全等三角形教案
三角形全等判定的教案

画法:1画线段bc=4
2分别以a、b为圆心,以2和3为半径作弧,交于点c。则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?
归纳:有三边对应相等的两个三角形全等.
可以简写成“边边边”或“ sss ”用数学语言表述:
在△abc和△ def中
∴ △≌△ def(sss)
(二)新课讲解:
问题1:如图:在△abc和△def中,ab=de,bc=ef,ac=df, ∠a=
∠d, ∠b=∠e, ∠c=∠f,则△abc和△def全等吗?
问题2: △abc和△def全等是不是一定要满足
ab=de,bc=ef,ac=df, ∠a=∠d, ∠b=∠e, ∠c=∠f这六个条
件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角
满足三个条件有几种情形呢?
3.给出三个条件
三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一
角相等
例:画△abc,使ab=2,ac=3,bc=4
画法:1画线段bc=42分别以a、b为圆心,以2和3为半径作弧,交于点c。
则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否
1、如图,d、f是线段bc上的两点,
ab=ec,af=ed,要使△abf≌△ecd,还需要条件
2、已知:b、e、c、f在同一直线上, ab=de,ac=df a
并且be=cf,
求证: △ abc≌ △ def
小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。
2证明三角形全等的书写步骤。3证明三角形be全等应注意的问题。
我们知道如果两个三角形的对应边、对应角都相等,那么这两个三角形全等。判定两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?
第12章全等三角形-一边一角构造全等(教案)

-如何通过测量边长和角度来确定两个三角形是否满足SSS和SAS条件。
-应用全等三角形的性质解决实际问题:重点在于学生能够将全等三角形的性质应用于解决具体的几何问题,例如计算未知边长或角度。
2.教学难点
-理解全等三角形的判定过程:难点在于学生需要理解全等判定不是简单的图形比较,而是一个逻辑推理过程。以下是具体的难点细节:
-难以将全等三角形的性质灵活运用于不同的解题场景。
-在解决综合问题时,难以决定使用哪种全等判定方法。
在教学过程中,需要通过具体的例题、图形演示和实际操作,帮助学生明确重点,突破难点。教师应设计不同难度的练习题,从基础的概念巩固到综合应用题,逐步引导学生深入理解全等三角形的判定和应用。同时,应鼓励学生主动参与,通过小组讨论、上台演示等方式,提高他们对核心知识的掌握程度。
3.重点难点解析:在讲授过程中,我会特别强调SSS和SAS这两个全等判定的重点。对于难点部分,比如对应边和对应角的识别,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用模型或纸片来构造全等三角形,从而演示全等的基本原理。
-难以区分SSS和SAS条件,特别是在实际应用中。
-难以理解全等判定中的“对应”概念,容易混淆哪些边和角是需要比较的。
-难以从给定的信息中识别出可用于全等判定的要素。
-在实际问题中识别和应用全等三角形:难点在于学生需要将理论知识和实际问题联系起来,以下为具体的难点:
-难以从复杂的实际问题中抽象出全等三角形的模型。
第十二章全等三角形12.1全等三角形教案

在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:
第十二章-全等三角形-教案

初中数学导学案初中数学导学案学习例题:例1:找对应边,对应角⑴ 已知:△ ABC^A DBC DCB =、、D(2)>C已知:△ ABC^AAB^Z CD例2、已知:△ ABE^A DCF AB与DC是对应边,上〈A与/ D是对应角.BE=8,EF=3.(1) 求: CE AV --------------B 7=*(2)求证:AB// DCyC D巩固新知练习:课本P33复习巩固:1、2、找对应边和对应角分别是哪些。
1、全等用符号表示,读作:2、判断题(1)全等三角形的对应角相等,对应边相等。
( )(2)全等三角形的周长相等,面积也相等。
( )(3)周长相等的三角形是全等三角形。
( )达(4)面积相等的三角形是全等三角形。
( )标3、课本P33页3、4题训4、已知:(1)、△ ABE^A ACD (2)已知: △ACF^A练找出对应边,对应角•A*XBCA B CD小结1、(交流归纳)今天我们学了哪些内容:提2、谈谈本节课的收获:升教学反思初中数学导学案初中数学导学案初中数学导学案教学反思巩固新知练习:课本P41页练习第1、2题•••△ ADC BOD ()•••△ ADC BOD (3、如图,AB 丄BC,AD 丄DC,/ 仁/2。
求证AB = AD。
4、如图,要测量河两岸相对的两点A, B的距离,可以在AB的垂线BF上取两点C, D,使BC=CD再定出BF的垂线DE使A, C,E在一条直线上,这时测得DE的长就是AB的长。
为什么?1、区分ASA和AAS AS 两角一夹边对应相等;AA两角及其中一角的对边对应相等,两种方法可以相互转化.3、证明属于两个三角形的线段相等或角相等的问题,常通过证明这两个三角形全等来解决例2、如图,/ ACB M DBC / A=Z D.求证:AC=DB.达标训练1、如图,某同学把一块三角形的玻璃打碎成了3块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是 ___________A、带①去B、带②去C、带③去 D 带①②③去2、如图,应填什么就有「/ A= / B (已知)J _____________ (已知)/ C= / D (已知)△ AOC 也△ BODA= / B (已知)(CA=DB (已知小结提升)C E初中数学导学案教学反思1、在Rt△ ABC和Rt△ DEF中,/ ACB=/ DFE=90。
数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇

教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《全等三角形》教案
教学内容:《全等三角形》的复习
课程目标:1、回顾全等三角形的定义、性质和判定
2、会按照规定书写全等三角形的证明过程
3、了解中考中全等三角形的相关例题,并学会用辅助线合理构造全等三角形。
教学重点:全等三角形证明的书写格式,合理构造全等三角形。
教学难点:通过条件寻找全等关系,或构造全等关系。
教学准备:ppt课件
/
学情分析:该部分内容为初三中考前的复习,学生对内容已经比较了解,只需要加强记
忆和巩固复习。
同时也需要学生把握中考动态,了解全等三角形在中考中的出题类型。
教学过程:
前面我们已经对三角形的性质和特点进行了专门的复习,那么今天我们要对两个三角形的关系——三角形的全等关系进行复习。
我们都知道两个三角形能都完全重合我们就说这两个三角形全等,而在实际应用中全等的三角形往往是通过平移或旋转得到。
既然能够重合,那么我们也就得到三角形的性质是对应边相等,对应角也相等。
而在这六个关系中我们只需要得到指定的三种等量关系就可以判定两个三角形全等。
那我们一起来看看书上57页,一起完成知识梳理的内容。
一、知识梳理:(该部分内容设计由全班同学一起回忆并口答,教师在课件上板书。
时间为3分钟)
1、全等三角形:能够完全重合的三角形叫全等三角形。
2、三角形全等的判定方法:SSS 、SAS 、ASA 、AAS 。
直角三角形全等的判定除以上的方法还有HL 。
3、全等三角形的性质:全等三角形对应边相等、对应角也相等。
4、全等三角形的面积相等、周长相等、对应高、对应边的中线、对应角的角平分线相等。
{
二、预习自测:(该部分内容由学生自行完成,时间为2分钟)
1、如图下列条件中,不能证明△ABD △ACD的是( D )
=DC,AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C, ∠BAD=∠CAD
D. ∠B=∠C,BD=DC
[
2、两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是
A D
C
O
D C
B
A
一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC ⊥BD ;②AO=CO=
21AC;③△ABD ≌△CBD ,其中正确的结论有( D ) |
个 个 个 个
三、典例分析:
例1、(该题比较容易,由教师引导解题思路学生自行解答,不在课堂安排时间)
已知:在四边形ABCD 中AB ∥CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F.求证:AB=CF.
分析:求证△CFE ≌△BAE
例2、(该题将作为本节课一道证明三角形全等的典型例题进行分析,主要要求学生在证明题过程书写时符合规范,时间设计为3分钟)
如图。
AC=AE ,∠1=∠2,AB=AD.求证:BC=DE.
证明:∵∠1=∠2 《 ∴∠1+∠BAE =∠2+∠BAE 则∠CAB=∠EAD
又∵AC=AE , AB=AD
∴△CAB ≅△EAD(SAS)
所以BC=DE.
三、合作交流:(该部分内容由学生自主练习,请两位同学分别将第
二题和第三题的过程书写在黑板上,学生书写时间为5分钟,教师讲
评5分钟)
1、如图,AF=DC,BC ∥EF ,请只补充一个条件 ,使△ABC ≅△
DEF,并说明理由。
答案:EF=BC / ∠A=∠D / AB ∥DE
2、如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,
求线段DF 的长。
证明:∵AD 和BE 是三角形ABC 的高
&
所以∠ADB=∠AEB=90°
又∵∠ABC=45°∴三角形ABD 是等腰直角三角形
则 AD=BD
又在Rt △BDF 中∠FBD+∠BFD=90°
在Rt △BDF 中∠EAF+∠AFE=90°
∠BFD=∠AFE (对顶角)
所以 ∠FBD=∠EAF
则Rt △FBD=△CAD(SAS)
'
∴DF=CD=4
[此题同学们主要是要利用互余关系找到角相等]
3.如图,已知AC ⊥ BC ,BD ⊥ AD ,AC 与BD 交于O ,AC =BD . — C E D B B
D C ;
E A
求证:(1)BC=AD ; (2)△ OAB 是等腰三角形.
证明:(1)∵AC ⊥BC,BD ⊥AD
∴ ∠D =∠C=90°
在Rt △ACB 和 Rt △BDA 中,
AB=BA ,AC=BD
∴ △ACB ≌ △BDA (HL )
∴BC=AD
(2)由△ACB ≌△BDA 得 ∠CAB =∠DBA
∴△OAB 是等腰三角形
[待学生完成后进行分析]
$
四、挑战中考:
一、填空题(该部分内容由学生自主练习,学生练习时间3钟,教师分析2钟)
1、如图,在△ABC 中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= 3 。
#
2、如图,在Rt △ABC 中,∠B=90°,沿AD 折叠,使点B 落在斜边AC 上,若AB=3,BC=4,
则BD= 23。
*
3、如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。
有以下四个结论:①AF ⊥BC ;②△ADG ≅△ABF;③O 为BC 的中点;④AG:DE=3:4,其中正确结论的序号是 ①②③④ 。
二、解答题
4、(该题比较容易,由教师引导解题思路学生自行解答,不在课堂安排时间)
在四边形ABCD 中,∠A=∠BCD=90°,BC=DC 。
延长AD 到E 点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC ≅△EDC 。
5、(该题将作为本节课的重点习题,并进行不同方法的探讨,计划时间为10分钟)
已知,如图,点D 在等边三角形ABC 的边AB 上,点F 在边AC 上,连接DF 并延长交BC 的延长线于点E ,EF=FD.求证:AD=CE.
方法一:证明:过点D 作DG ∥BC 交AC 于点G
∴∠GDF=∠E
]
又∠DFG=∠EFC(对顶角)且FD=EF
所以△DGF≌△ECF(ASA)
∴DG=CE
又DG∥BC 且△ABC是等边三角形
∴∠AGD=∠ACB=∠A=60°
所以△ADG也是等边三角形
则AD=DG
所以AD=CE(得证)
(
方法二:证明:过点D作DG∥AC交BC于点G
在△EDG中FD=EF
∴FC是△EDG的中位线
∴EC=CG
又△ABC是等边三角形
∴AD=CG(平行线分线段成比例)
所以AD=CE(得证)
…
6、(该题安排1-2名同学口述思路,计划时间为5分钟)
如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC鱼点D,已知AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长。
(1)证明:∵AN平分∠BAC ∴∠BAN=∠DAN
又∵BN⊥AN于点N ∴∠BNA=∠DNA=90°
且AN是公共边
所以△ABN≌△ADN(ASA)
所以BN=DN(得证)
(2)解:由(1)得AB=AD=10
因为M是边BC的中点,N是边BD的中点
所以MN是△BCD的中位线
则DC=2MN=6.
∴△ABC的周长=AB+BC+AD+DC=10+15+10+6=41
五、课堂总结:
全等三角形在中考中一般出现在填空、选择和证明题中。
也常常和其他几何体混合出题,我们在解题时要求同学们能根据已知找到全等关系也能够在没有现成的全等关系是学会通过做辅助线的方法构造全等形。