七年级上册方程思想应用典型例题
人教版七年级上册一元一次方程应用题之工程问题

一元一次方程应用题之工程问题工程问题:工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:①工作量=工作效率×工作时间。
②工作时间=工作效率工作量,③工作效率=工作时间工作量。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t ,则工作效率为t1。
常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量。
②如果以时间作相等关系,完成同一工作的时间差=多用的时间。
例题:例1.一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。
现在三管齐开,需多少时间注满水池?例2.一项工程,甲队单独做需要10天完成,乙队单独做需要20天完成,两队同时工作3天后,乙队采用新技术,工作效率提高了25%,自乙队采用新技术后,两队还需要同时工作多少天才能完成这项工程?针对练习:1.某中学的学生自己动手整修操场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独工作,需要5小时完成。
如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需几小时完成?2.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共花12天完成,问乙做了几天?3.整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作。
4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?5.整理一批数据,由一个人做需80小时完成任务。
现在计划由一些人先做2小时,再增加5人做8小时,完成任务这项工作的3/4。
怎样安排参与整理数据的具体人数?行程问题行程问题中有三个基本量:路程、时间、速度。
七年级上册解一元一次方程100道

七年级上册解一元一次方程100道解一元一次方程是初中数学中的基础知识点,对于七年级的学生来说,掌握解一元一次方程的方法和技巧是非常重要的。
本文将为大家提供100道七年级上册解一元一次方程的题目及其解答,帮助大家巩固和提高解一元一次方程的能力。
1. 2x + 3 = 7解:首先将方程中的常数项移到等号右边,得到2x = 7 - 3 = 4。
然后将方程两边同时除以系数2,得到x = 4 ÷ 2 = 2。
所以方程的解为x = 2。
2. 3x - 5 = 4解:将方程中的常数项移到等号右边,得到3x = 4 + 5 = 9。
然后将方程两边同时除以系数3,得到x = 9 ÷ 3 = 3。
所以方程的解为x = 3。
3. 4x + 2 = 10解:将方程中的常数项移到等号右边,得到4x = 10 - 2 = 8。
然后将方程两边同时除以系数4,得到x = 8 ÷ 4 = 2。
所以方程的解为x = 2。
4. 5x - 3 = 7解:将方程中的常数项移到等号右边,得到5x = 7 + 3 = 10。
然后将方程两边同时除以系数5,得到x = 10 ÷ 5 = 2。
所以方程的解为x = 2。
5. 6x + 4 = 16解:将方程中的常数项移到等号右边,得到6x = 16 - 4 = 12。
然后将方程两边同时除以系数6,得到x = 12 ÷ 6 = 2。
所以方程的解为x = 2。
6. 7x - 2 = 5解:将方程中的常数项移到等号右边,得到7x = 5 + 2 = 7。
然后将方程两边同时除以系数7,得到x = 7 ÷ 7 = 1。
所以方程的解为x = 1。
7. 8x + 3 = 11解:将方程中的常数项移到等号右边,得到8x = 11 - 3 = 8。
然后将方程两边同时除以系数8,得到x = 8 ÷ 8 = 1。
所以方程的解为x = 1。
8. 9x - 4 = 5解:将方程中的常数项移到等号右边,得到9x = 5 + 4 = 9。
七年级数学上册一元一次方程的实际应用专项练习(含解析)

七年级数学上册一元一次方程的实际应用专项练习知识与技能1.能够根据具体问题中的数量关系,列出一元一次方程,体会一元一次方程是刻画现实世界的有效数学模型,体会数学的应用价值。
2.学会分析问题的本领,能根据题意将实际问题转化为数学问题。
养成善于分析问题、解决问题的良好习惯,发展思维能力。
过程与方法抓紧一元一次方程的定义及方程解的定义情感态度与价值观初步认识方程与现实世界的密切联系,感受数学的价值;要熟练掌握解题步骤;认真审题,弄清题中的等量关系,列出合适的一元一次方程。
经典例题:1.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过10立方米时,按2元/立方米计费;月用水量超过10立方米时,其中的10立方米仍按2元/立方米收费,超过的部分按3元/立方米计费.已知小明和小强两家某月共用水22立方米(其中小强家用水量超过10立方米),一共交费47元,问该月小明和小强两家各用水多少立方米?2.七(3)班共有学生48人,其中男生人数比女生人数的2倍少15人,问这个班男、女学生各有多少人?3.为了加强公民的节水意识,合理利用水,某市采用价格词控的手段达到节水的目的,该市自来水收费的价目表如表:(注:水费按月份算,m3表示立方米)例:若某户居民1月份用水8m3,应缴水费:2×6+4×(8﹣6)=20(元),请根据价目表提供的信息解答下列问题:(1)若该户居民2月份用水6m3,则应缴水费元;(2)若该户居民3月份缴水费24元,求该户居民3月份用水量;(3)若该户居民4、5两个月用水总是14m3(5月份用水量超过了4月份),设4月份用水am3,求该户居民4、5两个月共缴水费多少元?(用含a的代数式表示,并化简)4.一个两位数的个位上的数的3倍加2是十位上的数,个位上的数与十位上的数的和等于10,这个两位数是多少?5.列方程解应用题青岛与济南两城市间的高速公路长约360千米,现有一长途客车从济南开往青岛,平均速度为85千米/时,有一小汽车同时从青岛开往济南,平均速度是95千米/时,求两车相遇时各自行驶的路程.6.父子俩每天都去同一所学校上学,父亲是老师,儿子是学生.父亲从家到学校要走30分钟,儿子走这段路只需20分钟,若父亲比儿子早5分钟动身,则儿子需要多长时间才能追上父亲?7.为迎接新年,小红的妈妈在某外贸店为小红购买了一件上衣和一条裤子,已知上衣和裤子标价之和为600元,经双方议价,上衣享受九折优惠,裤子享受八折优惠,最终共付款518元.(1)则上衣和裤子的标价各多少元?(2)在本次交易中,外贸店老板将上衣和裤子在进价的基础上均提高50%进行标价,若该老板当天只进行了这一次交易,并且还需要支付店面、水电等其它费用共100元,请帮助老板计算当天的收益情况.8.为庆祝元旦,甲、乙两校准备联合文艺汇演,甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5920元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有8名同学抽调去参加迎元旦书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?9.为发展校园足球运动,某校决定购买一批足球运动装备,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,求每套队服和每个足球的价格是多少元.10.列方程解应用题《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问:共有多少人?这个物品的价格是多少?请用一元一次方程的知识解答上述问题.11.为打造“书香校园”,学校每个班级都建立了图书角.七年1班,除了班上每位同学捐出一本书外,三位班委还相约图书城,用班费买些新书.下面是他们的对话内容:(1)班委A上次买的一套书,图书城的利润是元,利润率是.如果当时他买一张会员卡,可省下元.(2)当购书的总价(指未打折前的原价)为多少时,办贵宾卡与办会员卡购书一样优惠?(3)三个班委精心挑选了一批新书,经过计算分析后,发现三种购买方式中,办会员卡购书最省钱,请你直接写出这批书的总价的范围.12.某城市自来水收费实行阶梯水价,收费标准如下表所示:某用户5月份用水8吨,交水费16元.(1)求a的值;(2)小明家5月份交水费51元,求小明家5月份用水量.13.某市按以下规定收取每月的燃气费,用燃气如果不超过30立方米,按每立方米1.20元收费;如果超过30立方米,超过部分按每立方米2元收费.已知3月份某用户的燃气费平均每立方米1.50元,那么3月份这位用户应交燃气费多少元.(要求要有解题过程)14.一个旅游团共26人去参观一个景点,已知成人票每张120元,儿童票每张80元,经预算,共需要门票钱2640元.(1)求这个旅游团成人和儿童的数量各是多少人?(2)到了售票窗口得知,购买两张成人票将会赠送一张儿童票,请计算共需门票钱多少元?15.列方程解应用题:某水果店计划购进A、B两种水果下表是A、B这两种水果的进货价格:(1)若该水果店要花费600元同时购进两种水果共50kg,则购进A、B两种水果各为多少?(2)若水果店将A种水果的售价定为14元/kg,要使购进的这批水果在完全售出后达到50%的利润率,B种水果的售价应该定为多少?16.一套仪器由一个A部件和三个B部件构成,用1m3钢材可以做40个A部件或240个B 部件.(1)现要用6m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?(2)设某公司租赁这批仪器x小时,有两种付费方式.方式一:当0<x<10时,每套仪器收取租金50元;当x>10时,超时部分这批仪器整体按每小时300元收费;方式二:当0<x<15时,每套仪器收取租金60元,当x>15时,超时部分这批仪器整体按每小时200元收费.请你替公司谋划一下,当x满足,选方式一节省费用一些;当x满足,选方式二节省费用一些.17.佳乐家超市元旦期间搞促销活动,活动方案如下表:小颖在促销活动期间两次购物分别支付了134元和913元.(1)小颖两次购买的物品如果不打折,应支付多少钱?(2)在此活动中,他节省了多少钱?18.某商店销售A,B两种商品,每件A商品的售价比B商品少10元.购买5件A商品比购买3件B商品多10元.设每件A商品的售价为x元.(1)每件B商品的售价为元(用含x的式子表示);(2)求A,B商品每件的售价各多少元?(3)元旦期间,该商店决定对A,B两种商品进行促销活动,具体办法是:方案一:购买A商品超出15件后,超出部分五折销售,不超出部分不享受任何折扣;B 商品无论多少一律九折.方案二:无论买多少,A,B商品一律八折.若小红打算到该商店购买m件A商品和20件B商品,选择哪种方案购买更实惠(两种优惠方案不能同时享受)?19.张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表:例如:若购买的商品原价为15000元,实际付款金额为:5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.(1)若这种品牌电脑的原价为8000元/台,请求出张老师实际付款金额;(2)已知张老师购买一台该品牌电脑实际付费5700元.①求该品牌电脑的原价是多少元/台?②若售出这台电脑商场仍可获利14%,求这种品牌电脑的进价为多少元/台?20.一种蔬菜,进入市场后,有以下三种销售盈利的方式:某家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了以下方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.21.列方程式应用题.用一根长为80厘米的铁丝围成一个长方形.(1)如果长方形的长比宽多10厘米,那么这个长方形的面积为多少平方厘米?(2)如果长方形的长比宽多4厘米,那么这个长方形的面积为平方厘米;(3)你能围成的面积最大的长方形面积是平方厘米.22.为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如表:(1)若小刚家6月份用水15吨,则小刚家6月份应缴水费元.(直接写出结果)(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费79.6元,其中含2元滞金(水费为每月底缴纳.因8月份的水费未按时缴,所以收取了滞纳金),已知9月份用水比8月份少,求小明算8、9月各用多少吨水?23.缴纳个人所得税是收入达到缴纳标准的公民应居的义务,个人所得税率是由国家相应的法律法规规定的.根据个人的收入计算,新修改的《中华人民共和国个人所得税法》于2019年1月1日正式实施,新税法规定个人所得税的免征额为5000元,应纳税所得额按如下税率表缴纳个人所得税(应纳税所得额=税前收总额﹣国家规定扣除专项金额﹣免征额).根据以上信息,解决以下问题:(1)小明的妈妈应纳税所得额为2000元,她应该缴纳个人所得税元.(2)小明的爸爸要缴纳个人所得税590元,他应纳税所得额是多少元?(3)如果小明的爸爸和妈妈某月应纳税所得额共为20000元(爸爸的应纳税所得额高于妈妈的应纳税所得额),共要缴纳个人所得税1780元,小明的爸爸应纳税所得额是元.24.列方程式应用题.天河食品公司收购了200吨新鲜柿子,保质期15天,该公司有两种加工技术,一种是加工为普通柿饼,另一种是加工为特级霜降柿饼,也可以不需加工直接销售.相关信息见表:由于生产条件的限制,两种加工方式不能同时进行,为此公司研制了两种可行方案:方案1:尽可能多地生产为特级霜降柿饼,没来得及加工的新鲜柿子,在市场上直接销售;方案2:先将部分新鲜柿子加工为特级霜降柿饼,再将剩余的新鲜柿子加工为普通柿饼,恰好15天完成.请问:哪种方案获利更多?获利多少元?25.下表是中国电信两种“4G套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收取额外费用费,主叫超时和上网超流量部分加收超时费和超流量费)(1)6月小王主叫通话时间220分钟,上网流量800MB.按套餐1计费需元,按套餐2计费需元;若他按套餐2计费需129元,主叫通话时间为240分钟,则他上网使用了MB流量;(2)若上网流量为540MB,是否存在某主叫通话时间t(分钟),按套餐1和套餐2的计费相等?若存在,请求出t的值;若不存在,请说明理由.26.某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户家庭的水费:月用水量不超过20m2时,按2元/m2计算:月用水量超过20m2时,其中的20m2仍按2元/m2计算,超过部分按2.6元/m2计算.设某户家庭月用水量xm2(1)用含x的式子表示:当0≤x≤20时,水费为元;当x>20时,水费为元;(2)小花家第二季度用水情况如上表,小花家这个季度共缴纳水费117元,请你求出小花家6月份用水量a的值?27.热点链接:某地周六购物节有购物津贴、定金膨胀等优惠:购物津贴优惠:凡购物金额在400元及以上者均有优惠津贴,每400元减50元(400整数倍后,余额小于400的部分不优惠),例如原标价1000元,可优惠100元;定金膨胀优惠:对某指定商品提前付100元定金,则周六购物节当天实付可抵200元(在购物津贴优惠之后的基础上抵扣).问题解决:(1)客户小明打算在周六购物节当天购买标价为3899元的A款手机,他已经在前一天预付了100元定金给商户,则实付时可优惠多少钱?(2)购买手机有不交定金,预交100元定金两种选择.刘叔叔在周六购物节当天购买B 款手机实付价比原标价的还便宜100元,已知原标价介于4100元至4398元之间,试问刘叔叔是否交了100元定金,并说明理由.28.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为;则乙厂家运往A地的自行车的量数为;则乙厂家运往B地的自行车的量数为;(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?29.网上办公,手机上网已成为人们日常生活的一部分,我县某通信公司为普及网络使用,特推出以下两种电话拨号上网收费方式,用户可以任选其一.收费方式一(计时制):0.05元/分;收费方式二(包月制):50元/月(仅限一部个人电话上网);同时,每一种收费方式均对上网时间加收0.02元/分的通信费.某用户一周内的上网时间记录如下表:(1)计算该用户一周内平均每天上网的时间.(2)设该用户12月份上网的时间为x小时,请你分别写出两种收费方式下该用户所支付的费用.(用含x的代数式表示)(3)如果该用户在一个月(30天)内,按(1)中的平均每天上网时间计算,你认为采用哪种方式支付费用较为合算?并说明理由.30.某商场年终搞促销活动,活动规则如下:①购物不超200元不给优惠.②购物超过200元不足500元的全部打九折.③购物超过500元,其中500元打9折,超过500元的部分打八折.(1)小敏第一次购得商品花费为180元,求商品标价为多少元?(2)小敏第二次购物花费495元,与没有促销相比,第2次购物节约了多少钱?(3)若小敏将两次购得商品合为一次购买,可以省多少钱?参考答案1.解:①当小明家用水量不超过10立方米时,设小明家用水量为x立方米,则小强家用水量为(22﹣x)立方米,由题意,得x×2+10×2+(22﹣x﹣10)×3=47.解得,x=9.故小明家用水量为9立方米,小强家用水量为(22﹣9)=13(立方米).②当小明家用水量超过10立方米时,(22﹣2)×2+(22﹣20)×3=40+6=46≠47故这种情况不存在.综上,小明家用水量为9立方米,小强家用水量为13立方米.2.解:设女生有x人,则男生有(2x﹣15)人,根据题意可得,x+(2x﹣15)=48,解得:x=21,则2x﹣15=27,答:男生有27人,女生有21人.3.解:(1)根据题意得:2×6=12(元);故答案是:12.(2)根据题意设该户居民3月份用水x吨,则6<x<10,根据题意可,2×6+4(x﹣6)=24解得x=9故该户居民3月份用水9吨;(3)由5月份用水量超过了4月份,得到4月份用水量少于7m3,当4月份得用水量少于6m3时,5月份用水量超过10m3,则4,5月份共交水费为2a+8(14﹣a﹣10)+4×4+6×2=﹣6a+60(元);当4月份不超过6m3,5月份在6﹣10立方米之间则4,5月份交的水费为2a+4(14﹣a﹣6)+6×2=﹣2a+44(元);两个月都在6﹣10立方米之间.则4,5月份交的水费为4(a﹣6)+6×2+4(14﹣a﹣6)+6×2=32(元).故4,5月份交的水费为﹣6a+60(元)或﹣2a+44(元)或32(元).4.解:设个位上的数字为x,则十位上的数字为(3x+2),由题意得:x+(3x+2)=10.解得x=2.所以十位上的数字为3x+2=8.所以这两位是为82.5.解:设长途客车出发x小时时两车相遇,由题意得:85x+95x=360,解得:x=2,长途客车行驶路程:85×2=170(千米),小汽车行驶路程:95×2=190(千米),答:两车相遇时长途客车行驶路程为170千米,小汽车行驶路程190千米.6.解:设儿子需要x分钟才能追上父亲,由题意得:x(x+5),解得:x=10,答:儿子需要10分钟才能追上父亲.7.解:(1)设上衣标价x元,则裤子标价(600﹣x)元,由题意得:0.9x+0.8(600﹣x)=518,解得:x=380,裤子标价:600﹣380=220(元),答:上衣标价380元,则裤子标价220元;(2)上衣和裤子的进价为:600÷(1+50%)=400(元),518﹣400﹣100=18(元),答:当天的收益18元.8.解:(1)∵甲、乙两校共92人,∴甲、乙两校联合起来购买服装需50×92=4600(元),∴5920﹣4600=1320(元)答:甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省1320元.(2)设甲校人数为x人(依题意46<x<90),则乙校人数为(92﹣x)人,依题可得:60x+70(92﹣x)=5920,解得:x=52,∴92﹣x=40.答:甲校有52人,乙校有40人.(3)依题可得:抽调后甲校人数为:52﹣8=44(人),∴方案一:各自购买服装需44×70+40×70=5880(元);方案二:联合购买服装需(44+40)×60=5040(元);方案三:联合购买91套服装需91×50=4550(元);综上所述:因为5880>5040>4550.∴应该甲,乙两校联合起来选择按50元一次购买91套服装最省钱.答:甲,乙两校联合起来选择按50元一次购买91套服装最省钱.9.解:设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元.10.解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53(元),答:共有7人,这个物品的价格是53元.11.解:(1)由题意可得,班委A上次买的一套书,图书城的利润是:160﹣100=60(元),利润率是:100%=60%,如果当时他买一张会员卡,可省下:160﹣(20+160×0.8)=12(元),故答案为:60,60%,12;(2)设当购书的总价(指未打折前的原价)为x元时,办贵宾卡与办会员卡购书一样优惠,20+0.8x=100+0.6x,解得,x=400,即当购书的总价(指未打折前的原价)为400元时,办贵宾卡与办会员卡购书一样优惠;(3)设购书总价(指未打折前的原价)为y元时,购买会员卡与不办卡花钱一样多,20+0.8y=y,解得,y=100,由(2)知,当购买400元的书时,办贵宾卡与办会员卡购书一样优惠,故当购买书款在大于100元且少于400元时,办会员卡购书最省钱.12.解:(1)依题意得:8a=16.解得a=2;(2)如果一个月用水12吨,则需水费:12×2=24元,如果一个月用水18吨,则需交水费:12×2+6×2.5=39元,5月份交水费51元>39元,所以5月份,用水量超过了18吨,设小明家5月份用水量为x吨,依题意得:12×2+6×2.5+3(x﹣18)=51.解得x=22.答:小明家5月份用水量为22吨.13.解:∵3月份某用户的燃气费平均每立方米1.50元,∴用户燃气用量超过30立方米,设3月份燃气用量为x,由题意得,30×1.2+(x﹣30)×2=1.5x,解得:x=48,则3月份这位用户应交燃气费为:48×1.5=72(元)答:3月份这位用户应交燃气费72元.14.解:(1)设旅游团成人的数量是x人,则儿童的数量是(26﹣x)人,由题意得:120x+80(26﹣x)=2640解得x=1426﹣x=26﹣14=12答:这个旅游团成人的数量是14人,儿童的数量是12人;(2)2640﹣14÷2×80=2080(元)答:共需门票2080元.15.解:(1)设购进A水果x千克,则购进B水果(50﹣x)千克,依题意有10x+15(50﹣x)=600,解得:x=30,50﹣x=20.故购进A水果30千克,购进B水果20千克;(2)设B种水果的售价应该定为y元/千克,依题意有(14﹣10)×30+(y﹣15)×20=600×50%,解得:y=24.故B种水果的售价应该定为24元/千克.16.解:(1)设应用ym3钢材做A部件,用(6﹣y)m3钢材做B部件,则可配成这种仪器40y套,则3×40y=240(6﹣y)解得:y=4,6﹣y=2,40y=160.答:应用4m3做A部件,用2m3做B部件,恰好配成160套这种仪器(2)依题意有:50×160+300(x﹣10)=60×160+200(x﹣15),解得x=16,故0<x<16,选方式一节省费用一些;x>16,选方式二节省费用一些.17.解:(1)①∵134元<200×90%=180元∴小颖不享受优惠;②∵第二次付了913元>1000×85%=850元∴小颖享受优惠,其中1000元按8.5折优惠,超过1000元部分按7折优惠.设小颖第二次所购价值x元的货物,根据题意得85%×1000+(x﹣1000)×70%=913解得x=10901090+134=1224(元)答:小颖两次购买的物品如果不打折,应支付1224元钱;(2)1090﹣913=177(元)答:在此次活动中,他节省了177元钱.18.解:(1)每件B商品的售价为(x+10)元;故答案为:(x+10);(2)根据题意得,5x=3(x+10)+10,解得x=20,∴x+10=30;答:A,B商品每件的售价分别为20元,30元;(3)当m≤15时,方案一:20m+30×20×90%=20m+540;当m>15时,方案一:15×20+(m﹣15)×20×50%+30×20×90%=10m+690;方案二:(20m+30×20)×80%=16m+480,当m≤15时,20m+540>16m+480∴应该按方案二购买,选择方案二购买更实惠;当m>15时,10m+690>16m+480时,解得m<35;10m+690<16m+480时,解得m>35;10m+690=16m+480时,解得m=35,∴当m<35时,按方案二购买;当m=35时,两种方案都一样;当m>35时,按方案一购买.19.解:(1)5000(8000﹣5000)6900(元)答:张老师实际付款6900元.(2)①设该品牌电脑的原价为x元/台.∵实际付费为5700元,超过5000元,少于8500元∴5000<x<10000依题意有:5000(x﹣5000)57004500+0.8x﹣4000=57000.8x=5200x=6500∴电器原价为6500元答:该品牌电脑的原价是6500元/台.②设该电器的进价为m元/台,则有:m(1+14%)=5700解得:m=5000答:这种品牌电脑的进价为5000元/台.20.解:如果我是公司经理,我会选择第三种方案,方案一:∵4000×140=560000(元),∴将蔬菜全部进行粗加工后销售,则可获利润630000元方案二:15×6×7000+(140﹣15×6)×1000=680000(元),∴将蔬菜尽可能多的进行精加工,没来得及加工的在市场上直接销售,则可获利润725000元;方案三:设精加工x天,则粗加工(15﹣x)天.根据题意得:6x+16(15﹣x)=140,解得:x=10,所以精加工的吨数=6×10=60,16×5=80吨.这时利润为:80×4000+60×7000=740000(元),∵740000>680000>630000,∴选择第三种,答:如果我是公司经理,我会选择第三种方案,可获得最高利润.21.解:(1)设长方形的宽为x厘米,则长方形的长为(x+10)厘米,根据题意可知:x+(x+10)=40,所以x=15厘米,长方形长为25厘米,宽为15厘米,面积为25×15=375(平方厘米),答:这个长方形的面积为375平方厘米;(2)设长方形的宽为x厘米,则长方形的长为(x+4)厘米,根据题意可知:x+(x+4)=40,所以x=18厘米,长方形长为22厘米,宽为18厘米,面积为22×18=396(平方厘米),答:这个长方形的面积为396平方厘米;(3)设长方形的宽为x厘米,长方形面积为S平方厘米,则长方形的长为(40﹣x)厘米,根据题意得S=x(40﹣x)=﹣x2+40x=﹣(x﹣20)2+400,∴能围成的面积最大的长方形面积是400平方厘米,故答案为:(2)396,(3)400.22.解:(1)∵小刚家6月份用水15吨,∴小刚家6月份应缴水费为10×1.6+(15﹣10)×2=26(元),故答案为:26;(2)由题意知小刚家7月份的用水量超过10吨而不超过20吨,设小刚家12月份用水量为x吨,依题意得:1.6×10+2(x﹣10)=1.75x解得:x=16,(3)因小刚家8月、9月共用水40吨,9月份用水比8月份少,所以8月份的用水量超过了20吨.设小刚家9月份的用水量为x吨,则8月份的用水量为(40﹣x)吨,①当x≤10时,依题意可得方程:1.6x+16+20+2.4(40﹣x﹣20)+2=79.6解得:x=8,②当10<x<20时,依题意得:16+2(x﹣10)+16+20+2.4(40﹣x﹣20)+2=79.6解得:x=6不符合题意,舍去.综上:小刚家8月份用水32吨,9月份用水8吨.23.解:(1)由题意知,2000×3%=60(元)故答案是:60;(2)易知:小明爸爸在第2级中的税,设他的应纳税所得额为a元,则90+(a﹣3000)×10%=590.解得a=8000.∴小明爸爸应纳税所得额为8000元(3)设小明的爸爸应纳税所得额是x元,则小明的妈妈应纳税所得额是(20000﹣x)元,由题意得:3000×3%+(17000﹣x)×10%+3000×3%+9000×10%+(x﹣12000)×20%=1780 解得x=14000故答案是:14000.24.解:方案一:15×8×8000+(200﹣15×8)×1000=1040000(元),∴尽可能多地生产为特级霜降柿饼,没来得及加工的新鲜柿子,在市场上直接销售,则可获利润1040000元方案二:设加工为特级霜降柿饼x吨,则加工为普通柿饼(200﹣x)吨食品,由题意可得:15,解得x=40,∴200﹣x=160,这时利润为:40×8000+160×5000=1120000(元)∴该公司可以加工为特级霜降柿饼40吨,加工为普通柿饼160吨,可获得最高利润为1120000元.∵1120000>1040000,∴方案二案获利更多,获利1120000元25.解:(1)套餐1:49+0.2(220﹣200)+0.3(800﹣500)=49+0.2×20+0.3×300=49+4+90=143.套餐2:69+0.2(800﹣600)=69+0.2×200=69+40=109.设上网流量为xMB,则69+0.2(x﹣600)=129解得x=900.故答案为:143;109;900.(2)当0≤t<200时,49+0.3(540﹣500)=61≠69∴此时不存在这样的t.当200≤t≤250时,49+0.2(t﹣200)+0.3(540﹣500)=69解得t=240.当t>250时,49+0.2(t﹣200)+0.3(540﹣500)=69+0.15(t﹣250)解得t=210(舍).故若上网流量为540MB,当主叫通话时间为240分钟时,按套餐1和套餐2的计费相等.26.解:(1)当0≤x≤20时,水费为2x元;当x>20时,水费为20×2+2.6(x﹣20)=(2.6x ﹣12)元.故答案为:2x、(2.6x﹣12);(2)由题意得,小花家4月份,5月份共交水费15×2+17×2=30+34=64(元),则6月份用水量a>20,∴小花家6月份的用水为a吨,则超过20吨的部分为(a﹣20)吨,∴15×2+17×2+20×2+2.6(a﹣20)=117,解得:a=25.答:小花家6月份用水25吨.27.解:(1)由题意可知:3899÷400≈9.75,∴按照购物津贴优惠,共优惠了9×50=450,∴优惠后需要付款为:3899﹣450=3449,按照定金膨胀优惠可知:3449﹣100=3349元,∴实付时可优惠3899﹣3349=550元,(2)设原标价为x元,当刘叔叔已交定金时,此时按照优惠方案可知,实付了(x﹣500﹣100)元,∴x﹣500﹣100x﹣100,解得:x=5250>4100,不符合题意,故刘叔叔未交定金.28.解:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为20﹣x;则乙厂家运往A地的自行车的量数为30﹣x;。
苏科版七年级上册 第4章《一元一次方程》应用题分类:数轴类专项练(四)

第4章《一元一次方程》应用题分类:数轴类专项练(四)1.当被研究的问题包含多种可能情况,不能一概而论时,必须将可能出现的所有情况分别讨论得出各种情况下相应的结论,这种处理问题的思维方法称为“分类思想”.例:在数轴上表示数a和﹣2的两点之间的距离是3,求a的值.解:如图,当数a表示的点在﹣2表示的数的左边时,a=﹣2﹣3=﹣5当数a表示的点在﹣2表示的数的右边时,a=﹣2+3=1所以,a=﹣5或1请你仿照以上例题的方法,解决下列问题(写出必要的解题过程)(1)同一平面内已知∠AOB=70°,∠BOC=15°,求∠AOC的度数.(2)已知ab>0,求+的值.(3)小明去商店购买笔记本,某笔记本的标价为每本2.5元,商店搞促销:购买该笔记本10本以下(包括10本)按原价出售,购买10本以上,从第11本开始按标价的50%出售.①若小明购买x本笔记本,需付款多少元?②若小明两次购买该笔记本,第二次买的本数是第一次的两倍,费用却只是第一次的1.8倍,这种情况存在吗?如果存在,请求出两次购买的笔记本数;如果不存在,请说明理由.2.如图,AB=12cm,点C是线段AB上的一点,BC=2AC.动点P从点A出发,以3cm/s 的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动.设它们同时出发,运动时间为ts.当点P与点Q第二次重合时,P、Q两点停止运动.(1)AC=cm,BC=cm;(2)当t为何值时,AP=PQ;(3)当t为何值时,PQ=1cm.3.如图,M是定长线段AB上一定点,点C在线段AM上,点D在线段BM上,点C、点D分别从点M、点B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示.(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值;(2)若点C、D运动时,总有MD=2AC,直接填空:AM=AB;(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.4.如图,射线OM上有三点A,B,C,满足OA=20cm,AB=60cm,BC=10cm,动点P从O点出发沿OM方向以每秒1cm的速度匀速运动;动点Q从点C出发,在线段CO上向点O匀速运动(点Q运动到点O时,立即停止运动),点P,Q同时出发.(1)当点P与点Q都同时运动到线段AB的中点时,求点Q的运动速度;(2)若点Q运动速度为每秒3cm时,经过多少时间P,Q两点相距70m;(3)当PA=2PB时,点Q运动的位置恰好是线段AB的三等分,求点Q的速度.5.如图,直线l上有A、B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.(1)OA=cm,OB=cm.(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP﹣OQ=8.②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M 行驶的总路程为cm.6.已知:如图,线段AB=12cm,M是AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿线段BA向左运动,在运动过程中,点C始终在线段AM上,点D始终在线段BM上,点E、F分别是线段AC和MD的中点.(1)当点C、D运动了2s,求EF的长度;(2)若点C、D运动时,总有MD=3AC,求AM的长.7.如图,AB=12cm,点C在线段AB上,AB=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=cm,BC=cm;(2)当t=秒时,点P与点Q第一次重合;当t=秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?8.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s 的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.9.如图所示,线段AB=6cm,C点从P点出发以1cm/s的速度沿AB向左运动,D点从B出发以2cm/s的速度沿AB向左运动(C在线段AP上,D在线段BP上)(1)若C,D运动到任意时刻都有PD=2AC,求出P在AB上的位置;(2)在(1)的条件下,Q是直线AB上一点,若AQ﹣BQ=PQ,求PQ的值;(3)在(1)的条件下,若C,D运动了一段时间后恰有AB=2CD,这时点C停止运动,点D继续在线段PB上运动,M,N分别是CD,PD的中点,求出MN的值.10.如图,C为线段AB的中点,点P从点A出发以acm/s的速度沿AB向点B运动,同时,点Q从点B出发以bcm/s(b<a)的速度沿BA向点A运动,点Q运动的时间为ts,点P与点Q在点D相遇,AB=6CD.(1)求的值;(2)点E为BQ的中点,当t=4(点P,Q在运动的过程中)时,PB=44cm,CE=26cm,求AB长及a值;(3)在(2)的条件下,当点P与点E相遇时,点P停止运动,在点P与点E相遇的时刻,点R从点D出发以3cm/s的速度沿DA向A运动,点P停止运动后,当t为何值时,RQ=PE?参考答案1.解:(1)∵∠AOB=70°,∠BOC=15°,∴当OC在∠AOB内部时,∠AOC=∠AOB﹣∠BOC=55°,当OC在∠AOB外部时,∠AOC=∠AOB+∠BOC=85°;(2)∵ab>0,∴当a>0,b>0时,+=+=1+1=2,当a<0,b<0时,+=+=﹣1﹣1=﹣2;(3)①当0≤x≤10时,需付2.5x元,当x>10时,需付款为:10×2.5+(x﹣10)×2.5×50%=1.25x+12.5(元);②当第一次购买10本以下,第二次购买超过10本时,列方程为:10x×1.8=2.5×10+0.5×2.5(2x﹣10),解得:x=0.8(不合题意);当第一次和第二次都超过10本时,列方程为:[2.5×10+0.5×2.5(x﹣10)]×1.8=2.5×10+0.5×2.5(2x﹣10),解得:x=40,则2x=80.答:这种情况存在,第一次购书40本,第二次购书80本.2.解:(1)∵AB=12cm,点C是线段AB上的一点,BC=2AC,∴AC+BC=3AC=AB=12cm,∴AC=4cm,BC=8cm;(2)由题意可知:AP=3t,PQ=4﹣(3t﹣t),则3t=4﹣(3t﹣t),解得:t=.答:当t=时,AP=PQ.(3)∵点P、Q相距的路程为1cm,∴(4+t)﹣3t=1(相遇前)或3t﹣(4+t)=1(第一次相遇后),解得t=或t=,当到达B点时,第一次相遇后点P、Q相距的路程为1cm,3t+4+t=12+12﹣1解得:t=.答:当t为,,时,PQ=1cm.3.解:(1)当点C、D运动了2s时,CM=2cm,BD=4cm,∵AB=10cm,CM=2cm,BD=4cm,∴AC+MD=AB﹣CM﹣BD=10﹣2﹣4=4cm;(2)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM=AB.故答案为;(3)当点N在线段AB上时,如图.∵AN﹣BN=MN,又∵AN﹣AM=MN,∴BN=AM=AB,∴MN=AB,即=;当点N在线段AB的延长线上时,如图.∵AN﹣BN=MN,又∵AN﹣BN=AB,∴MN=AB,即=1.综上所述,=或1.4.解:(1)设点Q的运动速度为xcm/s,根据题意,得=,即50=,解得x=0.8cm/s.(2)∵OA+AB+BC=90cm>70cm,∴分两种情况,①Q在P的右侧,经过时间为=5s.②Q在P的左侧,∵点Q运动到点O时,立即停止运动,∴Q运动的时间为=30s,两者相距70cm时运动的时间为=70s.综合①②得知,经过5秒和70秒的P、Q两点相距70m.(3)PA=2PB,分两种情况,①当点P在A、B两点之间时,∵PA=2PB,∴PA=AB=40cm,此时运动的时间为=60s,∵点Q运动的位置恰好是线段AB的三等分,∴BQ=AB=20cm,或BQ=AB=40cm,点Q的运动速度为=0.5cm/s或cm/s.②当点P在线段AB的延长线上时,∵PA=2PB,∴PA=2AB=120cm,此时运动的时间为=140s,∵点Q运动的位置恰好是线段AB的三等分,∴BQ=AB=20cm,或BQ=AB=40cm,点Q的运动速度为=cm/s或cm/s.综合①②得知,当点P在A、B两点之间时,点Q的运动速度为0.5cm/s或cm/s,;当点P在线段AB的延长线上时,点Q的运动速度为cm/s或cm/s.5.解:(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设CO=x,则AC=16﹣x,BC=8+x,∵AC=CO+CB,∴16﹣x=x+8+x,∴x=,∴CO=.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t=,当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,∴t=或16s时,2OP﹣OQ=8.②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.6.解:(1)当点C、D运动了2s,MC=2cm,BD=6cm,∴AC+DM=AB﹣MC﹣BD=12﹣2﹣6=4(cm),又∵点E、F分别是线段AC和MD的中点,∴AC=2EC,MD=2MF,∴2EC+2MF=4,即EC+MF=2cm,∴EF=EC+CM+MF=2+2=4 (cm),答:EF的长度为4cm;(2)由MD=3AC可设AC=xcm,MD=3xcm,设运动时间为t秒,则MC=tcm,BD=3tcm,∴AM=x+t(cm),AB=AC+CM+MD+BD=x+t+3x+3t=4x+4t(cm),∵AB=12,∴4x+4t=12,∴x+t=3,即AM=3cm,答:AM的长为3cm.7.解:(1)∵AB=12cm,AB=3BC∴BC=4,AC=8故答案为:8;4.(2)设运动时间为t,则AP=4t,CQ=t,由题意,4t﹣t=8,解得t=;当点P与点Q第二次重合时有:4t﹣12+8+t=12,解得t=.故当t=秒时,点P与点Q第一次重合;当t=秒时,点P与点Q第二次重合.故答案为:;.(3)在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:①点P与点Q第一次重合之前,可得:2×4t=8+t,解得t=;②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,可得:2×[12﹣(4t﹣12)]=12﹣(t﹣4),解得t=;③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,可得:2×(4t﹣24)=12﹣(t﹣4),解得t=.故当t为秒时,AP=PQ.8.解:(1)根据C、D的运动速度知:BD=2,PC=1,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(2)根据C、D的运动速度知:BD=4,PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(3)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处,即AP=4cm;(4)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又∵AQ=AP+PQ,∴AP=BQ,∴PQ=AB=4cm;当点Q'在AB的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm.综上所述,PQ=4cm或12cm.9.解:(1)根据C、D的运动速度知:BD=2PC.∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图1:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又∵AQ=AP+PQ,∴AP=BQ,∴PQ=AB=2cm;当点Q'在AB的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=6cm.综上所述,PQ=2cm或6cm.(3)MN的值不变,MN的值是cm.理由:如图2,当C点停止运动时,有CD=AB=3cm,∴AC+BD=AB=3cm,∴AP﹣PC+BD=AB=3cm,∵AP=AB=2cm,PC=1cm,∵M是CD中点,N是PD中点,∴MN=MD﹣ND=CD﹣PD=CP=cm.10.解:(1)∵C为线段AB的中点,AB=6CD,∴AC=BC=AB=3CD.∵点P从点A出发以acm/s的速度沿AB向点B运动,同时,点Q从点B出发以bcm/s (b<a)的速度沿BA向点A运动,点Q运动的时间为ts,点P与点Q在点D相遇,∴AD=at,BD=bt,∴======;(2)∵点E为BQ的中点,∴BE=BQ.当t=4时,PB=AB﹣AP=AB﹣4a=AB﹣8b=44①,CE=BC﹣BE=AB﹣×4b=AB﹣2b=26②,①与②联立,解得AB=60,b=2,则AB=60cm,a=2b=4cm/s;(3)当AB=60cm,a=4cm/s,b=2cm/s,设点P与点E相遇时所用时间为xs,∵AP+BE=AB,∴4x+×2x=60,解得x=12,BP=BE=12.点P与点Q在点D相遇所用时间为:=10(s),此时BD=2×10=20(cm),分两种情况:①R在Q的后面时,如图1.∵BR=BD+DR=20+3(t﹣12)=3t﹣16,∴RQ=BQ﹣BR=2t﹣(3t﹣16)=16﹣t,PE=BE﹣BP=×2t﹣12=t﹣12.∵RQ=PE,∴16﹣t=(t﹣12),解得t=;②R在Q的前面时,如图2.∵BR=BD+DR=20+3(t﹣12)=3t﹣16,∴RQ=BR﹣BQ=3t﹣16﹣2t=t﹣16,PE=BE﹣BP=×2t﹣12=t﹣12.∵RQ=PE,∴t﹣16=(t﹣12),解得t=20.故当t为s或20s时,RQ=PE.。
初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。
七年级数学上册 第四章 一元一次方程 4.3 用一元一次方程解决问题 用一元一次方程解决问题的例题解

用一元一次方程解决问题的例题解析一元一次方程是最简单、最基本的方程,不仅是学习其他方程的基础,同时也是中考命题的热点,更是解决日常生活中简单问题的简单方法.请看:一.居民用水多少立方米?例1、为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m ,则应收水费:264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m ,则应收水费______元;(2)若该户居民3、4月份共用水315m (4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?分析:本题部分信息以图表信息给出,因此正确理解图表是解决问题的关键.由图表可知,随每月用水量的不同,水费的计费方式随之变化,需分段计算.(1)中,用水量312.5m ,应分三段分别计算再求和.(2)中,两个月共用水315m ,则需对三月份的用水量的多少分情况讨论.再结合4月份用水量超过3月份这一条件对结果作出合理判断.解:(1)应收水费()()48105.128610462=-⨯+-⨯+⨯元;(2)当三月份用水不超过36m时,设三月份用水.3xm 则2x+2×6+4×4+8(15-x-10)=44, 解之得x=4<6,符合题意.当三月份用水量超过36m ,但不超过310m 时,设三月份用水.3xm则(),44101584462)6(462=--⨯+⨯+⨯+-+⨯x x 解之得x=3<6(舍去).所以三月2 份用水34m ,四月份用水311m .二.在哪一家超市购买更省钱?例2、某同学在A 、B 两家超市发现他看中的英语学习机的单价相同,书包单价也相同,英语学习机和书包单价之和是452元,且英语学习机的单价比书包单价的4倍少8元.(1)求该同学看中的英语学习机和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打7.5折销售;超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的英语学习机、书包,那么在哪一家购买更省钱? 分析:书包和学习机的价钱之和为列方程的等量关系,对于打折和返券可分别进行计算再进行计算.解:(1)设书包的单价为x 元,则英语学习机的单价为(4x-8)元.根据题意,得4x-8+x=452,解得x=92.4x-8=.3608924=-⨯答:该同学看中的英语学习机单价为360元,书包单价为92元.(2)在超市A 购买英语学习机与书包各一件,需花费现金:452×75%=339(元).因为339<400,所以可以选择超市A 购买.在超市B 可先花费现金360元购买英语学习机,再利用得到的90元购物券,加上2元现金购买书包,总计共花费现金:360+2=362(元);因为362<400,所以也可以选择在B 超市购买.但是,由于362>339,所以在A 超市购买英语学习机与书包更省钱.小结:列方程解应用题,关键是寻找题中的等量关系.难点是将实际问题转化为单纯的数学问题,通过对数学问题的解决获得对实际问题的解决.。
七年级数学上册3.3一元一次方程的解法典型例题素材湘教版(new)

《一元一次方程的解法》典型例题例1 解方程:89210+-=+-x x例2 解方程:)2(3)3(2+=-x x例3 解方程:7722121-=--x x 例4 解方程:6233)5(54--+=--+x x x x 例5 解方程:5303.02.05.05.01.24.0=--+x x 例6 下面解题过程正确吗?如果正确,请指出每一步的依据;如果不正确,请指出错在哪里,并给出正确的解答.(1)解方程413x x += 两边都乘以12,得 134=-x x ∴1=x(2)解方程83243212x x --+= 去分母,得 x x 326220--+=移项,得 202623--=-x x合并同类项,得 16-=x例7 如果一个正整数的2倍加上18等于这个正整数与3之和的n 倍,试求正整数n 的值.例8 解方程234=-+-x x例9 解方程.132=-+-x x参考答案例1 分析 这个方程可以先移项,再合并同类项.解 移项,得.28910-=+-x x合并同类项,得6=-x把系数化为1,得6-=x说明:初学解方程者应该进行检验,就是把求得的方程的解代入原方程中,看方程的左右两边是否相等,如果相等则是方程的解,否则就不是方程的解.则说明我们的解题过程有误.当熟练之后可以不进行检验,以后我们会知道一元二次方程不会产生增根.例2 分析 这个方程含有括号,我们应先去掉括号,然后再进行合并同类项等.解 去括号,得.6362+=-x x移项,得6632+=-x x合并同类项,得12=-x把系数化为1,得.12-=x说明:在去括号时要注意符号的变化,同时还应该注意要用括号前的数去乘括号内的每一项,避免出现漏乘的现象.例3 分析 该方程中含有分母,一般我们是要先去掉分母,然后再按其他步骤进行.解 去分母,得217)2(3)2(21⨯-⨯=--x x去括号,得1476221-=+-x x移项,得2211476---=--x x合并同类项,得1707-=-x把系数化为1,得.7224=x说明:初学者在去括号时,如果分子是两项的,应该用括号把分子括上以避免出现符号的错误.例4 分析 在这个方程中既有括号又有分母,先做哪一步这应因题而定.解 去分母,得)2(5)3(10)5(30)4(6--+=--+x x x x去括号,得105301015030246+-+=+-+x x x x移项,得150241*********--+=+--x x x x合并同类项,得13429-=-x把系数化为1,得.29184=x 说明:要灵活应用解方程的步骤,在熟练之后这些解方程的步骤可以省略不写.例5 分析 在这个方程中既有小数又有分数,一般是先把分子分母中的小数都化成整数再进行计算.解 原方程可化为:53320505214=--+x x 去分母,得9)2050(5)214(3=--+x x去括号,得91002506312=+-+x x移项并合并同类项,得196112=x把系数化为1,得431=x 说明:在解方程时解方程的步骤可以灵活使用,如在去括号后发现项比较多时,并有同类项可以合并,也可以先合并一次同类项然后再移项.例6 分析 第(1)小题方程中有两项有分母,另一项没有分母,在去分母时应注意不要漏乘没有分母的项.第(2)小题的各项,尤其是右边两项比较复杂,去分母时必须小心谨慎,防止出错.解 (1)错,错在去分母时漏乘了方程中间的“1”,正确解答如下:去分母,得 x x 3124+=移项 12 1234==-x x x(2)错,错在将方程的两边乘以8后,832x --这一项应化为)32(x --而不是x 32--,正确解答如下:去分母,得 )32()3(220x x --+=去括号,得 x x 326220+-+=移项,得 516 165=-=-x x 说明:对于比较复杂的方程,求出解后要检验一下看是不是原方程的解,这样有利于减少解方程的错误.在解方程的过程中,认真、细致是解题的关键.例7 解 设已知的正整数为a ,依题意得)3(182+=+a n a ,即n a n 318)2(-=-, ∴.2)6(3--=n n a 因为a 和n 都是正整数,所以.62<<n当3=n 时,9=a ,36)39(31892=+⨯=+⨯;当4=n 时,3=a ,24)33(41832=+⨯=+⨯;当5=n 时,1=a ,.20)31(51812=+⨯=+⨯答:3=n ,或4=n ,或.5=n说明:本例的解法用到了分类讨论.例8 分析 对于4-x 来说,当4>x 时,44-=-x x ,当4<x 时,x x -=-44,这二者之间的区别显然是很大的,不能混为一谈.同样,3-x 这个式子在3>x 时与在3<x 时也有很大区别.注意到以上情况,是因为我们感到只有把题目中的绝对值符号去掉,才能解出方程.因此,对本题,可以分为434≤≤>x x 、和3<x 三种情况去掉绝对值符号来解.解 当4>x 时,原方程可化为2)3()4(=-+-x x , 解得.29=x 当43≤≤x 时,原方程可化为2)3()4(=-+-x x ,这个方程无解.当3<x 时,原方程可化为2)3()4(=-+-x x 解得.25=x 所以,原方程的解是29=x ,或.25=x 说明:①从上面解题过程可以看出,带绝对值符号的方程,可以转化为不带绝对值符号的方程来解,而分类思想是实现这样的转化的法宝.②上面解题过程有读者不易察觉的一步,这就是检验.本题检验的具体做法是:在以4>x 为前提,求得29=x 之后,要看一看29是否与4>x 相符.在以3<x 为前提,解出25=x 之后,再看一看25与3<x 是否相符. ③解带有绝对值符号的方程,检验一步不要求书写,但不能以为这一步可有可无.例9 分析 对这类方程的常规解法,用分类讨论去绝对值. 从绝对值的几何意义出发,2-x 和3-x 分别表示数轴上表示x 的点到表示2的点与表示3的点之间的距离.如图所示,设数轴上表示2的点为A,表示3的点为B,那么示x的点不会在点A的左边或点B的右边.解方程1x的几何意义是数轴上表示x的点到表示2的点的距离与表示3的-x+2=-3点的距离之和为1.设数轴上表示2的点为A,表示3的点为B,则线段AB上的点都符合要求,线段AB之外的点均不符合要求.所以,这个方程的解是3≤x.2≤说明:从解方程来说,上面解法并不很重要,但从体会数学中的数形结合思想来说,则值得同学们拍案叫绝.这也是解不定方程的实例.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
《好题》七年级数学上册第三单元《一元一次方程》-解答题专项知识点总结(含答案解析)

一、解答题1.一种商品每件成本a 元,按成本增加22%标价.(1)每件标价多少元?(2)由于库存积压,实际按标价的九折出售,每件是盈利还是亏损?盈利或亏损多少元? 解析:(1)1.22a ;(2)盈利0.098a【分析】(1)根据:标价=成本()122%⨯+,列出代数式,再进行整理即可;(2)根据:售价=标价0.9⨯,利润=售价-成本,列出代数式,即可得出答案.【详解】(1)∵每件成本a 元,原来按成本增加22%定出价格,∴每件售价为()122% 1.22a a +=(元);(2)现在售价:1.220.9 1.098a a ⨯=(元);每件还能盈利:1.0980.098a a a -=(元);∴实际按标价的九折出售,盈利0.098a (元)【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到等量关系,注意把列出的式子进行整理.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元. 解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x 的值,得出答案.试题设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元, 根据题意得:50%x+60%(150﹣x )=80,解得:x=100,150﹣100=50(元). 答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元. 3.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?解析:成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x 的值,根据盈利=售价-进价即可求得答案.设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.4.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x个家长,则有(15﹣x)个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x个家长,(15﹣x)个学生,根据题意得:100x+100×0.8(15﹣x)=1400,解得:x=10,15﹣x=5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.5.某同学在解方程21132y y a-+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y=2,试求a的值及此方程的解.解析:y=-3.【分析】根据题意得到去分母结果,把y=2代入求出a的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.解下列方程:(1)15(x+15)=1231-(x-7).(2)2110121364x x x-++-=-1.解析:(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x+15)=1231-(x-7).去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项及合并同类项,得16x=-5.系数化为1,得x=-5 16.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.7.解下列方程(1)5m-8m-m=3-11;(2)3x+3=2x+7解析:(1)m=2;(2)x=4【分析】(1)先合并同类项,再化系数为1解一元一次方程即可;(2)先移项,再合并同类项解一元一次方程即可.【详解】(1)合并同类项,得:﹣4m=﹣8,系数化为1,得: m=2,(2)移项,得:3x ﹣2x=7﹣3,合并同类项,得: x=4.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法及步骤是解答的关键. 8.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13, 解得:x=138. 【点睛】 此题考查解一元一次方程,解题关键在于掌握方程的解法.9.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值. 解析:623m =-【分析】 分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可.【详解】 解:357644m x m x +=-, 整理得:2(310)321m x m x +=- 313x m =- 解得:331m x =-, 4(37)1935x x -=-4747x =1x =由题意得:311 31m--=解得:623 m=-【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m的式子表示x,然后根据题意列出方程.10.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.11.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”解析:x=60【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则65234x x x ++= 解得:x =60;∴有60个客人.【点睛】 本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.12.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.解析:(1)134元,520元;(2)54元;(3)见解析【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x 元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.13.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?解析:(1)0.6;122.5.(2)0.9x﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.14.解方程:2x13+=x24+-1.解析:x=-2.【分析】按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可.【详解】去分母得:4(2x+1)=3(x+2)-12,去括号得:8x+4=3x+6-12,移项得:8x-3x=6-12-4,合并同类项得:5x=-10,系数化为1得:x=-2.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.15.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.解析:(1)B所对应的数为2;(2)A,B两点间距离是12个单位长度;(3)经过4秒或8秒长时间A,B两点相距4个单位长度.【分析】(1)根据左减右加可求点B所对应的数;(2)先根据时间=路程÷速度,求出运动时间,再根据路程=速度×时间求解即可;(3)分两种情况:运动后的B点在A点右边4个单位长度;运动后的B点在A点左边4个单位长度;列出方程求解即可.【详解】解:(1)﹣2+4=2.故点B所对应的数为2;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.【点睛】本题考查了数轴,行程问题的数量关系的运用,解答时根据行程问题的数量关系列出方程是解决问题的关键.16.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.解析:大正方形的面积是36cm2【分析】设小正方形的边长为x,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.【详解】设小正方形的边长为x,则大正方形的边长为4+(5−x)cm或(x+1+2)cm,根据题意得:4+(5−x)=(x+1+2),解得:x=3,∴4+(5−x)=6,∴大正方形的面积为36cm2.答:大正方形的面积为36cm2.【点睛】本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.17.已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程3332my m x--=的解.解析:214y=-.【分析】根据方程可直接求出x的值,代入另一个方程可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【详解】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入33 32my m x --=得:3(2)2332y----=,解得:214y=-.【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.18.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?解析:(1)经过这7天,仓库里的水泥减少了57吨;(2)7天前仓库里存有水泥357吨;(3)这7天要付(58a+115b)元装卸费.【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【详解】(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵300+57=357(吨),∴那么7天前,仓库里存有水泥357吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a;出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b,∴这7天要付(58a+115b)元装卸费.【点睛】本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费.19.已知关于x 的方程3(2)x x a -=- 的解比223x a x a +-= 的解小52 ,求a 的值. 解析:a=1【分析】分别求出两个方程的解,然后根据关系列出等式,求出a 的值即可.【详解】解:∵3(2)x x a -=-, 解得:62a x -=; ∵223x a x a +-=, 解得:5x a =, ∴65522a a -=-, 解得:1a =;∴a 的值为1.【点睛】 本题考查了解一元一次方程,以及一元一次方程的解,解题的关键是正确求出一元一次方程的解,从而列出等式求出a 的值.20.为鼓励居民节约用电,某市试行每月阶梯电价收费制度,具体执行方案如下:档次每户每月用电量(度) 执行电价(元/度) 第一档小于或等于200 0.5 第二档大于200且小于或等于450时,超出200的部分 0.7 第三档 大于450时,超出450的部分 1(1)一户居民七月份用电300度,则需缴电费__________元.(2)某户居民五、六月份共用电500度,缴电费290元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于450度.①请判断该户居民五、六月份的用电量分别属于哪一个档次?并说明理由.②求该户居民五、六月份分别用电多少度?解析:(1) 170元;(2)①五月份用电量在第一档,六月份用电量在第二档. ②设五、六月份分别用电100度、400度.【分析】(1)根据阶梯电价收费制度,七月份用电300度属于第二档,所以应缴电费200×0.5+100×0.7=170(元);(2)①分情况进行讨论,从而确定五六月份的用电量分别位于哪一档;②由①的结论,设五月份用电x 度,列方程求解即可.【详解】解:(1) ∵200<300小于450∴应缴电费:200×0.5+100×0.7=170(元)故答案为:170(2)①因为两个月的总用电量为500度,所以每个月用电量不可能都在第一档;假设该用户五、六月每月用电均超过200度,此时的电费共计200×0.5+200×0.5+100×0.7=270(元),而270<290,不符合题意;又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档.②设五月份用电x 度,则六月份用电(500-x)度,根据题意,得0.5x+200×0.5+0.7×(500-x-200)=290解得x=100,500-x=400.答:该户居民五、六月份分别用电100度、400度.【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)根据收费标准列式计算;(2)分情况讨论用电量,列出关于x 的一元一次方程.21.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少?解析:6人【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人.【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键. 22.一项工程,甲队独做10h 完成,乙队独做15h 完成,丙队独做20h 完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h ,问甲队实际工作了几小时?解析:3【分析】设三队合作时间为x ,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh ,乙、丙两队合作为(6)x h -,总工程量为1, 由题意得:11111()()(6)11015201520x x ++++-=, 解得:3x =,答:甲队实际工作了3小时.【点睛】 本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.23.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★.例如:(1,2)(3,4)23142=⨯-⨯=★.根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 解析:(1)-5;(2)2;(3)k=0,-1,-2,-3.【分析】(1)原式利用规定的运算方法计算即可求出值;(2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x ,然后根据k 是整数求解即可.【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5;故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9,整理得:5x =10,解得:x =2,故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数,∴(2x−1)k−(−3)(x +k )=3+2k ,∴(2k +3)x =3, ∴323x k =+, ∵k 是整数, ∴2k +3=±1或±3,∴k =0,−1,−2,−3.【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键.24.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?解析:大和尚有25人,小和尚有75人【分析】设大和尚有x 人,则小和尚有(100x -)人,根据“3×大和尚人数+小和尚人数÷3=100”,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100x -)人, 根据题意得:10031003x x -+= 解得:25x =,则10075x -=,答:大和尚有25人,小和尚有75人.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 25.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为xm ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积;方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x =时,通过计算说明哪种方案更优惠,优惠多少元.解析:(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可;【详解】解:(1)该户型商品房的面积为: 2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元; 按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元);方案二总金额为2280009500247000x +=(元).方案二比方案一优惠2500002470003000-=(元).所以方案二更优惠,优惠3000元.【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积.26.解方程32324343x x -=-. 解析:1x =【分析】方程去分母,去括号,移项合并,将y 系数化为1即可求出解.【详解】 解:原方程可化为332204433x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即32(1)(1)043x x -+-=. 将(1)x -看作一个整体进行合并,得32(1)043x ⎛⎫+-= ⎪⎝⎭,所以10x -=,移项,得1x =.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.27.大明共有4800元,他将一部分钱按活期存了一年,剩下的钱买了企业债券,一年后共获利24.8元,知活期储蓄的年利率是0.35%,企业债券的年利率是0.6%,则大明存活期和买债券各用了多少元?解析:存活期用了1600元,买债券用了3200元【分析】设存活期用了x 元,则买债券用了(4800)x -元,由题意列式求解即可.【详解】解:设存活期用了x 元,则买债券用了(4800)x -元由题意,得0.35%0.6%(4800)24.8x x +-=.解得1600x =.48003200x -=.答:大明存活期用了1600元,买债券用了3200元.【点睛】本题主要考查了实际问题与一元一次方程,根据题意找出未知量,列方程是解题的关键. 28.某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底?(2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?解析:(1)80个(2)15张(3)6张;9张【分析】(1)列方程求解即可得到结果;(2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多,代入值计算即可;【详解】解:(1)设一张这样的铝片可做x 个瓶底.根据题意,得9001200(20)x x =-.解得80x =.2060x -=.答:一张这样的铝片可做80个瓶底.(2)12001580=(张) 答:这些铝片一共有15张.(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多.根据题意,得26080(15)a a ⨯⋅=-.解得6a =.则159a -=.答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多.【点睛】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.29.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且24(1)0a b ++-=,现将A ,B 之间的距离记作BA ,定义AB a b .(1)求,a b 的值;(2)求AB 的值;(3)设点P 在数轴上对应的数是x ,当2PA PB -=时,求x 的值解析:(1)-4,1;(2)5;(3)12x =- 【分析】(1)根据非负数的和为0,各项都为0,求出a ,b 的值即可;(2)根据数轴上两点间的距离公式AB a b 计算即可求解;(3)分三种情况解题,当P 在点A 左侧时,当P 在点B 右侧时,当P 在A 、B 之间时,再利用AB a b 解答即可.【详解】解:(1)∵24(1)0a b ++-=, ∴4010a b +=⎧⎨-=⎩, 解得:41a b =-⎧⎨=⎩, (2))∵41a b =-⎧⎨=⎩, ∴4155AB a b ; (3)当P 在点A 左侧时,()52,PA PB PB PA AB -=--=-=-≠ 当P 在点B 右侧时,52PA PB AB -==≠.∴上述两种情况的点P 不存在.当P 在A 、B 之间时,()44,11,PA x x PB x x =--=+=-=-∵2PA PB -=,∴()412x x +--=.∴12x =-, 即x 的值为12-. 【点睛】 本题考查了绝对值问题,有理数的乘方的意义,一元一次方程的解法,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.30.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a (如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册方程思想应用典型例题
许多问题的解决都需要转化为方程求解。
一、有理数方面的问题
1、绝对值等于8的数是 。
分析:依题意得8=x ,即8,8-==x x 或
2、12=-x ,则=x 。
分析:依题意得方程:12,12-=-=-x x 或
3、a 与3互为相反数,则a = 。
分析:依题意得方程:03=+a
二、整式方面的问题
1、若单项式143+n ab 与() 1239-+-n ab 是同类项,则n 的值是( )
A 、-1
B 、0
C 、7
D 、2
分析:根据同类项的概念:相同字母的指数相同,得到1)23(14-+=+n n 解方程
练习:1、若m y x 32与23y x n -是同类项,则m+n= ,分析:根据同类项的概念,可得到方程: 和 ,从而求出m,n 的值。
2、如果n y x 23与312y x n --是同类项,那么m= ,n= 。
三、一元一次方程方面的问题
1、关于x 的方程()232-=-x a x 的解为1-=x ,则a 的值为( )
A 、5
B 、-1
C 、-5
D 、 3
5- 分析:方程()232-=-x a x 中实际上有两个未知数a x ,,把解1-=x ,代入方程中就得到以a 为未知数的一元一次方程:)21()1(32--=-⨯-a ,再解方程得到a 的值。
练习:已知2x =-是方程240x m +-=的解,则m 的值是_________
已知关于x 的方程3a -x= x 2 +3的解是4, 则a=_________
四、图形的初步认识方面的问题
1、一个角的补角是这个角的4倍,求这个角的度数.
分析:前提条件知道补角的定义。
设这个角的度数为x,则它的补角为180-x,根据题意,可列出一元一次方程来求解。
解:设这个角是x度,则它的补角是(180-x)度,
根据题意,得180-x=4x,x=36.
练习:1、一个角是它的余角的2倍,这个角的度数是_________
2、一个角是它的补角的2倍,这个角的度数是_________
3、一个角的补角是它的余角的3倍,这个角的度数是________
2、两个角的大小之比是7︰3,他们的差是72°,则这两个角的关系是(). (A)相等(B)互余(C)互补(D)无法确定
分析:根据“他们的差是72°,”得到相等关系:大角-小角=72,设大角为7x,小角为3x,则得到7x-3x=72,求得x,再分别得到7x,3x的度数,确定关系。
练习:两个角的大小之比是5︰1,他们的差是120°,则这两个角的关系是______ 两个角的大小之比是2︰1,且互为余角,则这两个角的大小分别是____,____ 两个角的大小之比是3︰1,且互为补角,则这两个角的大小分别是____,____
3、线段AB上有一点C,使得AC︰CB=3︰2,已知AB=15,则AC、BC各为多少?
4、直线AB上有一点C,使得AC︰CB=3︰2,已知AB=15,则AC、BC各为多少?
五、各类典型的应用题(专题复习)。