对口招生考试数学试题及参考答案讲课稿

合集下载

2023年高职单独招生考试数学试卷(答案) (4)

2023年高职单独招生考试数学试卷(答案) (4)

2023年对口单独招生统一考试数学试卷(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若O 为⊿ABC 的内心,且满足(OB -OC )•(OB +OC -2OA )=0()A.等腰三角形B.正三角形C.直角三角形D.以上都不对2.设有如下三个命题()甲:m∩l =A,m、l ⊂,m、l ⊄;乙:直线m、l 中至少有一条与平面相交;丙:平面与平面相交。

当甲成立时,乙是丙的条件。

A.充分而不必要B.必要而不充分C.充分必要D.既不充分又不必要3.⊿ABC 中,3sinA+4cosB=6,3cosA+4sinB=1,则∠C 的大小为()A.6πB.65πC.6π或65πD.3π或32π4.等体积的球和正方体,它们的表面积的大小关系是()A.S 球>S 正方体B.S 球<S 正方体C.S 球=S 正方体D.S 球=2S 正方体5.若连结双曲线22a x -22by =1与其共轭双曲线的四个顶点构成面积为S 1的四边形,连结四个焦点构成面积为S 2的四边形,则21S S 的最大值为()A.4B.2C.21D.416.若干个正方体形状的积木按如图所示摆成塔形,上面正方体中下底的四个顶点是下面相邻正方体中上底各边的中点,最下面的正方体的棱长为1,平放在桌面上,如果所有正方体能直接看到的表面积超过7,则正方体的个数至少是()A.2B.3C.4D.67.关于x 的不等式0ax b ->的解集为(1,)+∞,则关于x 的不等式02ax bx +>-的解集为()A.()2,1-B.(,1)(2,)-∞-⋃+∞C.(1,2)D.(,2)(1,)-∞-⋃+∞8.长方体1111ABCD A B C D -中,O 是AB 的中点,且1OD OB =,则()A.1AB CC =B.AB=BC C.145CBC ∠=︒D.145BDB ∠=︒9.已知集合{}{}0,2,1,1,0,1,2A B ==-,则A B ⋂=()A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}10.圆224230x y x y ++-+=的圆心坐标为()A.(4,-2)B.(2,1)C.(-2,1)D.(2,1)二、填空题:(本题共3小题,每小题10分)1、已知双曲线(a>0,b>0)的两个焦点为、,点P 是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为_______.2、记Sk=1k+2k+3k+……+nk,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=_______.三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数.(1)当2000≤≤x 时,求函数)(x v 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时))()(x v x x f ⋅=可以达到最大?求出最大值.(精确到1辆/小时)2.如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.3.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n c n *=∈N证明:12+.n c c c n *++<∈N 参考答案:一、选择题1-5题答案:ACABC 6-10题答案:BBCAC 二、填空题1.∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,…①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1•PF2cos∠F1PF23,…②①②联解,得,可得,∴双曲线的,结合,得离心率故答案为:2.根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,∴A,A1,解得B ,所以A﹣B.故答案为:.三、解答题1.(1)解:因为当20020≤≤x 时,车流速度是车流密度x 的一次函数,故设b kx v +=则⎩⎨⎧+=+=bk b k 20602000⎪⎪⎩⎪⎪⎨⎧=-=∴320031b k 320031+-=∴x v 故⎪⎩⎪⎨⎧≤≤+-<≤=20020,320031200,60)(x x x x v (2)由(1)得⎪⎩⎪⎨⎧≤≤-<≤=20020,)200(31200,60)(x x x x x x f 当200<≤x 时,)(x f 为增函数,1200)(<x f 当20020≤≤x 时,310000)100(31)200(31)(2+--=-=x x x x f 当100=x 时,最大值3333=即当车流密度为100辆/千米时,车流量可以达到最大,最大约为3333辆/小时)(x g 的减区间为)0,(-∞2.如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力。

高职单独招生考试数学试卷(答案解析) (1)

高职单独招生考试数学试卷(答案解析) (1)

2022年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.将抛物线24y x =-绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A. 24y x = B. 24y x =- C. 24x y = D. 24x y =-2.在空间中,下列结论正确的是( ) A.空间三点确定一个平面B.过直线外一点有且仅有一条直线与已知直线垂直C.如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行D.三个平面最多可将空间分成八块3.将抛物线24y x =-绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A. 24y x = B. 24y x =- C. 24x y = D. 24x y =-6.cos78cos18sin18sin102⋅+⋅=( )A.C.12-D.127.在复平面内,复数z 满足(1)2i z -⋅=,则(z = ) A .2i +B .2i -C .1i -D .1i +6.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为( ) A.16B. 0.25C.19D.5187.已知圆锥底面半径为4,侧面面积为60,则母线长为( ) A. 8B. 16C.152D. 158.函数y = sin2x 的图像如何平移得到函数sin(2)3y x的图像( )A. 向左平移6个单位B. 向右平移6个单位C. 向左平移3个单位D. 向右平移3个单位9.设动点M 到1(13 0)F ,的距离减去它到2(13 0)F ,的距离等于4,则动点M 的轨迹方程为( ) A. 22 1 (2)49x y x ≤ B. 22 1 (2)49x y x ≥ C.22 1 (2)49y x y ≥D.22 1 (x 3)94x y ≥10.已知函数()3sin 3cos f x xx ,则()12f ( ) A.6B.23C.22D.2611.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有( ) A. 280种B. 240种C. 360种D. 144种12.如下图20图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是( ) A. A ′C ⊥平面DBC ′ B. 平面AB ′D ′//平面BDC ′ C. BC ′⊥AB ′D. 平面AB ′D ′⊥平面A ′AC13. 已知集合A={-1,0,1},集合B={-3,-1,1,3},则A ∩B=( ) A. {-1,1}B. {-1}C. {1,3}D. ∅14. 不等式x2-4x ≤0的解集为( ) A. [0,4]B. (1,4)C. [-4,0)∪(0,4]D. (-∞,0]∪[4,+∞)15. 函数f (x )=ln(x −2)+1x−3的定义域为( )A. (5,+∞)B. [5,+∞)C. (-∞,2]∪[3,+∞)D. (2,3)∪(3,+∞)16. 已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A. BD⃗⃗⃗⃗⃗B. DB⃗⃗⃗⃗⃗C. AC⃗⃗⃗⃗⃗D. CA⃗⃗⃗⃗⃗ 17. 下列函数以π为周期的是( ) A.y =sin (x −π8)B. y =2cos xC. y =sin xD. y =sin 2x18. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是( ) A. 180B. 380C. 190D. 12019. 已知直线的倾斜角为60°,则此直线的斜率为( ) A. −√33B.2 C . √3 D.√3320. 若sin α>0且tan α<0,则角α终边所在象限是( ) A. 第一象限B. 第二象限C. 第三象限D.第四象限二、填空题(共10小题,每小题3分;共计30分) 1、执行以下语句后,打印纸上打印出的结果应是:_____.2、角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (1,2),则sin (π﹣α)的值是_____.3、过点)1,2(-p 且与直线0102=+-y x 平行的直线方程是______4、在∆ABC 中,已知∠B=︒30,∠C=︒135,AB=4,则AC=______5、已知函数bx y +-=sin 31的最大值是97,则b=______6、75sin 15sin +的值是______.7、如果∆ABC 的三个内角A ,B ,C 成等差数列,则B 一定等于______. 8、已知2tan -=α,71tan =+)(βα,则βtan 的值为______ .9、三个数2,x ,10成等差数列,则=x ______10、已知b kx x f +=)(,且1)1(=-f ,3)2(=-f ,则=k ______,=b ______ 三、大题:(满分30分) 1、已知函数3()x x b f x x ++=,{}n a 是等差数列,且2(1)a f =,3(2)a f =,4(3)a f =.(1)求{}n a 的前n 项和; (2)求()f x 的极值.2、某学校组织"一带一路”知识竞赛,有A ,B 两类问题・每位参加比赛的同学先在两类问题中选择类并从中随机抽収一个问题冋答,若回答错误则该同学比赛结束;若 回答正确则从另一类问题中再随机抽取一个问題回答,无论回答正确与否,该同学比赛 结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题 回答正确得80分,否则得0分。

四川省2024年普通高校对口招生统一考试数学试卷(含答案) (6)

四川省2024年普通高校对口招生统一考试数学试卷(含答案) (6)

四川省2024年普通高校对口招生统一考试数学试卷(含答案)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =()(A)(–1,1)(B)(1,2)(C)(–1,+∞)(D)(1,+∞)2已知复数z =2+i,则z z ⋅=()(C)3(D)53下列函数中,在区间(0,+∞)上单调递增的是()(A)12y x=(B)y =2x-(C)12log y x=(D)1y x=4执行如图所示的程序框图,输出的s 值为()(A)1(B)2(C)3(D)45已知双曲线2221x y a-=(a ,则a =()(B)4(C)2(D)126设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的()(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件7在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为k m 的星的亮度为k E (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为()(A)1010.1(B)10.1(C)lg10.1(D)10.110-8如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为()(A)4β+4cos β(B)4β+4sin β(C)2β+2cos β(D)2β+2sin β9.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=()A.16B.8C.4D.210.已知曲线e ln xy a x x =+在点(1,a e)处的切线方程为y =2x +b ,则()A.a=e,b =-1B.a=e,b =1C.a=e -1,b =1D.a=e -1,1b =-11.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx﹣ay+2ab=0相切,则C 的离心率为()A.B.C.D.12.(5分)已知函数f(x)=x 2﹣2x+a(e x﹣1+e ﹣x+1)有唯一零点,则a=()A.﹣B.C.D.1二、填空题13.(5分)已知向量=(﹣2,3),=(3,m),且,则m=.14.(5分)双曲线(a>0)的一条渐近线方程为y=x,则a=.15.(5分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.(5分)设函数f (x)=,则满足f (x)+f (x﹣)>1的x 的取值范围是.三、解答题17.(本题满分12分)已知函数)1,0()(≠>+=b b b a x f x的图象过点)4,1(和点)16,2(.(1)求)(x f 的表达式;(2)解不等式23)21()(xx f ->;(3)当]4,3(-∈x 时,求函数6)(log )(22-+=x x f x g 的值域.18.(本题满分12分)设)(x f 是定义在),0(+∞上的增函数,当),0(,+∞∈b a 时,均有)()()(b f a f b a f +=⋅,已知1)2(=f .求:(1))1(f 和)4(f 的值;(2)不等式2()2(4)f x f <的解集.19.(12分)如图四面体ABCD 中,△ABC 是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD 是直角三角形,AB=BD,若E 为棱BD 上与D 不重合的点,且AE⊥EC,求四面体ABCE 与四面体ACDE 的体积比.20.(12分)在直角坐标系xOy 中,曲线y=x 2+mx﹣2与x 轴交于A、B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC⊥BC 的情况?说明理由;(2)证明过A、B、C 三点的圆在y 轴上截得的弦长为定值.21.(12分)已知函数f(x)=lnx+ax 2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤﹣﹣2.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy 中,直线l 1的参数方程为,(t 为参数),直线l 2的参数方程为,(m 为参数).设l 1与l 2的交点为P,当k 变化时,P 的轨迹为曲线C.(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cosθ+sinθ)﹣=0,M 为l 3与C 的交点,求M 的极径.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x 2﹣x+m 的解集非空,求m 的取值范围.四川省2024年普通高校对口招生统一考试数学试卷(含答案)一、选择题:本大题共12小题,每小题5分,共60分。

全国对口单独招生考试数学试卷(答案) (7)

全国对口单独招生考试数学试卷(答案) (7)

全国对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为()A.B.C.D.2.“032>x ”是“0<x ”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件3.已知函数x>0,若f(a)+f(1)=0,则实数a 的值等于()A.3B.1C.-3D.-14.函数()52ln -+=x x x f 的零点个数为()A.0B.1C.2D.35、直线b y x =+43与圆012222=+--+y x y x 相切,则b 的值是()A、-2或12B、2或-12C、-2或-12D、2或126.椭圆标准方程为x 22t+4+y 24−t =1,一个焦点为(-3,0),则t 的值为()A、-1B、0C、1D、37.如图,I 是全集,M、P、S 是I 的3个子集,则阴影部分所表示的集合是()A.()S P M B.()S P M C.()SC I P M D.()SC P M I Oxxxxy yy yOOO8.函数()|2|f x x =-的定义域为()A.1,3⎡⎫+∞⎪⎢⎣⎭B.()1,22,3⎡⎫+∞⎪⎢⎣⎭C.1,23⎡⎫⎪⎢⎣⎭D.(2,)+∞9.已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d=()A.-2B.-12C.12D.210.设..(),(),log (log ),a b c ===050433434443则()A.c b a <<B.a b c<<C.c a b<<D.a c b<<11.已知点G 是ABC ∆的重心,AC AB AG μλ+=(λ,R ∈μ),若0120=∠A ,2-=⋅AC AB ,则AG 的最小值是()A.33B.22C.32D.4312.已知直线(0)y kx k =>与函数|sin |y x =的图象恰有三个公共点112233(,),(,),(,)A x yB x yC x y ,其中123x x x <<,则有()A.3sin 1x =B.333sin cos x x x =C.333sin tan x x x =D.33sin cos x k x =13.方程y =x 2−4x +4所对应曲线的图形是()174.若角α的终边经过点(4,-3),则cos2α的值为(A )A、725B、−1625C、−725D、162514、函数12--=x x y 的图像是()A .开口向上,顶点坐标为)(45,21-的一条抛物线;B .开口向下,顶点坐标为)(45,21-的一条抛物线;C .开口向上,顶点坐标为(45,21-的一条抛物线;D .开口向下,顶点坐标为)(45,21-的一条抛物线;15.动点M 在y 轴上,当它与两定点E(4,10)、F(-2,1)在同一条直线上时,点M 的坐标是()A、(1,6)B、(1,5)C、(0,4)D、(0,3)16.“2019k2−1=1”是“k=1”的()A、充分不必要条件B、必要不充分条件C、充分且必要条件D、既不充分也不必要条件17.某旅游景点有个人票和团队票两种售票方式,其中个人票每人80元,团队票(30人以上含30人)打七折.按照购票费用最少原则,建立实际游览人数x 与购票费用y (元)的函数关系,以下正确的是()A、y =80x ,0≤x <24,x ∈N 1344,24≤x ≤30,x ∈N56x ,x >30,x ∈NB、y =80x ,0≤x <21,x ∈N 1680,21≤x ≤30,x ∈N 56x ,x >30,x ∈NC、y =80x ,0≤x <24,x ∈N 1920,24≤x ≤30,x ∈N 56x ,x >30,x ∈ND、y =80x ,0≤x <21,x ∈N 2400,21≤x ≤30,x ∈N 56x ,x >30,x ∈N18、设2a=5b=m,且1a +1b =3,则m 等于()A、310B.10C.20D.10019、已知f(12x-1)=2x+3,f(m)=8,则m 等于()A.14B、-14C、32D.-3220、函数y=lg x+lg(5-2x)的定义域是()A.)25,0[B.⎦⎤⎢⎣⎡250,C.)251[,D.⎥⎦⎤⎢⎣⎡251,二、填空题(共计30分)1、已知A(1,1)、B(3,2)、C(5,3),若AB CA l = ,则λ为_____.2、双曲线2212516y x -=的两条渐近线方程为_______________.3、已知一个等差数列的前五项之和是120,后五项之和是180,又各项之和是360,则此数列共有______项;4.已知数列{}n a 的通项公式为5+=n a n ,从{}n a 中依次取出第3,9,27,…,n3,…项,按原来的顺序排成一个新的数列,则此数列的前n 项和为______________;5.在正项等比数列{}n a 中,1a ,99a 是方程016102=+-x x 的两个根,则605040a a a ⋅⋅的值为_______;三、大题:(满分30分)1、在△ABC 中,已知4,5b c ==,A 为钝角,且4sin 5A =,求A、2、已知函数,其中a,b∈R,e=2.71828…为自然对数的底数。

2022年对口单独招生考试数学试真题两卷(后面答案)

2022年对口单独招生考试数学试真题两卷(后面答案)

其中奇数的个数为( )
A.6 B.12 C.18 D.24
x2
7.设双曲线
y2 3
1 x2
,2
y2 5
1 y2
,2
x2 7
1的离心率分别为 e1 ,e2 ,e3 ,则(

A. e3 e2 e1 B. e3 e1 e2 C. e1 e2 e3 D. e2 e1 e3
8.若函数 f (x) x lg(mx x 2 1) 为偶函数,则 m ( )
10、已知 f (x) kx b ,且 f (1) 1, f (2) 3,则 k ______, b ______
三、大题:(满分 30 分)
1、已知函数
f
(x)
x3
x x
b
,{an} 是等差数列,且 a2
f
(1) , a3
f
(2)
, a4
f
(3) .
(1)求{an} 的前 n 项和; (2)求 f (x) 的极值.
故选:D
【点睛】
本题考查了正弦定理在解三角形中的简单应用,属于基础题.
5、答案.A
【解析】
【分析】
根据空间中点、线、面位置关系,逐项判断即可.
【详解】 ①若 m , m n ,则 n 与 位置关系不确定; ②若 n ,则 存在直线l 与 n 平行,因为 m ,所以 m l ,则 m n ; ③当 m , m , n , n 时,平面 , 平行; ④逆否命题为:若 m 与 n 垂直于同一平面,则 m, n 平行,为真命题.
A. {-1,1}
B. {-1}
C. {1,3}
D( )
A. [0,4]
B. (1,4)
C. [-4,0)∪(0,4]

湖南省 2022年普通高等学校对口招生考试数学试卷及参考答案

湖南省 2022年普通高等学校对口招生考试数学试卷及参考答案

湖南省2022年普通高等学校对口招生考试数学试卷本试题卷包括选择题、填空题和解答题三部分,共5页。

时量120分钟。

满分120分。

一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U ={1,3,5,7},集合A ={3,5},则C U A =A.{1,7}B.{1,5}C.{3,7}D.{5,7}2.“(x +1)(x -3)=0”是“x =3”的A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件3.已知cos α=−31,且α∈(-π,0),则sin α=A.322-B.32 C.322 D.−324.下列函数中既是偶函数,又在区间(0,+∞)上单调递增的是A.y =cos xB.y =4xC.y =2x 2+1D.y =ln x5.已知sin 2x =a -1,则实数a 的取值范围是A.[-1,1]B.[0,1]C.[0,2]D.[-2,0]6.已知向量a =(2,-1),b =(-3,4),则a ·(2b -a )=A.-25B.-10C.10D.257.不等式|2x +5|>7的解集是A.(-6,1)B.(-∞,-6)∪(1,+∞)C.(-1,6)D.(-∞,-1)∪(6,+∞)8.已知a =0.90.9,b =0.91.8,c =1.80.9,则a ,b ,c 的大小关系是A.b <c <aB.a <c <bC.a <b <cD.b <a <c9.已知两条不同的直线m ,n 与平面α,则下列命题正确的是A.若m //α,n //α,则m //nB.若m ⊥n ,m//α,则n ⊥αC.若m ⊥n ,m ⊥α,则n ⊥αD.若m ⊥α,n ⊥α,则m //n10.已知点P 在直线l :x -y -6=0上,点Q 在圆O :x 2+y 2=2上,则|PQ |的最小值为A.24B.23C.22D.2二、填空题(本大题共5小题,每小题4分,共20分)11.在一次“党史”知识竞赛中,参加知识竞赛的10名学生的成绩如下表:成绩92959698人数1243则这10名学生的平均成绩是.12.经过点M (0,-2),且与直线x +y +1=0平行的直线方程为.13.若角α的终边经过点P (21,−23),则sin 2α=.14.如图,高为5cm,底面边长是3cm 的正四棱柱形工件,以它的两底面中心的连线为轴,钻出一个直径是2cm 的圆柱形孔,则剩余部分几何体的体积是____cm 3(圆周率π取3.14).(第14题)15.若数列{a n }满足a 1=1,且a n +1=2a n +1,则数列{a n }的通项公式a n =.三、解答题(本大题共7小题,其中第21,22小题为选做题,满分60分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知函数f (x )=1+log 4(x +m ),f (1)=2.(1)求实数m 的值,并写出f (x )的定义域;(2)若f (x )<3,求x 的取值范围.、已知等差数列{a n}满足a1=1,a5-a3=4.(1)求a10;(2)设数列{a n}的前n项和为S n,问:S4,S8,S16是否成等比数列?请说明理由.18.(本小题满分10分)某班拟组织部分学生参观爱国主义教育基地.已知该班第一小组有5名男生与3名女生,从中任意选取3名学生去参观.(1)用ξ表示选取的3人中女生的人数,求ξ的分布列;(2)求选取的3人中,女生人数多于男生人数的概率.如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥B C.(1)证明:平面PBC ⊥平面PAB ;(2)若AB =BC =2,直线PB 与平面ABC 所成的角为60°,求三棱锥P -ABC 的体积.(第19题)20.(本小题满分10分)已知双曲线C :12222=-by a x =1(a ,b >0)的离心率为26,左、右焦点分别为F 1,F 2,且|F 1F 2|=23(1)求双曲线C 的方程;(2)设直线y =x +3与双曲线C 相交于M ,N 两点,求MNF 2的面积.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)如图,点D为等边三角形ABC的边BC上一点,且BD=2DC,AD=7.(1)求CD的长;(2)求sin∠BAD的值.(第21题)22.(本小题满分10分)某工厂生产甲、乙两种电子产品,每生产一件甲产品需要A,B配件分别为4件和2件;每生产一件乙产品需要A,B配件分别为4件和6件.该厂每天可从配件厂最多获得A配件20件和B 配件18件,且生产一件甲产品的利润为4千元,生产一件乙产品的利润为5千元.问如何安排生产,才能使工厂每天利润最大?并求出利润的最大值.湖南省2022年普通高等学校对口招生考试数学试卷参考答案一、选择题1.A2.B3.A4.C5.C6.A7.B8.D9.D10.C二、填空题11.9612.02=++y x 13.23-14.29.315.12-n三、解答题16.解:(1))3(log 1)(32)1(log 1)1(44++=∴=⇒=++=x x f m m f 函数)(.3-)(303∞+->⇒>+,的定义域为即x f x x (2)1316316log 2)3(log )3(log 1)(444<⇒<+⇒=<+⇒++=x x x x x f )()(.133-3)(3-)(,的取值范围为时,的定义域为又x x f x f <∴∞+ 17.解:(1).19291924211035=⨯+=+=∴=⇒==-d a a d d a a (2)在等差数列{}n a 中.,,S 2562120116120161516211664228182887821816261464342141684164281116118114成等比数列S S S S S d a d a S d a d a S d a d a S ∴⋅==⨯+⨯=+=⨯⨯⨯+==⨯+⨯=+=⨯⨯⨯+==⨯+⨯=+=⨯⨯⨯+=18.解:(1)ξ可分别取0,1,2,3.561)3(5615)2(28155630)1(2855610)0(38333823153813253835==============C C P C C C P C C C P C C P ξξξξξ的分布列为ξ123P28528155615561(2)女生人数多于男生人数的概率为725615615)3()2(=+==+=ξξP P 19.解:(1)BCPA ABC⊥∴⊥平面P A PABPBC 平面平面平面则又⊥∴⊥=⋂⊥P ABBC AP A AB BC AB (2)60=∠∴⊥PBA ABC PB ABC P A 所成角即为与平面直线平面33432222131S 3132tan ABC -=⨯⨯⨯⨯===<⋅=h V PBA AB P A P AB ABC P 中,在直角三角形20.解:(1)3322F F 21=⇒==c c 12C 123226322222=-=-=-==⇒===y x a c b a a a c e 的方程为即双曲线(2)设M 、N 两点的坐标分别为()()2211,,,y x y x 3462421216)1(13032484)34(24)(183402834123222222122122121222=⨯⨯===-++-==⨯--=-++==-=+=++⇒⎪⎩⎪⎨⎧=-+=∆d MN S d F x x x x k MN x x x x x y x x y MNF 到直线的距离根据韦达定理可得21.解:(1)设AB 长为a ,则BD=a 32,DC=a 31在等边三角形ABC 中,131360cos 322)32(7cos 2222222===⇒⋅⋅-+=⇒⋅-+=︒a CD a a a a a BBD AB BD AB AD 则(2)在三角形ABD 中,根据正弦定理可得721sin sin sin sin =∠=∠⇒∠=∠AD B BD BAD B AD BAD BD 22.解:设生产甲产品为x 件,乙产品为y 件,公司获利为Z 元,则z =4000x +5000y由题意得:⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+⇒⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+009350018622044y x y x y x y x y x y x 如右图所示,当x =3,y =2时,Z max =4000×3+5000×2=22000(元)答:生产甲产品为3件,乙产品为2件时,公司获利最大为22000元.x+y=5yx x+3y=9o 、A (3,2)59534x+5y=0。

2024年四川省对口升学数学试题 以及解析

2024年四川省对口升学数学试题 以及解析

四川省2024年普通高校对口招生统一考试数学试题第Ⅰ卷(选择题共60分)一、选择题(本大题共15个小题,每小题4分,共60分。

在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知集合{}2,1,0,1,2M =--,{}0,1,2N =,则=M N ⋂().A {}2,1,0--.B {}1,0,1-.C {}0,1,2.D {}2,1,0,1,2--2.函数()()2333x f x log x -=--的定义域是().A ()3,-+¥.B [)3,-+¥.C ()3,+¥.D [)3,+¥3.3090cos cos +=o o ().A 2-.B 12-.C 12.D 24.已知平面向量()2,3=-a ,()2,1=--b ,则=×a b ().A 2-.B 1-.C 1.D 25.不等式122x <-<的解集为().A ()0,4.B (-∞,1)È(4,+∞).C ()1,3.D ()()0,13,4È6.过点()11,且与直线20x y -=垂直的直线的方程是().A 230x y +-=.B 210x y +-=.C 230x y --=.D 210x y --=7.224lg 22lg 4lg 25lg 25++=().A 1.B 2.C 4.D 258.函数()2sin y x ωϕ=+的部分图象如图所示,其中0ω>,2πϕ<,则().A 2sin 26x y π⎛⎫=- ⎪⎝⎭.B 2sin 23x y π⎛⎫=- ⎪⎝⎭.C 2sin 26y x π⎛⎫=- ⎪⎝⎭.D 2sin 23y x π⎛⎫=- ⎪⎝⎭9.已知椭圆()2222103x y m m m+=>的左焦点为()4,0-,则m 的值为().A .B .C 3.D 410.某保险公司为了解购买某险种的1000名投保人的出险次数情况,随机调查了其中100名投保人的出险次数,得到如下表格:出险次数01234³投保人数a 292583则下列结论中正确的是().A 表中a 的值为25.B 调查的这100名投保人的出险次数的均值大于1.C 购买该险种的100名投保人的出险次数是总体.D 估计购买该险种的所有投保人中,出险次数不低于3次的人数为1111.已知0.22a =,0.33b =,20.2c =,则a b c 、、的大小关系为().A a b c >>.B a c b >>.C b a c>>.D b c a >>12.设a R Î,则“1tan α=-”是“34πα=”的().A 充分不必要条件.B 必要不充分条件.C 充要条件.D 既不充分也不必要条件13.一个温度为0T C o 的物体移入恒温a C o 的室内,t 分钟后该物体的温度为T C o .已知T 与t 的关系可以表示为()0kt T a T a e -=+-,其中0k >.现将温度为90C o 的该物体移入恒温10C o 的室内,20分钟后该物体的温度为50C o ,则再过20分钟该物体的温度为.A 10C o .B 20C o .C 30C o .D 40Co 14.设αβγ、、是三个不同的平面,l m 、是两条不同的直线.给出下列四个命题:①若∥a g ,∥b g ,则a b ∥;②若a g ^,b g ^,则a b ∥;③若l ∥a ,m ∥b ,l m ∥,则a b ∥;④若l a g Ç=,m b g Ç=,l m ∥,则a b ∥.其中正确命题的个数是().A 1.B 2.C 3.D 415.已知定义在R 上的函数()f x 满足()()66f x f x -=+.当31x -£<时,()22f x x x =--;当19x £<时,()4f x x =-.则()()()()1232024f f f f +++⋅⋅⋅+=().A 328.B 332.C 336.D 340第Ⅱ卷(非选择题共90分)二、填空题(本大题共5个小题,每小题4分,共20分)16.已知抛物线22y px =过点()3,6,则p =.17.若5(2+)x a 的展开式中2x 的系数为320-,则a =.18.某植物的快速生长期约有10天,在此期间该植物每天结束时的高度都为前一天结束时的高度的2倍.已知在快速生长期的第4天结束时,该植物的高度是20毫米,那么它在第7天结束时的高度为毫米.19.已知函数()()ln 11b f x x a x ⎛⎫=++ ⎪+⎝⎭是偶函数,其中,a b ∈R ,则a b -=.20.已知平面向量,a b 满足3=a ,1=b ,则++-a b a b 的最大值是.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)为弘扬中华优秀传统文化,某学校将开展传统文化知识竞赛.已知该学校的文学、朗诵、书画、戏曲4个社团的人数分别为140,112,56,28,且每个社团的成员都只参加了1个社团.竞赛组委会拟采用分层抽样的方法从以上4个社团中抽取12名同学担任志愿者.(1)求应从这4个社团中分别抽取的志愿者人数;(2)若从抽取的12名志愿者中随机抽取3名担任竞赛分数统计员,求抽取的3名统计员中恰有2名来自同一社团的概率.22.(本小题满分12分)已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且23sin sin 2122A A π⎛⎫++= ⎪⎝⎭.(1)求角A 的大小;(2)若cos sin c b A B =+,证明:ABC ∆为直角三角形.23.(本小题满分12分)如图,已知四棱锥P ABCD -的底面为长方形,PA ABCD ⊥底面,1AB PA ==,AD =E 为BC 的中点.(1)证明:PE BD ⊥;(2)求二面角P BD A --的正切值.24.(本小题满分12分)设数列{}n a 的前n 项和n S 满足:()121n n S n a +=+,且321S =.(1)求数列{}n a 的通项公式;(2)求数列12n S n ⎧⎫⎨⎬+⎩⎭的前n 项和n T .25.(本小题满分12分)设a ∈R ,函数()2335f x x ax a =-+-.(1)设函数()f x 的图象与x 轴相交于A B 、两点,且2153AB =,求a 的值;(2)若()0f x <对任意的[]1,1a ∈-恒成立,求实数x 的取值范围.26.(本小题满分12分)设k ∈R ,过定点A 的动直线240kx y k --+=和过定点B 的动直线0x ky +=相交于点M .(1)求定点A B 、的坐标,并求点M 的轨迹方程;(2)求MA +的最大值.四川省2024年普通高校对口招生统一考试数学试题相关解析第Ⅰ卷(选择题共60分)一、选择题(本大题共15个小题,每小题4分,共60分。

2023年对口单独招生考试数学试卷(答案

2023年对口单独招生考试数学试卷(答案

2023年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分.)1、已知集{1,2,3},B {1,3}A ==,则A B = ()A.{2}B.{2,3}C.{1,3}D.{1,2,3}2、已知集合{}{}3,2,3,2,1==B A ,则()A.B A =B.=B A ∅C.B A ⊆D.AB ⊆3、若集合{}1,1M =-,{}2,1,0N =-,则M N = ()A.{0,-1}B.{1}C.{0}D.{-1,1}4、设A,B 是两个集合,则“A B A = ”是“A B ⊆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为()A .0B .1C .2D .56.椭圆标准方程为x 22t+4+y 24−t =1,一个焦点为(-3,0),则t 的值为()A.-1B.0C.1D.37.已知两直线l1、l2分别平行于平面β,则两直线l1、l2的位置关系为()A.平行B.相交C.异面D.以上情况都有可能8.圆的一般方程为x2+y2-8x+2y+13=0,则其圆心和半径分别为()A.(4,-1),4B.(4,-1),2C.(-4,1),4D.(-4,1),29.已知100张奖券中共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率为()A.110000 B.150 C.3100D.1710010.a 、b 、c 为实数,则下列各选项中正确的是()A.a-b <0⇔a-c <b-cB.a-b >0⇔a >-bC.a-b >0⇔-2a >-2bD.a >b >c >0⇔ab >ac11.sin1050°的值为()A.22 B.32 C.−12D.1212.双曲线x 2a 2−y 2b 2=1的实轴长为10,焦距为26,则双曲线的渐渐近线方程为()A.y =±135x B.y =±125x C.y =±512xD.y =±513x13.方程y =x 2−4x +4所对应曲线的图形是()174.若角α的终边经过点(4,-3),则cos2α的值为(A )A.725 B.−1625C.−725D.162514、函数12--=x x y 的图像是()A .开口向上,顶点坐标为(45,21-的一条抛物线;B .开口向下,顶点坐标为)(45,21-的一条抛物线;C .开口向上,顶点坐标为(45,21-的一条抛物线;D .开口向下,顶点坐标为)(45,21-的一条抛物线;15.动点M 在y 轴上,当它与两定点E(4,10)、F(-2,1)在同一条直线上时,点M 的坐标是()A.(1,6)B.(1,5)C.(0,4)D.(0,3)16.“2019k2−1=1”是“k=1”的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件17.某旅游景点有个人票和团队票两种售票方式,其中个人票每人80元,团队票(30人以上含30人)打七折.按照购票费用最少原则,建立实际游览人数x 与购票费用y (元)的函数关系,以下正确的是()A.y =80x ,0≤x <24,x ∈N 1344,24≤x ≤30,x ∈N 56x ,x >30,x ∈NB.y =80x ,0≤x <21,x ∈N 1680,21≤x ≤30,x ∈N 56x ,x >30,x ∈NC.y =80x ,0≤x <24,x ∈N 1920,24≤x ≤30,x ∈N56x ,x >30,x ∈ND.y =80x ,0≤x <21,x ∈N 2400,21≤x ≤30,x ∈N 56x ,x >30,x ∈N18、设2a =5b =m ,且1a +1b =3,则m 等于()A.310B .10C .20D .10019、已知f(12x -1)=2x +3,f(m)=8,则m 等于()A .14 B.-14C.32D .-3220、函数y =lg x +lg(5-2x)的定义域是()A .)25,0[B .⎥⎦⎤⎢⎣⎡250,C .)251[,D .⎥⎦⎤⎢⎣⎡251,二、填空题(共10小题,每小题3分;共计30分)1、已知集合}3,2,1{=A ,}5,4,2{=B ,则集合B A 中元素的个数为_____.2、已知A ={-1,3,m},集合B ={3,4},若B ∩A =B ,则实数m =_____.3、设集合A ={-1,1,-2},B ={a +2,a2+4},A ∩B ={-2},则实数a =_____.4、已知集合}42<<=x x A {,B=}0)3)(1{<--x x x (,则B A =_____.(用区间表示)5、已知集合}32|{2≥-=x x x P ,}42|{<<=x x Q ,则=Q P _____.(用区间表示)6、设集合{}xx x M ==2,{}0lg ≤=x x N ,则=N M _____.(用区间表示)7、已知f(x5)=lg x ,则f(2)=_____.8、3-2,213,5log 2三个数中最大的数是_____.9、16log 01.0lg 2+的值是_____.10、=-+-1)21(2lg 225lg _____.三、大题:(满分30分)1、在△ABC 中,已知4,5b c ==,A 为钝角,且4sin 5A =,求a.2、判断函数32(+-=x x f )在),(+∞-∞上是减函数.3、已知函数f(x)=x2-2x +2.求f(x)在区间[12,3]上的最大值和最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2000年某省高等职业教育 对口招生考试数学试题及参考答案
试 题
一、选择题(本大题共15个小题,每小题5分,共75分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出,并将前面的代号填在题后的括号内.多选、错选均不得分)
(1)设全集I ={0,1,2},集合M ={1,2},N ={0},则I M N I ð是( )
A .
B .M
C .N
D .I (2)曲线x 2+y 2–1=0与坐标轴交点的个数是( )
A .1
B .2
C .3
D .4
(3)若命题甲:a >0,命题乙:a 2>0,则( ) A .命题甲是命题乙的充要条件 B .命题甲是命题乙的充分条件 C .命题甲是命题乙的必要条件
D .命题甲既不是命题乙的充分条件也不是命题乙的必要条件
4.在△ABC 中,若b =2,c ,∠B =60°,则∠C 等于( )
A .30°
B .45°
C .60°
D .90° 5.过点P (1,–3)且与向量n =(–4,3)垂直的直线方程是( )
A .4x –3y –13=0
B .–4x +3y –13=0
C .3x –4y –15=0
D .–3x +4y –13=0
6.若函数y =x 2+2(a –b )x +a 2与X 轴有两个交点,且b <0,则a 与b 的关系是( )
A .a >b
B .a >2b
C .a >2
b
D .a <b
7.函数f (x )=|x |+cos x ( )
A .是偶函数
B .是奇函数
C .既是奇函数又是偶函数
D .既不是奇函数又不是偶函数
8.从1,2,3,4,5,6这六个数字中,任取两个数字,恰有一个偶数的概率是( )
A .1
B .0.8
C .0.6
D .0.2
9.点P (2,a )为第一象限内的点,且到直线4x –3y +2=0的距离等于4,则a 的值是( )
A .4
B .6
C .8
D .10 10.下列命题:
① 若两个平面都垂直于同一个平面,则这两个平面互相平行.
② 两条平行直线与同一个平面所成的角相等.
③ 若一个平面内不共线的三点到另一个平面的距离相等,则这两个平面平行. ④ 若一条直线和一个平面相交,并且和这个平面内的无数条直线垂直,则这条直线和这个平面垂直.
其中,正确命题的个数为( )
A .4
B .3
C .2
D .1 11.二项式(x –2y )n 的展开式中各项系数的和为( )
A .2n
B .(–2)n
C .(–1)n
D .1 12.点P (lg a ,lg b )关于原点的对称点是P 1(–1,1),则a ,b 的值是( )
A .–1,1
B .1,–1
C .110,10
D .10,110
13.若二次函数y =ax 2+bx +1的图像的对称轴是x =1,且过点P (–1,7),则a ,b 的值
是( )
A .2,4
B .2,–4
C .–2,4
D .–2,–4 14.若log 4x =3,则log 16x 的值是( )
A .112
B .9
C .3
D .64
15.若正弦型曲线如图所示,则它的解析式为( )
A .y =2sin(x –π
4)+2
B .y =4sin(x –π
4)+2
C .y =2sin(x +π
4)+2
D .y =4sin(x +π4
)+2 二、填空题(本大题共6个小题,每小题5分,共30分,把答案填写在题中的横线上) 16.有4个女同学进行乒乓球双打比赛,配组方法有 种. 17.若方程x 2+y 2+(1–m )x +1=0表示圆,则m 的取值范围是 . 18.在区间(–∞,1)上,函数f (x )=2x 与g (x )=2x 的大小关系是 .
19.在人寿保险事业中,非常重视某一年龄的投保人的死亡率,假如1个投保人能活到65岁的概率为0.6,则3个投保人全部活到65岁的概率是 .
20.函数13
sin 2cos222
y x x =+的最小正周期是 .
21.如图所示,在矩形ABCD 中,将△ABD 沿对角线BD 折起,使A 点到A 1的位置,若点A 1在平面BCD 内的射影在CD 上,则BC 与A 1D 所成角的度数是 .
三、解答题(本大题共5个小题,共45分,解答应写出推理、演算步骤) 22.已知:a 1,a 2,a 3,…,a n ,…是等差数列,C 是正常数.
求证:C a 1,C a 2,C a 3,…,C a n ,…是等比数列.
23.已知:tan(x +π
4
)=–12,求:cos2x 的值.
24.已知:在边长为1的正方体ABCD –A 1B 1C 1D 1中,E 是A 1B 1的 中点.
求:cos<1, AE CA u u u r u u u r
>的值.
25.已知:P 是椭圆22
12516
x y +=上的一个动点,F 1,F 2是椭圆的两个
焦点,当12PF PF g 取得最大值时
(1)求点P 的坐标.
(2)求12PF PF u u u r u u u r
g 的值.
26.《中华人民共和国个人所得税法》第十四条中有下表:个人所得税税率表一(工资、薪金所得适用)
组别 全月应纳税所得额 税率(%) 1 不超过500元部分 5 2
超过500元至2000元部分 10 3 超过2000元至5000元部分 15 4 超过5000元至20000元部分 20 5 超过20000元至40000元部分 25 6 超过40000元至60000元部分 30 7 超过60000元至80000元部分 35 8 超过80000元至100000元部分 40 9
超过100000元部分
45
目前,上表中“全月应纳税所得额”是从月工资、薪金收入中减去1000元后的余额.例如:某人月工资1220元,减去1000元,应纳税所得额是220元,应纳个人所得税是:
220×5%=11(元)
(1)写出月工资、薪金的个人所得税y 关于收入额(月工资、薪金)
x (0<x 4000)的函数表达式,并画出函数的图像.
(2)一公司职员某月缴纳个人所得税185元,问他该月工资薪金收入多少元?。

相关文档
最新文档