数学必修2---直线与方程典型例题(精)
(人教版)高中数学必修二-知识点、考点及典型例题解析(全)

必修(bìxiū)二第一章空间(kōngjiān)几何体知识点:1、空间(kōngjiān)几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥(yuánzhuī)、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些(zhèxiē)面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、长方体的对角线长;正方体的对角线长3、球的体积公式:,球的表面积公式:4、柱体,锥体,锥体截面积比:5、空间几何体的表面积与体积⑴圆柱侧面积;⑵圆锥(yuánzhuī)侧面积:典型(diǎnxíng)例题:★例1:下列命题(mìng tí)正确的是( )A.棱柱(léngzhù)的底面一定是平行四边形B.棱锥(léngzhuī)的底面一定是三角形C.棱柱被平面分成的两部分可以都是棱柱D.棱锥被平面分成的两部分不可能都是棱锥★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的()A 倍B 倍C 2倍D 倍★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是()A.上部是一个圆锥,下部是一个圆柱B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱D.上部是一个三棱锥,下部是一个圆柱正视侧视俯视★★例4:一个(yīɡè)体积为的正方体的顶点(dǐngdiǎn)都在球面上,则球的表面积是A.B. C. D.二、填空题★例1:若圆锥(yuánzhuī)的表面积为平方米,且它的侧面展开图是一个半圆,则这个(zhè ge)圆锥的底面的直径为_______________.★例2:球的半径(bànjìng)扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.第二章点、直线、平面之间的位置关系知识点:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
高中数学直线与方程精选题目(附答案)

高中数学直线与方程精选题目(附答案)高中数学直线与方程精选题目(附答案)1.经过A (2,0),B (5,3)两点的直线的倾斜角为( ) A .45° B .135° C .90°D .60°解析:选A ∵A (2,0),B (5,3),∴直线AB 的斜率k =3-05-2=1. 设直线AB 的倾斜角为θ(0°≤θ<180°),则tan θ=1,∴θ=45°.故选A.2.点F (3m +3,0)到直线3x -3my =0的距离为( ) A. 3 B.3mC .3D .3m解析:选A 由点到直线的距离公式得点F (3m +3,0)到直线3x -3my =0的距离为3·3m +33m +3= 3.3.和直线3x -4y +5=0关于x 轴对称的直线方程为( ) A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0D .-3x +4y +5=0解析:选A 设所求直线上的任一点为(x ,y ),则此点关于x 轴对称的点的坐标为(x ,-y ),因为点(x ,-y )在直线3x -4y +5=0上,所以3x +4y +5=0.4.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D 依题意得:直线3x -y =33的斜率为3,∴其倾斜角为60°.∴-3n =-3,-mn=tan 120°=-3,得m =3,n =1.5.直线y =ax +1a的图象可能是( )解析:选B 根据斜截式方程知,斜率与直线在y 轴上的截距同正负. 6.已知两点A (3,0),B (0,4),动点P (x ,y )在线段AB 上运动,则xy ( ) A .无最小值且无最大值 B .无最小值但有最大值 C .有最小值但无最大值D .有最小值且有最大值解析:选D 线段AB 的方程为x 3+y4=1(0≤x ≤3),于是y =41-x 3(0≤x ≤3),从而xy =4x 1-x 3=-43x -322+3,显然当x =32∈[0,3]时,xy 取最大值为3;当x =0或3时,xy 取最小值0.7.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且它们间的距离是5,则m +n =( )A .0B .1C .-1D .2解析:选A 由题意,所给两条直线平行,∴n =-2.由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),∴m +n =0. 8.若动点A(x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则线段AB 的中点M 到原点的距离的最小值为( )A .2 3B .3 3C .3 2D .4 2解析:选C 由题意知,M 点的轨迹为平行于直线l 1,l 2且到l 1,l 2距离相等的直线l ,故其方程为x +y -6=0,∴M 到原点的距离的最小值为d =62=3 2.9.直线l 过点(-3,0),且与直线y =2x -3垂直,则直线l 的方程为( ) A .y =-12(x -3)B .y =-12(x +3)C .y =12(x -3)D .y =12(x +3)解析:选B 因为直线y =2x -3的斜率为2,所以直线l 的斜率为-12.又直线l 过点(-3,0),故所求直线的方程为y =-12(x +3),选 B.10.直线l 过点A (3,4)且与点B (-3,2)的距离最远,那么l 的方程为( ) A .3x -y -13=0 B .3x -y +13=0 C .3x +y -13=0D .3x +y +13=0解析:选C 由已知可知,l 是过A 且与AB 垂直的直线,∵k AB =2-4-3-3=13,∴k l =-3,由点斜式得,y -4=-3(x -3),即3x +y -13=0.11.等腰直角三角形ABC 的直角顶点为C (3,3),若点A (0,4),则点B 的坐标可能是( ) A .(2,0)或(4,6) B .(2,0)或(6,4) C .(4,6)D .(0,2)解析:选A 设B 点坐标为(x ,y ),根据题意知?k AC ·k BC =-1,|BC |=|AC |,∴3-43-0×y -3x -3=-1,(x -3)2+(y -3)2=(0-3)2+(4-3)2,解得 x =2,y =0或x =4,y =6.12.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ) A .2x +3y -18=0B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0 解析:选D 依题意,设直线l :y -4=k (x -3),即kx -y +4-3k =0,则有|-5k +2|k 2+1=|k +6|k 2+1,因此-5k +2=k +6,或-5k +2=-(k +6),解得k =-23或k =2,故直线l 的方程为2x +3y -18=0或2x -y -2=0.13.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________. 解析:∵直线x -2y +5=0与直线2x +my -6=0互相垂直,∴12×-2m =-1,∴m =1. 答案:114.若x +ky =0,2x +3y +8=0和x -y -1=0三条直线交于一点,则k =________. 解析:∵直线x +ky =0,2x +3y +8=0和x -y -1=0三条直线交于一点,解方程组 2x +3y +8=0,x -y -1=0,得x =-1,y =-2,∴直线x +ky =0过点(-1,-2),解得k =-12.答案:-1215.若过点P (1-a,1+a )与点Q (3,2a )的直线的倾斜角是钝角,则实数a 的取值范围是________.解析:k =2a -(1+a )3-(1-a )=a -1a +2<0,得-2<1.<="" p="">答案:(-2,1)16.已知直线l 的斜率为16,且和坐标轴围成的三角形的面积为3,则直线l 的方程为________________.解析:设直线l 的方程为x a +y b =1,∴12|ab |=3,且-b a =16,解得a =-6,b =1或a =6,b =-1,∴直线l 的方程为x -6+y =1或x6-y =1,即x -6y +6=0或x -6y -6=0.答案:x -6y +6=0或x -6y -6=017.(本小题满分10分)已知直线l 的倾斜角为135°,且经过点P(1,1). (1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标.解:(1)∵k =tan 135°=-1,∴l :y -1=-(x -1),即x +y -2=0.(2)设A ′(a ,b ),则b -4a -3×(-1)=-1,a +32+b +42-2=0,解得a =-2,b =-1,∴A ′的坐标为(-2,-1).18.(本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5.解:设点P 的坐标为(a,0)(a >0),点P 到直线AB 的距离为 D.由已知,得S △ABP =12|AB |·d =12(3-1)2+(3-2)2·d =5,解得d =2 5. 由已知易得,直线AB 的方程为x -2y +3=0,所以d =|a +3|1+(-2)2=25,解得a =7或a =-13(舍去),所以点P 的坐标为(7,0).19.(本小题满分12分)已知直线l :y =kx +2k +1. (1)求证:直线l 恒过一个定点.(2)当-3<="" 的取值范围.="" 解:(1)证明:由y="" 轴上方,求实数k="" +1,得y="" +2).="" +2k="" -1=k="" =kx="">(2)设函数f (x )=kx +2k +1,显然其图象是一条直线(如图).若当-3<="">f (-3)≥0,f (3)≥0.即-3k +2k +1≥0,3k +2k +1≥0,解得-15≤k ≤1.所以实数k 的取值范围是-15,1. 20.(本小题满分12分)已知点A (m -1,2),B (1,1),C (3,m 2-m -1). (1)若A ,B ,C 三点共线,求实数m 的值; (2)若AB ⊥BC ,求实数m 的值.解:(1)因为A ,B ,C 三点共线,且x B ≠x C ,则该直线斜率存在,则k BC =k AB ,即m 2-m -22=1m -2,解得m =1或1-3或1+ 3.(2)由已知,得k BC =m 2-m -22,且x A -x B =m -2.①当m -2=0,即m =2时,直线AB 的斜率不存在,此时k BC =0,于是AB ⊥BC ;②当m -2≠0,即m ≠2时,k AB =1m -2,由k AB ·k BC =-1,得1m -2·m 2-m -22=-1,解得m =-3.综上,可得实数m 的值为2或-3.21.(本小题满分12分)直线过点P43,2且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线满足下列条件:①△AOB 的周长为12;②△AOB 的面积为6.若存在,求出方程;若不存在,请说明理由.解:设直线方程为x a +yb =1(a >0,b >0),由条件①可知,a +b +a 2+b 2=12.由条件②可得12ab =6.又直线过点P 43,2,∴43a +2b =1,联立,得a +b +a 2+b 2=12,12ab =6,43a +2b=1,解得?a =4,b =3.∴所求直线方程为x 4+y3=1.22.(本小题满分12分)已知点P (2,-1).(1)求过点P 且与原点O 的距离为2的直线的方程;(2)求过点P 且与原点O 的距离最大的直线的方程,并求出最大距离;(3)是否存在过点P 且与原点O 的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.解:(1)①当直线的斜率不存在时,方程x =2符合题意.②当直线的斜率存在时,设斜率为k ,则直线方程为 y +1=k (x -2),即kx -y -2k -1=0. 根据题意,得|2k +1|k 2+1=2,解得k =34.则直线方程为3x -4y -10=0.故符合题意的直线方程为x -2=0或3x -4y -10=0.(2)过点P 且与原点的距离最大的直线应为过点P 且与OP 垂直的直线.则其斜率k=2,所以其方程为y+1=2(x-2),即2x-y-5=0.最大距离为 5.(3)不存在.理由:由于原点到过点(2,-1)的直线的最大距离为5,而6>5,故不存在这样的直线.。
直线与直线方程经典例题

必修2 第二章 解析几何初步第一节:直线与直线方程(王建明)一、直线的倾斜角和斜率(1)倾斜角定义:平面直角坐标系中,对于一条与x 轴相交的直线l ,把__x 轴(正方向)_按__逆时针__方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角。
(0°≤α<180°)(2)斜率k=tan α=1212x x y y -- (0°≤α<180°),当α=90时,k 不存在。
(两种求法,注意21x x =的情况)(3)函数y=tanx 在)90,0[0增加的,在)180,90(00也是增加的。
例1:过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为 。
例2:过两点A (m 2+2,m 2-3),B (3-m-m 2,2m )的直线l 的倾斜角为45°求m 的值。
例3:已知直线l 经过点P (1,1),且与线段MN 相交,又M (2,-3),N (-3,-2),求直线l 的斜率k 的取值范围。
例4:已知a >0,若平面内三点A (1,—a ),B (2,a 2),C(3,a 3)共线,则a 值为 。
练习:1经过点P (2,m )和Q (2m ,5)的直线的斜率等于12,则m 的值是( B ) A .4 B .3 C .1或3 D .1或4变:的取值范围的斜率的直线求经过点 )1,cos (),sin ,2( k l B A θθ--2. 已知直线l 过P(-1,2),且与以A(-2,-3)、B(3,0)为端点的线段相交,求直线l 的斜率的取值范围.点评:要用运动的观点,研究斜率与倾斜角之间的关系!答案: ⎝⎛⎦⎥⎤-∞,-12∪[5,+∞)3.已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1),若D 为△ABC 的边AB 上一动点,求直线CD 斜率k 的变化范围.答案:⎝⎛⎦⎥⎤-∞,-12∪[5,+∞) 二、两直线的平行与垂直1.平行的判定:2. 垂直的判定:例(1)l 1 经过点M (-1,0), N (-5,-2),l 2经过点R (-4,3),S (0,5),l 1与l 2是否平行?(2)l 1 经过点A (m ,1), B (-3,4), )l 2 经过点C (1,m ), D (-1, m+1),确定m 的值,使l 1//l 2。
最新人教版高中数学必修2第三章《直线的两点式方程、直线的一般式方程》典型例题

拓展延伸应用点一 两点式方程【例1】求经过点A (2,1)与B (6,-2)的直线的方程.思路分析:利用直线的两点式方程求解.解:因为直线过点A (2,1),B (6,-2),所以直线的两点式方程为y -1-2-1=x -26-2,即3x +4y -10=0.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2).求BC 边所在直线的方程,以及该边上中线所在直线的方程.应用点二 截距式方程【例2】已知直线l 过点P (-2,3),且与两坐标轴围成的三角形的面积为4,求直线的方程.思路分析:关键是求出斜率k 或求出直线在两坐标轴上的截距,即寻找关于k 的方程或两截距的方程组.解:方法一:显然,直线l 与两坐标轴不垂直,设直线的方程为y -3=k (x +2).令x =0,得y =2k +3;令y =0,得x =-3k-2, 于是直线与两坐标轴围成的三角形的面积为12|2k +3|·⎪⎪⎪⎪3k +2=4,即(2k +3)⎝⎛⎭⎫3k +2=±8. 若(2k +3)⎝⎛⎭⎫3k +2=8,则整理得4k 2+4k +9=0,无解;若(2k +3)⎝⎛⎭⎫3k +2=-8,则整理得4k 2+20k +9=0,解之,得k =-12,k =-92. ∴所求直线的方程为y -3=-12(x +2)或y -3=-92(x +2), 即x +2y -4=0或9x +2y +12=0.方法二:显然,直线在两坐标轴上的截距均不为零.设所求直线的方程为x a +y b=1. ∵点P (-2,3)在直线上,∴-2a +3b =1.① 又∵直线与坐标轴围成的面积为4,∴12|a |·|b |=4,即|a |·|b |=8.② 由①②可得(1)⎩⎪⎨⎪⎧ 3a -2b =8,ab =8,或(2)⎩⎪⎨⎪⎧3a -2b =-8,ab =-8. 解(1)得⎩⎪⎨⎪⎧ a =4,b =2或⎩⎪⎨⎪⎧ a =-43,b =-6,且方程组(2)无解.∴所求直线的方程为x 4+y 2=1或x -43+y -6=1, 即x +2y -4=0或9x +2y +12=0.直线l 过点(1,2)和第一、二、四象限,若直线l 的横截距与纵截距之和为6,求直线l 的方程.应用点三 一般式方程【例3】已知直线Ax +By +C =0的斜率为5,且A -2B +3C =0,求直线的方程.思路分析:利用斜率-A B=5和已知式子求出B ,C 的关系,代入直线方程消去未知系数.解:方法一:∵直线Ax +By +C =0的斜率为5,∴B ≠0,且-A B=5,即A =-5B .① 又∵A -2B +3C =0,②由①②得,-5B -2B +3C =0,∴C =73B .③ 把①③代入直线方程,得-5Bx +By +73B =0. 又∵B ≠0,∴-5x +y +73=0. 故所求直线方程为15x -3y -7=0.方法二:∵A -2B +3C =0,∴A ·13+B ·⎝⎛⎭⎫-23+C =0, ∴直线经过点⎝⎛⎭⎫13,-23. 又∵斜率为5,∴所求直线方程为y +23=5⎝⎛⎭⎫x -13, 即15x -3y -7=0.设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6,根据下列条件分别确定m 的值.(1)l 在x 轴上的截距是-3;(2)l 的斜率是-1.迁移1.解:过B (3,-3),C (0,2)的直线的两点式方程为y -2-3-2=x -03-0.整理得5x +3y -6=0.这就是BC 边所在直线的方程.BC 边上的中线是顶点A 与BC 边中点M 所连线段,由中点坐标公式可得点M 的坐标为⎝⎛⎭⎫3+02,-3+22,即⎝⎛⎭⎫32,-12.过A (-5,0),M ⎝⎛⎭⎫32,-12的直线的方程为y -0-12-0=x +532+5.整理得12x +132y +52=0,即x +13y +5=0.这就是BC 边上的中线所在直线的方程.迁移2.解:由题意可知,直线l 在x 轴,y 轴上的截距都不为0,设直线l 的横截距为a ,由题意可得纵截距为6-a ,所以设直线l 的方程为x a +y 6-a=1.因为点(1,2)在直线l 上,所以1a +26-a =1.即a 2-5a +6=0,解得a 1=2,a 2=3.当a =2时,直线方程为x 2+y 4=1,直线经过第一、二、四象限;当a =3时,直线方程为x 3+y 3=1,直线经过第一、二、四象限.综上所述,所求直线方程为2x +y -4=0或x +y -3=0.迁移3.解:(1)由题意可得⎩⎪⎨⎪⎧ m 2-2m -3≠0,①2m -6m 2-2m -3=-3.② 由②解得m =3或m =-53. 分别代入①检验可知m =-53. (2)由题意可得⎩⎪⎨⎪⎧2m 2+m -1≠0,③-m 2-2m -32m 2+m -1=-1.④ 由④解得m =-1或m =-2.分别代入③检验得m =-2.。
直线方程经典例题及解析

直线方程经典例题及解析直线是我们在几何学中经常遇到的基本概念之一,研究直线方程是数学中的一个重要分支。
本文将介绍几个经典的直线方程例题,并逐步解析它们的求解过程。
例题1:求过两点的直线方程已知直线上有两个点A(x1, y1)和B(x2, y2),请求出通过这两个点的直线方程。
解析:我们知道,直线的方程可以表示为y = kx + b的形式,其中k是斜率,b是与y 轴交点的纵截距。
首先我们需要计算斜率k,根据斜率公式:k = (y2 - y1) / (x2 - x1)然后,我们可以使用其中一个点(例如A点),将点坐标带入方程:y1 = kx1 + b可以得到b的值:b = y1 - kx1因此,通过这两个点的直线方程为:y = (y2 - y1) / (x2 - x1) * x + (y1 - (y2 - y1) / (x2 - x1) * x1)这就是通过两个已知点求直线方程的方法。
例题2:求与两直线的交点已知直线L1的方程为y = k1x + b1,直线L2的方程为y = k2x + b2,求两直线的交点坐标。
解析:假设L1和L2的交点坐标为(x, y)。
那么根据直线方程,我们可以得到:k1x + b1 = k2x + b2整理后可得:(k1 - k2)x = b2 - b1从而得到交点横坐标x的值:x = (b2 - b1) / (k1 - k2)将x的值带入任意一条直线方程中,可以求出交点纵坐标y的值。
综上所述,我们可以通过以上步骤求得直线L1和L2的交点坐标。
例题3:已知截距和斜率求直线方程已知直线L的斜率为k,与y轴的截距为b,请求直线L的方程。
解析:根据直线方程y = kx + b,我们已知直线L的截距和斜率。
根据已知信息,我们可以直接写出直线L的方程:y = kx + b就是这么简单!我们只需将已知的斜率k和截距b带入直线方程即可求得直线L的方程。
例题4:已知直线与坐标轴的交点已知直线L与x轴和y轴的交点分别为A(2,0)和B(0,3),求直线L的方程。
数学必修2---直线与方程典型例题(精)

第三章 直线与方程 3.1 直线的倾斜角与斜率 .1 倾斜角与斜率【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式:【典型例题】题型 一 求直线的倾斜角例 1 已知直线l 的斜率的绝对值等于3,则直线的倾斜角为( ).A. 60°B. 30°C. 60°或120°D. 30°或150°变式训练:设直线l 过原点,其倾斜角为α,将直线l 绕原点沿逆时针方向旋转45°,得到直线1l ,则1l 的倾斜角为( )。
A.45α+︒ B. 135α-︒ C. 135α︒-D. 当0°≤α<135°时为45α+︒,当135°≤α<180°时,为135α-︒题型 二 求直线的斜率例 2如图所示菱形ABCD 中∠BAD =60°,求菱形ABCD 各边和两条对角线所在直线的倾斜角和斜率.变式训练: 已知过两点22(2,3)A m m +-, 2(3,2)B m m m --的直线l 的倾斜角为45°,求实数m 的值.题型 三 直线的倾斜角与斜率的关系例3右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 2拓展 一 三点共线问题例4 已知三点A (a ,2)、B (3,7)、C (-2,-9a )在一条直线上,求实数a 的值.变式训练:若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ).A .4,5a b ==B .1b a -=C .23a b -=D .23a b -=拓展 二 与参数有关问题例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k 的取值范围.变式训练:已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.拓展 三 利用斜率求最值例 6 已知实数x 、y 满足28,x y +=当2≤x ≤3时,求yx的最大值与最小值。
直线与方程练习题高二

直线与方程练习题高二直线与方程是高二数学中的重要内容,掌握直线与方程的相关知识对于解决各种问题具有重要作用。
下面是一些直线与方程的练习题,帮助你巩固相关知识点。
题目一:已知直线L1过点A(-1, 3)和点B(5, -1),直线L2垂直于直线L1且过点B,求L2的方程。
解析:直线L1的斜率为:m1 = (y2 - y1)/(x2 - x1) = (-1 - 3)/(5 - (-1)) = -1直线L2的斜率为直线L1的斜率的倒数,即:m2 = -1/m1 = -1/-1 = 1直线L2通过点B(5, -1),带入直线方程y = mx + b中,可得:-1 = 1*5 + bb = -6所以直线L2的方程为:y = x - 6题目二:已知直线L1过点C(2, 3)和点D(4, 7),直线L2平行于直线L1且通过点D,求L2的方程。
解析:直线L1的斜率为:m1 = (y2 - y1)/(x2 - x1) = (7 - 3)/(4 - 2) = 2直线L2为平行于直线L1,故斜率也为2,直线L2通过点D(4, 7),带入直线方程y = mx + b中,可得:7 = 2*4 + bb = -1所以直线L2的方程为:y = 2x - 1题目三:已知直线L1经过点E(2, -1)和点F(6, 5),直线L2与直线L1垂直且过点E,求L2的方程。
解析:直线L1的斜率为:m1 = (y2 - y1)/(x2 - x1) = (5 - (-1))/(6 - 2) = 1直线L2的斜率为直线L1的斜率的倒数,即:m2 = -1/m1 = -1/1 = -1直线L2通过点E(2, -1),带入直线方程y = mx + b中,可得:-1 = -2 + bb = 1所以直线L2的方程为:y = -x + 1题目四:已知直线L1经过点G(3, 2)和点H(7, 6),直线L2与直线L1平行且通过点H,求L2的方程。
解析:直线L1的斜率为:m1 = (y2 - y1)/(x2 - x1) = (6 - 2)/(7 - 3) = 1直线L2为平行于直线L1,故斜率也为1,直线L2通过点H(7, 6),带入直线方程y = mx + b中,可得:6 =7 + bb = -1所以直线L2的方程为:y = x - 1通过以上练习题,可以看出掌握直线与方程的相关知识对于解题非常关键。
高二数学直线与方程精选50题

直线与方程精选50题1、求过点()5,3,倾斜角等于直线13+=x y 的倾斜角的一半的直线方程.★2、已知直线l 的倾斜角为α,53sin =α,且这条直线经过点()5,3P ,求直线l 的一般式方程.★3、已知矩形OACB 的顶点的坐标分别为()()()5,00,80,0B A O 、、,求该矩形的对角线所在直线方程.4、已知直线0632=+-y x ,这条直线的点方向式可以是________________★5、求过点P 且平行于直线0l 的一般式方程:(1)()04:,1,20=+x l P ★(2)()07143:,2,10=++y x l P6、求过点P 且垂直于直线1l 的直线的一般式方程:(1)()03:,1,21=-y l P(2)4231:),1,2(1+=---y x l P ★7、求满足下列条件的直线方程(1)直线l 经过()()7,3,0,2B A 两点★(2)直线l 经过点()4,3P ,且与向量()1,1-=d 平行★(3)直线l 经过点()4,3P ,且与向量()1,1-=d 垂直★8、已知直线()0816:1=--+y t x l 与直线()()01664:2=-+++y t x t l(1)当t 为何值时,21l l 与相交?(2)当t 为何值时,21l l 与平行?(3)当t 为何值时,21l l 与重合?(4)当t 为何值时,21l l 与垂直?★9、已知直线08:1=++n y mx l 与直线012:2=-+my x l .当直线1l 与直线2l 分别满足下列条件时,求实数m 、n 的值(1)直线1l 与直线2l 平行;(2)直线1l 与直线2l 垂直,且直线1l 在y 轴上的截距为1-..★10、根据下列条件,写出满足条件的直线的一般式方程.★(1)经过直线012=+-y x 与直线0122=-+y x 的交点,且与直线05=-y x 垂直.(2)经过直线01=+-y x 与直线022=+-y x 的交点,且与直线1243=+y x 平行.11、已知直线2:1++=k kx y l 与直线42:2+-=x y l 的交点在第一象限,求实数k 的范围.★12、已知集合(){}R y x y x y x A ∈=--=、,01|,,集合(){}R y x y ax y x B ∈=+-=、,02|,,且φ=⋂B A ,求实数a 的值.13、是否存在实数a ,使直线()()0121:1=--+-y a x a l 与直线()03326:2=--+y a x l 平行?若存在,求a 的值;若不存在,请说明理由.★14、求过点()3,2P 且与直线012=+-y x 垂直的直线方程★15、若坐标原点O 在直线l 的射影H 的坐标为()2,4-,求直线l 的方程★16、已知平面内三点()()()2,14,33,1---C B A 、、,点P 满足BC BP 23=,则直线AP 的方程是17、已知()()4,1,1,3--B A ,则线段AB 的垂直平分线方程是★18、已知三点()()()a C B a A 2,4,1,5,2,-共线,则实数a 的值是___________________19、不论m 取何实数,直线()()()01131=--+--m y m x m 恒过什么象限?20、分别写出下列直线的一个方向向量d 和一个法向量n ★(1)0543=-+y x(2)152=+y x (3)()5413+-=-x y (4)1=x(5)01=+y21、已知0,0<<bc ac ,则直线0:=++a cy bx l 不通过_______________象限22、直线l 的倾斜角的正弦值为54,则其斜率为______________★ 23、过()()a B a a A 2,3,1,1+-的直线的倾斜角为钝角,求实数a 的取值范围★24、直线l 的斜率k 满足13<≤-k ,求其倾斜角的取值范围★25、直线l 的倾斜角是()()2,6,1,2--B A 两点连线的倾斜角的两倍,求直线l 的倾斜角的大小26、直线l 过点()2,1且与两坐标轴围成等腰直角三角形,求l 的方程★27、求直线()R y x ∈=-+αα010cos 的倾斜角的取值范围28、直线()()039372:222=+-++-a y a x a a l 的倾斜角大小是4π,求实数=a __________★29、方程x k y =与方程()0>+=k k x y 的曲线有两个不同的公共点,则实数k 的取值范围是____________________30、过点()()3,0,0,4B A 的直线的倾斜角大小是________________★31、将直线033=++y x 绕着它与x 轴的交点顺时针旋转︒30后,所得的直线方程是★32、将直线0943=+-y x 绕其与x 轴的交点逆时针旋转︒90后得到直线l ,求直线l 的方程★33、ABC ∆的一个顶点()4,3B ,AB 边上的高CH 所在直线方程是01632=-+y x ,BC 边上的中线AM 所在的直线方程是0132=+-y x ,求边AC 所在直线方程.34、已知直线l 沿x 轴的负方向平移3个单位,再沿y 轴的正方向平移1个单位,又回到原来的位置,求直线l 的斜率k 和倾斜角α★35、过点()4,5-P 作一直线l ,使它与两坐标轴相交且与两坐标轴围成的三角形面积为5个面积单位,求直线l 的方程★36、直线()()01213:=----y a x a l (其中a 为实数)★(1)求证:不论a 取何值,直线l 恒过定点;(2)已知直线l 不通过第二象限,求实数a 的取值范围37、已知()()2211,,,y x B y x A 为直线()0≠+=k b kx y 上的两点(1)求证:2121x x k AB -+=;(2)根据(1)的形式特征,用21,,y y k 表示AB38、已知ABC ∆中,顶点()7,2-A ,AC 边上的高BH 所在直线方程为0113=++y x ,AB 边上中线CM 所在的直线方程072=++y x ,求ABC ∆三边所在直线方程39、从点()2,5A 发出的光线经过x 轴反射后,反射光线经过点()3,1-B ,求发射光线所在直线与x 轴的夹角大小★40、求经过0332:01:21=++=++y x l y x l 和的交点且与直线0523=-+y x 的夹角为4π的直线方程★'41、已知等腰直角三角形ABC 的斜边AB 的中点是()2,4,直角边AC 所在的直线方程是02=-y x ,求斜边AB 和直角边BC 所在直线的方程42、光线沿直线052=+-y x 的方向入射到直线0723=+-y x 后反射出去,求反射光线所在的直线方程43、已知()()8,4,3,2-B A 两点,直线l 经过原点,且A 、B 两点到直线l 的距离相等,求直线l 的方程★44、已知平行直线21l l 与的距离为5,且直线1l 经过原点,直线2l 经过点()3,1,求直线1l 和直线2l 的方程★45、已知直线l 过点()1,0P ,且被平行直线0243:0843:21=++=-+y x l y x l 与所截得的线段的长为22,求直线l 的方程46、求与直线032012=+-=+-y x y x 和距离相等的点的轨迹47、已知点()4,3P 到直线l 的距离为5,且直线l 在两坐标轴上的截距相等,则满足条件的直线是___________________★48、过点()2,1P 的所有直线中,与原点距离最大的直线方程是______________49、直线l 经过直线002477=-=-+y x y x 与直线的交点,且原点到直线l 的距离为512,则直线l 的方程为★50、经过直线032=-+y x 和直线0624=--y x 的交点,且与y 轴平行的直线方程为★。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式:【典型例题】题型 一 求直线的倾斜角例 1 已知直线l 的斜率的绝对值等于3,则直线的倾斜角为( ).A. 60°B. 30° C . 60°或120° D. 30°或150°变式训练:设直线l 过原点,其倾斜角为α,将直线l 绕原点沿逆时针方向旋转45°,得到直线1l ,则1l 的倾斜角为( )。
A.45α+︒ B. 135α-︒ C. 135α︒-D. 当0°≤α<135°时为45α+︒,当135°≤α<180°时,为135α-︒题型 二 求直线的斜率例 2如图所示菱形ABC D中∠BA D=60°,求菱形AB CD 各边和两条对角线所在直线的倾斜角和斜率.变式训练: 已知过两点22(2,3)A m m +-, 2(3,2)B m m m --的直线l 的倾斜角为45°,求实数m 的值.题型 三 直线的倾斜角与斜率的关系例3右图中的直线l 1、l 2、l 3的斜率分别为k1、k2、k 3,则( ). A .k 1<k 2<k 3ﻩ B. k 3<k1<k 2 C. k 3<k 2<k1ﻩ D. k 1<k3<k2拓展 一 三点共线问题例4 已知三点A (a ,2)、B (3,7)、C (-2,-9a )在一条直线上,求实数a 的值.变式训练:若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ).A.4,5a b == B.1b a -= C .23a b -= D .23a b -=拓展 二 与参数有关问题例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k 的取值范围.变式训练:已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.拓展 三 利用斜率求最值例 6 已知实数x 、y 满足28,x y +=当2≤x ≤3时,求yx的最大值与最小值。
变式训练: 利用斜率公式证明不等式:(0a m aa b b m b+><<+且0)m >3.1.2 两条直线平行与垂直的判定【知识点归纳】1.直线平行的判定2.两条直线垂直的判定(注意垂直与x 轴和y 轴的两直线):【典型例题】题型 一 两条直线平行关系例 1 已知直线1l 经过点M(-3,0)、N (-15,-6),2l 经过点R (-2,32)、S(0,52),试判断1l 与2l 是否平行?变式训练:经过点(2,)P m -和(,4)Q m 的直线平行于斜率等于1的直线,则m 的值是( ).A.4B.1 ﻩC .1或3 D .1或4题型 二 两条直线垂直关系例 2 已知ABC ∆的顶点(2,1),(6,3)B C -,其垂心为(3,2)H -,求顶点A 的坐标.变式训练:(1)1l 的倾斜角为45°,2l 经过点P (-2,-1)、Q (3,-6),问1l 与2l 是否垂直?(2)直线12,l l 的斜率是方程2310x x --=的两根,则12l l 与的位置关系是 . 题型 三 根据直线的位置关系求参数例 3 已知直线1l 经过点A(3,a)、B (a-2,-3),直线2l 经过点C (2,3)、D(-1,a-2), (1)如果1l //2l ,则求a 的值;(2)如果1l ⊥2l ,则求a 的值题型 四 直线平行和垂直的判定综合运用例4 四边形AB CD的顶点为(2,2A +、(2,2)B -、(0,2C -、(4,2)D ,试判断四边形ABCD的形状.变式训练:已知A(1,1),B(2,2),C(3,-3),求点D,使直线CD⊥AB,且CB∥AD.探点一数形结合思想例 5 已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点.(1)证明:点C、D和原点O在同一直线上. (2)当BC平行于x轴时,求点A的坐标.探点二分类讨论思想例6ABC∆的顶点(5,1),(1,1),(2,)∆为直角三角形,求m的值.A B C m-,若ABC3.2 直线的方程3.2.1 直线的点斜式方程【知识点归纳】1.直线的点斜式方程:2.直线的斜截式方程:【典型例题】题型 一 求直线的方程例1 写出下列点斜式直线方程: (1)经过点(2,5)A ,斜率是4;(2)经过点(3,1)B -,倾斜角是30.例 2 倾斜角是135,在y 轴上的截距是3的直线方程是 .变式训练:1. 已知直线l 过点(3,4)P ,它的倾斜角是直线1y x =+的两倍,则直线l 的方程为2. 已知直线l 在y 轴上的截距为-3,且它与两坐标轴围成的三角形的面积为6,求直线l 的方程.3.将直线1y x =+绕它上面一点(1,)沿逆时针方向旋转15°,得到的直线方程是 .题型 二 利用直线的方程求平行与垂直有关问题例 3 已知直线1l 的方程为223,y x l =-+的方程为42y x =-,直线l 与1l 平行且与2l 在y 轴上的截距相同,求直线l 的方程。
探究 一 直线恒过定点或者象限问题 例 4. 已知直线31y kx k =++.(1)求直线恒经过的定点;(2)当33x -≤≤时,直线上的点都在x 轴上方,求实数k 的取值范围.探究 二 直线平移例 5 已知直线l:y=2x-3 ,将直线l 向上平移2个单位长度,再向右平移4个单位后得到的直线方程为__________________3.2.2 直线的两点式方程【知识点归纳】1.直线的两点式方程:2.直线的截距式方程:【典型例题】题型 一 求直线方程例 1 已知△ABC 顶点为(2,8),(4,0),(6,0)A B C -,求过点B 且将△ABC 面积平分的直线方程.变式训练:1.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是( ).A.425x y += B .425x y -= C .25x y += D.25x y -=2.已知1122234,234x y x y -=-=,则过点1122(,),(,)A x y B x y 的直线l 的方程是( ).A. 234x y -= B. 230x y -= C. 324x y -= D . 320x y -=例 2求过点(3,2)P ,并且在两轴上的截距相等的直线方程.变式训练:已知直线l 过点(3,-1),且与两轴围成一个等腰直角三角形,则l 的方程为题型 二 直线方程的应用例 3 长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李费用y (元)是行李重量x (千克)的一次函数,其图象如图所示.(1)求y 与x之间的函数关系式,并说明自变量x 的取值范围; (2)如果某旅客携带了75千克的行李,则应当购买多少元行李票?探究 一 直线与坐标轴围成的周长及面积例 4 已知直线l 过点(2,3)-,且与两坐标轴构成面积为4的三角形,求直线l 的方程.(千克)探究二有关光的反射例5 光线从点A(-3,4)发出,经过x轴反射,再经过y轴反射,光线经过点B(-2,6),求射入y轴后的反射线的方程.变式训练:已知点(3,8)+最小时的点P的坐标.A-、(2,2)B,点P是x轴上的点,求当AP PB3.2.3 直线的一般式方程【知识点归纳】1.直线的一般式:2.直线平行与垂直的条件:【典型例题】题型 一 灵活选用不同形式求直线方程例1 根据下列各条件写出直线的方程,并且化成一般式:(1)斜率是-12,经过点A (8,-2); (2)经过点B (4,2),平行于x 轴;(3)在x 轴和y 轴上的截距分别是32,-3; (4)经过两点1P (3,-2)、2P (5,-4).题型 二 直线不同形式之间的转化例 2 求出直线方程,并把它化成一般式、斜截式、截距式:过点(5,6),(4,8)A B --.题型 三 直线一般式方程的性质例 3直线方程0Ax By C ++=的系数A 、B 、C 分别满足什么关系时,这条直线分别有以下性质?(1)与两条坐标轴都相交;(2)只与x 轴相交;(3)只与y 轴相交;(4)是x轴所在直线;(5)是y 轴所在直线.变式训练:已知直线:5530l ax y a --+=。
(1)求证:不论a 为何值,直线l 总经过第一象限;(2)为使直线不经过第二象限,求a 的取值范围。
题型 四 运用直线平行垂直求参数例 4 已知直线1l :220x my m +--=,2l :10mx y m +--=,问m 为何值时:(1)12l l ⊥; (2)12//l l .变式训练:(1)求经过点(3,2)A 且与直线420x y +-=平行的直线方程;(2)求经过点(3,0)B 且与直线250x y +-=垂直的直线方程.题型 五 综合运用例 5 已知直线1:60l x my ++=,2:(2)320l m x y m -++=,求m 的值,使得:(1)l 1和l 2相交;(2)l 1⊥l 2;(3)l 1//l 2;(4)l 1和l2重合.3.3 直线的交点坐标与距离公式 3.3.1 两直线的交点坐标3.3.2 两点间的距离【知识点归纳】1.两条直线的焦点坐标:2.两点间的距离公式:【典型例题】题型 一 求直线的交点坐标例 1 判断下列各对直线的位置关系. 如果相交,求出交点坐标.(1)直线l1: 2x-3y +10=0 , l 2: 3x+4y-2=0; (2)直线l 1: 1nx y n -=-, l 2: 2ny x n -=.题型 二 三条直线交同一点例 2 若三条直线2380,1020x y x y kx y ++=--=-+=,相交于一点,则k 的值等于变式训练:1.设三条直线:21,23,345x y x ky kx y -=+=+=交于一点,求k 的值2.试求直线1:l 20x y --=关于直线2l :330x y -+=对称的直线l 的方程.题型 三 求过交点的直线问题例 3 求经过两条直线280x y +-=和210x y -+=的交点,且平行于直线4370x y --=的直线方程.变式训练:已知直线l1:2x-3y+10=0,l2: 3x+4y-2=0.求经过l1和l2的交点,且与直线l3: 3x-2y+4=0垂直的直线l的方程.题型四两点间距离公式应用例4 已知点(2,1),(,3)--且||5A B aAB=,则a的值为变式训练:在直线20-=上求一点P,使它到点(5,8)x yM的距离为5,并求直线PM的方程.题型五三角形的判定例5已知点(1,2),(3,4),(5,0)A B C,判断ABC∆的类型.探究一直线恒过定点问题例6 已知直线(2)(31)1-=--. 求证:无论a为何值时直线总经过第一象限.a y a x变式训练:若直线l:y=kx2x+3y-6=0的交点位于第一象限,求直线l的倾斜角的取值范围.探究二利用对称性求最值问题(和最小,差最大)例7 直线2x-y-4=0上有一点P,求它与两定点A(4,-1),B(3,4)的距离之差的最大值. 变式训练:已知(1,0)(1,0)--=上的动点.求22x y、,点P为直线210M N-+的最小PM PN值,及取最小值时点P的坐标.3.3.3点到直线的距离3.3.4两条平行直线间的距离【知识点归纳】1.点到直线的距离:2.两条平行间直线的距离:拓展:点关于点、直线对称点的求法【典型例题】题型 一 利用点到直线距离求参数例 1 已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a =( ).A B . C1 ﻩ1题型 二 利用点到直线距离求直线的方程例 2 求过直线1110:33l y x =-+和2:30l x y -=的交点并且与原点相距为1的直线l 的方程.变式训练:直线l 过点P(1,2),且M(2,3),N(4,-5)到l 的距离相等,则直线l 的方程是题型 三 利用平行直线间的距离求参数例 3若两平行直线3210x y --=和60x ay c ++=,求2c a+的值.变式训练:两平行直线51230102450x y x y ++=++=与间的距离是( ).A. 213B. 113C. 126 D . 526题型 四 利用平行直线间的距离求直线的方程例 4 与直线:51260l x y -+=平行且与l 的距离2的直线方程是题型 五 点、直线间的距离的综合运用例 5 已知点P到两个定点M(-1,0)、N (1,0),点N 到直线PM 的距离为1.求直线PN 的方程.探究 一 与直线有关的对称问题例 6 △ABC 中,(3,3),(2,2),(7,1)A B C --. 求∠A 的平分线AD 所在直线的方程.变式训练:1.与直线2360x y +-=关于点(1,-1)对称的直线方程是2.求点A(2,2)关于直线2490x y -+=的对称点坐标探究 二 与距离有关的最值问题例 7 在函数24y x =的图象上求一点P ,使P 到直线45y x =-的距离最短,并求这个最短的距离.变式训练:在直线:310l x y --=上求一点P,使得:(1)P到A (4,1)和B(0,4)的距离之差最大。