从多练习中找到变换的规律,比如一般都要化等等。
这一章也是考试必考,所以一定要重点掌握。
高二会考数学知识点归纳2等差数列对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。
此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
高中数学会考基础知识汇总

高中数学会考基础知识汇总第一章 集合与简易逻辑: 一.集合1、 集合的有关概念和运算(1)集合的特性:确定性、互异性和无序性;(2)元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;2、子集定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ3、真子集定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂;4、补集定义:},|{A x U x x A C U ∉∈=且;5、交集与并集 交集:}|{B x A x x B A ∈∈=且 ;并集:}|{B x A x x B A ∈∈=或6、集合中元素的个数的计算: 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。
二.简易逻辑:1.复合命题: 三种形式:p 或q 、p 且q 、非p ; 判断复合命题真假:2.真值表:p 或q ,同假为假,否则为真;p 且q ,同真为真;非p ,真假相反。
3.四种命题及其关系:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若⌝p 则⌝q ; 逆否命题:若⌝q 则⌝p ; 互为逆否的两个命题是等价的。
原命题与它的逆否命题是等价命题。
4.充分条件与必要条件: 若q p ⇒,则p 叫q 的充分条件; 若q p ⇐,则p 叫q 的必要条件; 若q p ⇔,则p 叫q 的充要条件;第二章 函数一. 函数1、映射:按照某种对应法则f ,集合A 中的任何一个元素,在B 中都有唯一确定的元素和它对应, 记作f :A →B ,若B b A a ∈∈,,且元素a 和元素b 对应,那么b 叫a 的象,a 叫b 的原象。
2、函数:(1)、定义:设A ,B 是非空数集,若按某种确定的对应关系f ,对于集合A 中的任意一个数x ,集合B 中都有唯一确定的数f (x )和它对应,就称f :A →B 为集合A 到集合B 的一个函数,记作y=f (x ), (2)、函数的三要素:定义域,值域,对应法则;3、求定义域的一般方法:①整式:全体实数R ;②分式:分母0≠,0次幂:底数0≠;③偶次根式:被开方式0≥,例:225x y -=;④对数:真数0>,例:)11(log xy a -=4、求值域的一般方法:①图象观察法:||2.0x y =;②单调函数法: ]3,31[),13(log 2∈-=x x y ③二次函数配方法:)5,1[,42∈-=x x x y , 222++-=x x y④“一次”分式反函数法:12+=x xy ;⑥换元法:x x y 21-+= 5、求函数解析式f (x )的一般方法:①待定系数法:一次函数f (x ),且满足172)1(2)1(3+=--+x x f x f ,求f (x ) ②配凑法:,1)1(22xx xx f +=-求f (x );③换元法:x x x f 2)1(+=+,求f (x ) 6、函数的单调性:(1)定义:区间D 上任意两个值21,x x ,若21x x <时有)()(21x f x f <,称)(x f 为D 上增函数; 若21x x <时有)()(21x f x f >,称)(x f 为D 上减函数。
高三数学会考知识点归纳总结

高三数学会考知识点归纳总结高三数学会考是学生们备战高考过程中的一项重要任务。
为了帮助同学们更好地准备高三数学会考,本文将对高三数学会考的知识点进行归纳总结。
以下是数学会考的主要知识点和相关要点:一、函数与方程1. 函数:定义域、值域、奇偶性、单调性、周期性、对称性等。
2. 一次函数:斜率、截距。
3. 二次函数:顶点、轴对称、开口方向、零点。
4. 指数与对数函数:定义、性质、图像、求解相关方程。
5. 三角函数:正弦、余弦、正切等基本概念、性质、图像。
二、平面向量1. 平面向量:定义、加减法、数量积、向量积、相关计算方法。
2. 向量的共线、垂直判定。
3. 向量的模、方向、单位向量。
三、立体几何1. 空间坐标系:直角坐标系、平面方程。
2. 空间直线:方程、位置关系。
3. 空间平面:法向量、位置关系、交线与交点。
四、数列与数学归纳法1. 等差数列:通项公式、求和公式、性质。
2. 等比数列:通项公式、求和公式、性质。
3. 数学归纳法:原理、应用。
五、解析几何1. 平面解析几何:点、线、圆的方程、性质、相交关系。
2. 空间解析几何:点、直线、平面的方程、性质、相交关系。
六、概率与统计1. 概率:基本概念、概率计算、条件概率、独立性。
2. 统计:频数表、频率表、统计图、均值、方差、标准差。
以上是高三数学会考的主要知识点和相关要点的简要总结。
同学们在备考过程中,应该对每个知识点进行理解和掌握,并多做相关题目进行巩固和提高。
同时,还要注重总结和归纳,加强对知识的系统性理解,提升解题能力和应用能力。
祝同学们在高三数学会考中取得优异的成绩,为高考做好充分的准备!。
高中会考数学知识点总结完整

高中会考数学知识点总结完整
版
一、代数:
1、复数:虚数单位i,负数的平方根,实部、虚部,复数模及其计算,共轭复数,复数乘法法则及其计算;
2、一元二次方程:二次函数的定义,一元二次方程的解法,两个实
数根(根的种类、解的类型),有理数解,实数解,无理数解;
3、一元n次方程:一元n次方程的定义、解法,有理数解,实数解、无理数解;
4、二元一次方程组:定义、解法,化简,消元,解的类型,无解,
有唯一解,有多解;
5、分式:分式定义及其特点,分式的加减法,乘除法,乘方,混合
运算法则及计算,提取公因数;
6、根式:定义、特点,同底数的幂的加法、减法,乘法、乘方及计算,开根号,根式与分式的比较及混合运算;
7、二元二次方程组:定义,利用配方求解,利用消元求解,利用把
变量替换成另一个求解;
二、几何:
1、直线与圆:直线与圆的定义,直线的斜率及其计算,圆的标准方
程及其计算,圆的圆心角的大小及其计算;
2、直角三角形:定义、特点,两个直角三角形的重要性质,利用重要性质求三角形的面积,角的大小及其计算,弦长的计算;
3、三角形:定义,重要性质(勾股定理、余弦定理),三角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学学业水平复习知识点第一章 集合与简易逻辑1、 集合(1)、定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。
集合中的元素具有确定性、互异性和无序性;表示一个集合要用{ }。
(2)、集合的表示法:列举法()、描述法()、图示法();(3)、集合的分类:有限集、无限集和空集(记作φ,φ是任何集合的子集,是任何非空集合的真子集); (4)、元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;(5)、常用数集:自然数集:N ;正整数集:N ;整数集:Z ;整数:Z ;有理数集:Q ;实数集:R 。
2、子集(1)、定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ(2)、性质:①、A A A ⊆⊆φ,;②、若C B B A ⊆⊆,,则C A ⊆;③、若A B B A ⊆⊆,则A =B ; 3、真子集(1)、定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂; (2)、性质:①、A A ⊆≠φφ,;②、若C B B A ⊆⊆,,则C A ⊆;4、补集①、定义:记作:},|{A x U x x A C U ∉∈=且;②、性质:A A C C U A C A A C A U UU U ===)(,, φ; 5、交集与并集(1)、交集:}|{B x A x x B A ∈∈=且性质:①、φφ== A A A A , ②、若B B A = ,则A B ⊆ (2)、并集:}|{B x A x x B A ∈∈=或性质:①、A A A A A ==φ , ②、若B B A = ,则B A ⊆ABBA6、一元二次不等式的解法:(二次函数、二次方程、二次不等式三者之间的关系)不等式解集的边界值是相应方程的解含参数的不等式ax 2+b x +c>0恒成立问题⇔含参不等式ax 2+b x +c>0的解集是R ; 其解答分a =0(验证bx +c>0是否恒成立)、a ≠0(a<0且△<0)两种情况。
第二章 函数1、映射:按照某种对应法则f ,集合A 中的任何一个元素,在B 中都有唯一确定的元素和它对应, 记作f :A →B ,若B b A a ∈∈,,且元素a 和元素b 对应,那么b 叫a 的象,a 叫b 的原象。
2、函数:(1)、定义:设A ,B 是非空数集,若按某种确定的对应关系f ,对于集合A 中的任意一个数x ,集合B 中都有唯一确定的数f (x )和它对应,就称f :A →B 为集合A 到集合B 的一个函数,记作y=f (x ), (2)、函数的三要素:定义域,值域,对应法则;自变量x 的取值范围叫函数的定义域,函数值f (x )的范围叫函数的值域,定义域和值域都要用集合或区间表示;(3)、函数的表示法常用:解析法,列表法,图象法(画图象的三个步骤:列表、描点、连线); (4)、区间:满足不等式b x a ≤≤的实数x 的集合叫闭区间,表示为:[a ,b ] 满足不等式b x a <<的实数x 的集合叫开区间,表示为:(a ,b )满足不等式b x a <≤或b x a ≤<的实数x 的集合叫半开半闭区间,分别表示为:[a ,b )或(a ,b ]; (5)、求定义域的一般方法:①、整式:全体实数,例一次函数、二次函数的定义域为R ;②、分式:分母0≠,0次幂:底数0≠,例:|3|21x y -=③、偶次根式:被开方式0≥,例:225x y -=④、对数:真数0>,例:)11(log xy a -=(6)、求值域的一般方法:①、图象观察法:||2.0x y = ②、单调函数:代入求值法: ]3,31[),13(log 2∈-=x x y ③、二次函数:配方法:)5,1[,42∈-=x x x y , 222++-=x x y④、“一次”分式:反函数法:12+=x xy ⑤、“对称”分式:分离常数法:xxy sin 2sin 2+-=⑥、换元法:x x y 21-+= (7)、求f (x )的一般方法:①、待定系数法:一次函数f (x ),且满足172)1(2)1(3+=--+x x f x f ,求f (x ) ②、配凑法:,1)1(22xx xx f +=-求f (x ) ③、换元法:x x x f 2)1(+=+,求f (x )④、解方程(方程组):定义在(-1,0)∪(0,1)的函数f (x )满足xx f x f 1)()(2=-,求f (x ) 3、函数的单调性:(1)、定义:区间D 上任意两个值21,x x ,若21x x <时有)()(21x f x f <,称)(x f 为D 上增函数; 若21x x <时有)()(21x f x f >,称)(x f 为D 上减函数。
(一致为增,不同为减) (2)、区间D 叫函数)(x f 的单调区间,单调区间⊆定义域;(3)、判断单调性的一般步骤:①、设,②、作差,③、变形,④、下结论 (4)、复合函数)]([x h f y =的单调性:内外一致为增,内外不同为减; 4、反函数:函数)(x f y =的反函数为)(1x f y -=;函数)(x f y =和)(1x fy -=互为反函数; 反函数的求法:①、由)(x f y =,解出)(1y f x -=,②、y x ,互换,写成)(1x fy -=,③、写出)(1x fy -=的定义域(即原函数的值域);反函数的性质:函数)(x f y =的定义域、值域分别是其反函数)(1x fy -=的值域、定义域;函数)(x f y =的图象和它的反函数)(1x fy -=的图象关于直线x y =对称;点(a ,b )关于直线x y =的对称点为(b ,a );5、指数及其运算性质:(1)、如果一个数的n 次方根等于a (*,1N n n ∈>),那么这个数叫a 的n 次方根;na 叫根式,当n 为奇数时,a a n n =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n n(2)、分数指数幂:正分数指数幂:n mnma a =;负分数指数幂:nm nmaa1=-0的正分数指数幂等于1,0的负分数指数幂没有意义(0的负数指数幂没有意义); (3)、运算性质:当Q s r b a ∈>>,,0,0时:r r r rs s r sr srb a ab a a aa a ===⋅+)(,)(,,rr a a 1=;6、对数及其运算性质:(1)、定义:如果)1,0(≠>=a a N a b,数b 叫以a 为底N 的对数,记作b N a =log ,其中a 叫底数,N 叫真数,以10为底叫常用对数:记为lgN ,以e=2.7182828…为底叫自然对数:记为lnN (2)、性质:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数:N M NMa a alog log log -=, 幂的对数:M n M a na log log =, 方根的对数:M nM a n a log 1log =,7、指数函数和对数函数的图象性质第三章 数列(一)、数列:(1)、定义:按一定次序排列的一列数叫数列;每个数都叫数列的项; 数列是特殊的函数:定义域:正整数集*N (或它的有限子集{1,2,3,…,n}),值域:数列本身,对应法则:数列的通项公式;(2)、通项公式:数列{n a }的第n 项n a 与n 之间的函数关系式;例:数列1,2,…,n 的通项公式n a = n 1,-1,1,-1,…,的通项公式n a =1)1(--n ; 0,1,0,1,0,…,的通项公式n a 2)1(1n-+=(3)、递推公式:已知数列{n a }的第一项,且任一项n a 与它的前一项1-n a (或前几项)间的关系用一个公式表示,这个公式叫递推公式;例:数列{ n a }:11=a ,111-+=n n a a ,求数列{ n a }的各项。
(4)、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn(二)、等差数列 :(1)、定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
(2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;整理后是关于n 的一次函数), (3)、前n 项和:1.2)(1n n a a n S +=2. d n n na S n 2)1(1-+=(整理后是关于n 的没有常数项的二次函数)(4)、等差中项:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
即:2ba A +=或b a A +=2 [说明]:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。
(5)、等差数列的判定方法:①、定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。
②、等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。
(6)、等差数列的性质:①、等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有dm n a a m n )(-+=②、等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+。
也就是: =+=+=+--23121n n na a a a a a ,如图所示:nn a a n a a n n a a a a a a ++---112,,,,,,12321③、若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列。
如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++④、设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有:前n 项的和偶奇S S S n +=, 当n 为偶数时,d2nS =-奇偶S ,其中d 为公差;当n 为奇数时,则中偶奇a S =-S ,中奇a 21n S +=,中偶a 21n S -=(其中中a 是等差数列的中间一项)。