钯催化的交叉偶联反应——2010年诺贝尔化学奖获奖工作介绍
钯催化交叉偶联反应

钯催化的交叉偶联反应一、偶联反应综述1.交叉偶联反应偶联反应,从广义上讲,就是由两个有机分子进行某种化学反应而生成一个新有机分子的过程。
狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成的反应,根据类型的不同,又可分为自身偶联反应和交叉偶联。
交叉偶联反应是一个有机分子与另一有机分子发生的不对称偶联反应。
2.碳碳键形成的重要性新碳-碳键的形成在有机化学中是极其重要的。
人们了解了天然有机物质的结构和性能,并根据有机物质的结构,通过碳原子组装成链,建立有机分子,最终实现天然有机物质的人工合成。
目前为止,人类已经利用有机合成化学手段创造出几千万种物质,且越来越多的有机物质已经广泛应用到制药、建材、食品、纺织等人类生活领域,我们的生活也几乎离不开有机物了。
合成药物、塑料等有机物质时,需要用小的有机分子将碳原子连接在一起构建新的复杂大分子,因而有机合成中高效的连接碳-碳键的方法是有机合成化学中的重要工具。
从以往该领域诺贝尔化学奖的授予情况也可以看出合成新碳-碳键的重要性:1912年维克多·格林尼亚因发明格林尼亚试剂——有机镁试剂获奖,1950年迪尔斯和阿尔德因发明双烯反应迪尔斯-阿尔德反应获奖,1979年维蒂希与布朗因发明维蒂希反应共同获奖,2005年伊夫·肖万、罗伯特·格拉布、理查德·施罗克因在有机化学的烯烃复分解反应研究方面作了突出贡献获奖。
3.有机合成中的钯催化交叉偶联反应随着时代发展,合成有机化学的研究愈加深入,20世纪后半期,科学家们发现了大量通过过渡金属催化来创造新有机分子的反应,促使有机合成化学快速发展。
特别是赫克、根岸英一和铃木章发现的钯催化交叉偶联反应,为化学家们提供了一个更为精确有效的工具。
三位科学家发现的钯催化交叉偶联反应中都使用了金属钯作为反应的催化剂,当碳原子与钯原子连在一起时,钯原子唤醒了“懒惰”的碳原子但又不至于使它太活泼,于是形成温和的碳-钯键,在反应过程中,钯原子又可以把别的碳原子吸引过来,形成另一个金属-碳键,此时两个碳原子都连接在钯原子上,它们的距离足够接近而发生反应,生成新的碳-碳单键。
2010年诺贝尔化学奖简介及在命题中的应用

2010年诺贝尔化学奖简介及在命题中的应用科学前沿在劳力上劳心,是一切发明之母.事事在劳力上劳心,变可得事物之真理.陶行知福建江合佩2010年10月6日,瑞典皇家科学院授予美国科学家理查德F赫克、日本科学家根岸英一和铃木章2010年度诺贝尔化学奖,表彰他们在有机物合成过程中钯催化交叉偶联取得的巨大成就.化学奖评审委员会说,三人的研究成果向化学家们提供精致工具,大大提升合成复杂化学物质的可能性.1972年赫克率先发现借助钯催化,不用高温和高压,碳原子间可以相互接近至可以发生反应的距离,1977年根岸英一和1979年铃木章分别对这一理论作出补充,把研究范围扩大到更多有机分子,三位科学家创制了迄今所能使用的最复杂工具之一.碳原子化学性质不活泼,不愿相互结合.怎么让这些懒洋洋的碳原子活跃起来,好将它们凑作一堆?一百多年前人们已经想到办法,法国科学家格林尼亚发明了一种试剂,利用镁原子强行塞给碳原子2个电子,使碳原子变得活跃.但这样的方法在合成复杂大分子的时候有很大局限,人们不能控制活跃的碳原子的行为,反应会产生一些无用的副产物.在制造大分子的过程中,副产物生成得非常多,反应效率低下.赫克、根岸英一和铃木章通过实验发现,用钯作为催化剂可以解决这个问题.钯原子就像媒人一样,把不同的碳原子吸引到自己身边,使碳原子之间的距离变得很近,容易结合也就是偶联,而钯原子本身不参与结合.这样的反应不需要把碳原子激活到很活跃的程度,副产物比较少,更加精确而高效.这一技术让化学家们能够精确有效地制造他们需要的复杂化合物.目前钯催化交叉偶联反应技术已在全球的科研、医药生产和电子工业等领域得到广泛应用.作为一个发展中的大国,我们必须清醒地认识到:21世纪国与国之间的竞争说到底还是人才之间的竞争,而对于一个国家来说创新人才的培养至关重要.因此应该好好抓住诺贝尔化学奖这个非常好的教学资源,帮助学生拓宽视野,开阔思路,激发学生的创造愿望,培养学生的创新能力.基于此,设计了如下几。
钯催化的交叉偶联反应——2010诺贝尔化学奖简介

产治疗高血压 、 肾脏病等方 面的药 物 。 1本 医药 公司用 3
铃木 反应生产 的 降压 药 .0 9年在 1本 国 内就有 10 20 3 40
亿 1 ( 10 3 约 2 亿人 民币 ) 元 的销售额。电子领域也开始瞩
目“ 钯催 化的交叉偶 联反应 ” 相关成 果不 断被推 出 , , 手
21年 1 00 0月 61瑞典 皇家科学 院诺 贝尔颁奖委员 3 会把今 年 的诺贝尔化学 奖授予 美 国科学家 7 9岁的理 查 德一 赫克 ( i a ek 、 Rc r H c ) 1 hd 3本科学 家 7 5岁 的根岸英 一 ( iih E—ci ei i N g h)和 1本科学家 8 的铃木 章( kr s 3 0岁 A i a
铃木章 。 本公 民。9 0 出生于 1本北海道 。9 9 3 1 13 年 3 15 年在北 海道大学获得博士学位 。16 9 3年一 9 5 , 16 年 铃木 章在美 国普渡大学赫伯特 ・ 布朗教授指导下完成 博士后
研究 。 9 3 17 年起在北海道大学任教授。17 年 , 明“ 99 发 铃 木反应” 。铃木教授 的论文数量不多 。 且大都 以 1文的形 3 式发表在 了 1本 的学术 刊物 上。但 是 . 3 他的研究非 常严 密 , 出来的结果经得起反 复推 敲。为 了证实 自己的研 做 究结果具有可重复性 . 铃木教授不 惜购买全套 的新实验
尔化学奖的赫伯特 ・ 布朗( re rw ) 9 7 , He rB o n 。17 年 发明 bt “ 根岸反应” 。根岸现为美 国普 渡大学化学教授。当根岸 教授在大教 室照常讲授他 的课程 “ 有机化合物 的性质 ”
一
者, 真可谓名师出高徒。
二、 有机合成 中的钯催化交叉偶联反应
有机合成钯催化交叉偶联反应

有机合成中钯的催化交叉偶联反应20102401046吴健华摘要:2010年诺贝尔化学奖授予给美国化学家理查德·赫克、日本化学家根岸英一和铃木章,以表彰其发现的钯催化交叉偶联反应,更有效的连接碳原子以构建复杂分子。
钯催化交叉偶联反应,用于碳碳键形成的重要化学反应,因其反应条件温和,化学选择性高,副产品少,在有机合成领域中应用广泛。
本文综合概述了钯催化交叉偶联反应机理与发展,并对其应用领域及发展前景作简单介绍。
关键词:钯催化;交叉偶联反应;反应机理;碳碳键;有机合成;引言:碳是构成生命体的重要组成物质,而这些物质是以C-C单键或双键为基础,形成各种形式的碳胳化合物,组成生命体的各个部分。
而经过多年来的探究与改进,美国化学家理查德·赫克、日本化学家根岸英一及铃木章在有机合成中取得重大贡献与研究进展,发现钯催化交叉偶联反应,有效地连接碳原子,为构造更复杂的分子提供反应方法。
因此于2010年,诺贝尔化学奖颁发给他们三位在有机合成中杰出并取得重大贡献的有机化学家,以表彰他们在有机合成领域中所取得的卓越成就。
钯催化交叉偶联反应,作为五个被授予诺贝尔化学奖反应之一,其重要性则不言而喻。
前四个反应分别是Grignard反应(格氏反应,1912年),Diels-Alder反应(迪尔斯-阿尔德反应,1950年),Wittig反应(叶立德、维蒂斯反应,1979年)和Olefinmetathesis反应(烯烃的转位反应,2005年)。
在钯催化的交叉偶联反应中,反应步骤缩短,所需条件温和,副产品少,且可使大量的官能团在进程中得以保留而不被破坏,是一种可靠、实用的工具,广泛应用于精细化学及制药工业中, 对有机合成具有长久和深远的影响力,得到合成化学者的普遍应用。
一、钯催化交叉偶联反应机理与发展1.格氏试剂——拉开钯催化交叉偶联反应的序幕有机合成化学所构造出来的物质大部分都是以碳胳为骨架所构建起来的,然而碳原子本身十分稳定,在化学反应中并不活泼。
钯催化的交叉偶联反应——2010年诺贝尔化学奖简介

钯催化的交叉偶联反应——2010年诺贝尔化学奖简介1. 概述2010年,日本化学家中岛昌也和美国化学家赫克托·范多斯特尔因在有机合成领域做出的杰出贡献而获得诺贝尔化学奖。
其中岛昌也和范多斯特尔的研究成果涉及钯催化的交叉偶联反应,这一研究成果对有机合成领域产生了深远的影响。
2. 钯催化的交叉偶联反应的重要性钯催化的交叉偶联反应是一种重要的有机合成方法,它可以有效地将两种不同的有机物分子通过碳-碳键的形成连接在一起。
这种方法具有较高的选择性和效率,被广泛地应用于药物合成、农药合成、化学品合成等领域,对有机化学研究和工业生产具有重要意义。
3. 钯催化的交叉偶联反应的突破在20世纪70年代以前,有机合成领域的研究主要依赖于传统的化学方法,但这些方法往往需要使用大量的试剂和产生大量的副产物,效率较低。
钯催化的交叉偶联反应的突破,使得有机合成的效率大大提高,同时减少了有机化合物的废弃物产生。
4. 钯催化的交叉偶联反应的原理钯催化的交叉偶联反应的原理主要是在钯催化剂作用下,通过活化有机物中的卤素原子,使其与另一种有机物中的碱性碳原子发生键合。
其中岛昌也和范多斯特尔通过在反应条件、催化剂设计等方面的深入研究,使得钯催化的交叉偶联反应可以适用于更多的有机物种,提高了反应的广泛性和适用性。
5. 钯催化的交叉偶联反应的应用钯催化的交叉偶联反应在有机合成、药物合成、材料科学等领域都有广泛的应用。
通过该方法,可以高效合成复杂的有机分子,提高有机合成的效率和选择性,为新药物的研发提供了重要的手段和技术支持。
6. 结语钯催化的交叉偶联反应因其在有机合成领域的重要性和广泛的应用价值,成为2010年诺贝尔化学奖的得主。
有机合成领域的研究者们在钯催化的交叉偶联反应的基础上,不断拓展和深化研究,为有机合成的发展和创新做出了重要贡献。
该方法的突破性和影响力将继续推动有机合成领域的发展,并为人类社会的繁荣和进步做出更多贡献。
钯催化的交叉偶联反应的重要性不仅在于其高效、高选择性的特点,还在于其对环境的友好性。
钯催化交叉偶联反应

钯催化交叉偶联反应钯催化交叉偶联反应2010-10-26 17:32钯催化交叉偶联反应摘要钯催化交叉偶联反应是一类用于碳碳键形成的重要反应,在有机合成中应用十分广泛。
钯催化交叉偶联反应-简介为制造复杂的有机材料,需要通过化学反应将碳原子集合在一起。
但是碳原子在有机分子中与相邻原子之间的化学键往往非常稳定,不易与其他分子发生化学反应。
以往的方法虽然能令碳原子更加活跃,但是,过于活跃的碳原子却又会产生大量副产物。
而用钯作为催化剂则可以解决这个问题。
钯原子就像"媒人"一样,把不同的碳原子吸引到自己身边,使碳原子之间的距离变得很近,容易结合--也就是"偶联"。
这样的反应不需要把碳原子激活到很活跃的程度,副产物比较少,因此更加精确而高效。
赫克、根岸英一和铃木章通过实验发现,碳原子会和钯原子连接在一起,进行一系列化学反应。
这一技术让化学家们能够精确有效地制出他们需要的复杂化合物。
钯催化交叉偶联反应-应用如今,"钯催化交叉偶联反应"被应用于许多物质的合成研究和工业化生产。
例如合成抗癌药物紫杉醇和抗炎症药物萘普生,以及有机分子中一个体格特别巨大的成员--水螅毒素。
科学家还尝试用这些方法改造一种抗生素--万古霉素的分子,用来灭有超强抗药性的细菌。
此外,利用这些方法合成的一些有机材料能够发光,可用于制造只有几毫米厚、像塑料薄膜一样的显示器。
科学界一些人士表示,依托"钯催化交叉偶联反应",一大批新药和工业新材料应运而生,这三名科学家的科研成果如今已经成为支撑制药、材料化学等现代工业文明的巨大力量。
钯催化交叉偶联反应-诺贝尔奖2010年10月6日在瑞典皇家科学院举行的新闻发布会上,瑞典皇家科学院常任秘书诺尔马克首先宣读了获奖者名单。
他说,赫克、根岸英一和铃木章在"钯催化交叉偶联反应"研究领域作出了杰出贡献,其研究成果使人类能有效合成复杂有机物。
2010年度诺贝尔化学奖

获奖理由:“有机合成中钯催化交叉偶联”研究
学术贡献
• 他们在“钯催化交叉偶联反应”研究领域作出了杰出贡献, 其研究成果使人类能有效合成复杂有机物。
• 为制造复杂的有机材料,需要通过化学反应将碳原子集合 在一起,但碳原子非常稳定,不易发生化学反应,采用钯 催化解决该问题的一个思路是使碳活化。
Heck反应
• 20世纪70年代,Heck和Mizoroki独立开发了如下 类型反应
H3C CH3 + COOCH3
I Pd(OAc)2, PPh3 DMF, 90 oC, 24 h
H3C CH3
COOCH3
Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518 Heck, R. F.; Nolley, J. P.Jr J. Org. Chem. 1972, 37, 2320. Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. 1971, 44, 581.
Ei-ichi Negishi (根岸荣一 )
总引: 14300;他引:7349;H因子:61
• 日本人,1935年出生于中国长春 (75岁) • 1958年从东京大学毕业后进入帝人公司 • 1963年在美国宾夕法尼亚大学获得博士学位 • 现任美国普渡大学教授
Akira Suzuki (铃木章)
ZnCl
+ I
OMe
Cl2Pd(PPh3)2/(i-Bu)2AlH (1:2) 85%
OMe
R X + R' ZnX
Pd Cat.
X = Cl, Br, I, OSO2CF3
R R' + ZnX2
2010年诺贝尔化学奖钯金属偶联催化

反应局限性
Negishi 偶联反应对于氯代化合物的反应活性往往很低Negishi偶联反应常用的 催化剂仍然是钯催化剂,由于其价格较为昂贵,因此发展并完善更为廉价高效且具 有高转化效率的铁、钴等催化剂有待于更进一步探索与研究。
○ 【2】A. Suzuki, "Carbon-carbon bonding made easy","The Royal Society of Chemistry",2005 ○ 【3】R.F. Heck, Arylation, methylation, and carboxyalkylation of olefins by group VIII metal
福布莱特计划下领取奖学金,往宾夕法尼亚大学留学。 1963年获得博士学位,指导教授为 Allan R. Day。
Negishi反应
Pd催化有机锌与有机卤代物、三氟磺酸酯等之间发生的交叉 偶联反应,称为Negishi反应。
Negishi反应机理
Born
September 12, 1930, Miikawa, Hokkaido, Japan
抗肿廇药Discodermolide中的诺贝尔奖
Cross-coupling Reactions 钯金属催化的交叉偶联反应
钯催化下的 C-C单键生成的反应被广泛运用 于合称合成天然产物和生物活性物质的主要 分子结构, 还被运用于工业化生产结构新颖 的化合物和新药物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年第31卷 有 机 化 学V ol. 31, 2011 * E-ma i l: nxwang@ma i l.iReceived December 9, 2010; revised and accepted March 10, 2011.·学术动态·钯催化的交叉偶联反应——2010年诺贝尔化学奖获奖工作介绍王乃兴(中国科学院理化技术研究所 北京 100190)摘要 钯催化的交叉偶联反应是非常实用的合成新方法. 文章给出了Heck 反应、Negishi 反应和Suzuki 反应的概念, 对其反应机理作了详细的说明, 并对其在复杂化合物和天然产物全合成中的应用作了评价. 关键词 钯催化; Heck 反应; Negishi 反应; Suzuki 反应Palladium-Catalyzed Cross-Coupling Reactions —Introduction of Nobel Prize in Chemistry in 2010Wang, Naixing(Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190)Abstract Palladium-catalyzed cross-coupling reactions provide chemists with a more precise and efficient new methodologies. The concepts of the Heck reaction and Negishi reaction as well as Suzuki reaction are given, the reaction mechanisms are proposed, and applications of these reactions in the total synthesis of natural products are commented.Keywords palladium-catalyzed; Heck reaction; Negishi reaction; Suzuki reaction2009年10月6日, 瑞典皇家科学院宣布, 美国科学家Richard F. Heck(理查德 赫克)、日本科学家Ei-ichi Negishi(根岸英一)和Akira Suzuki(铃木章)共同获得今年的诺贝尔化学奖. 美国教授Richard F. Heck, 1931年出生于美国的斯普林菲尔德, 1954年在美国加利福尼亚大学洛杉矶分校获得博士学位. 随后他进入瑞士苏黎世联邦工学院从事博士后研究, 后在美国特拉华大学任教, 于1989年退休. Richard F. Heck 现为特拉华大学名誉教授. Ei-ichi Negishi 教授是日本人, 1935年出生于中国长春, 1958年从东京大学毕业后进入帝人公司, 1963年在美国宾夕法尼亚大学获得博士学位, 现任美国普渡大学教授. Akira Suzuki 也是日本人, 1930年出生于日本北海道鹉川町, 1959年在北海道大学获得博士学位, 随后留校工作了一段时间. 1963年到1965年, Akira Suzuki 在美国普渡大学从事了两年的博士后研究工作. Akira Suzuki 于1973年任北海道大学工学系教授, 现在是北海道大学名誉教授.钯催化的交叉偶联反应是一种可靠而又实用的工具, 对有机合成具有长久和深远的影响力, 该反应得到了合成化学工作者的普遍应用.笔者于2004年在《有机反应——多氮化物的反应及有关理论问题(第二版)》的第4.13节中列举了5个较新的人名反应[1], 其中有Heck 反应、Negishi 反应和Suzuki 反应. 对其定义分别为: Heck 反应是钯催化下, 不饱和有机卤化物或三氟磺酸酯与烯烃进行的偶联反应. Negishi 反应是钯催化下的不饱和有机锌试剂和芳基或乙烯基卤化物等进行偶联的反应. Suzuki 反应是钯催化下不饱和有机硼试剂和芳基或乙烯基卤化物等进行偶联的反应. 这是钯催化的交叉偶联反应的基本概念. 最初的Suzuki 反应还需要在无氧无水的条件下来进行, 后来发展的一些反应条件已经无需无氧无水操作了.这几种钯催化的交叉偶联反应机理不尽相同, 对机1320有 机 化 学 V ol. 31, 2011理的说明也不止一种, 一些可能的机理对研究生也较难接受. 如Heck 反应, 即使一些已经出版的专门论述人名反应的专著也较为简略[2,3] Heck 本人最先提出的Heck 反应机理是应该接受的.1 反应机理1.1 Heck 反应机理目前关于Heck 反应机理描述较多, 但一些机理过于简单, 一些机理的描述很难让有机化学家接受. 笔者认为Jutand 等[4]最近在Heck 反应的专门著作中总结的Heck 反应机理最为贴切和容易接受(Scheme 1). 这个详细的反应过程实际上是Heck 首先建议的.Scheme 1理解各步过程并不困难. 关键是整个机理中左下角画箭头处, 表示出一个负氢迁移过程, 双键上的电子是由钯直接提供的.Heck 反应的机理主要分为四个步骤:(1)氧化加成. 上式催化循环的第一步是芳基卤和Pd(0)的氧化加成, Titton 报道的芳基卤和Pd 0(PPh 3)4的作用支持了氧化加成步骤的机理, Titton 还报道了芳基卤活性次序: ArI >ArBr >>ArCl.(2)烯烃插入. 氧化加成给出反式的σ芳基Pd(II)卤化物ArPdXL 2, 脱去一个PPh 3配体后与烯烃配位, 再经过烯的顺式插入, 得到σ烷基Pa(II)卤化物[5,6], 读者可以参照上述催化循环机理图.(3) β负氢消除. 上述催化循环机理图中的σ烷基Pa(II)卤化物有一个C —C 键内旋转, 结果使得β氢原子(与sp 3碳原子相连)和Pd 原子处于顺式位置, 接着产生了顺式的β负氢消除. 这个顺式的β负氢消除反应会是一个可逆的过程.(4)还原消除. 钯催化的偶联反应产物(与芳基直接相连的烯烃衍生物)游离产生以后, H —Pd(II)的卤化物再经过一个可逆还原消除过程, 再生出具有催化活性的Pd(0)的络合物. 碱性的辅助催化剂通过粗灭产生的卤化氢, 促使还原消除过程向Pd(0)络合物催化剂方向移动.Heck 不仅发现了这个钯催化的偶联反应, 而且对其机理做出了透彻的阐述. Heck 提出的氧化加成、烯烃插入、β负氢消除、还原消除这四个主要步骤在实验中都得到了证实. β负氢消除是一个重要过程, 钯提供了一对电子形成了双键. 最近认为β负氢消除通过一个顺式消除过程. 实际上Heck 反应不能仅看作交叉偶联反应, 它只是偶联反应一种.机理中涉及一些不同的Pd(0)和Pd(II)的中间体, 这些中间体的结构和活性依靠实验条件, 钯催化剂可以是Pd(0)的络合物, 如Pd(PPh 3)4, 可以是Pd(OAc)2等. 当Pd(OAc)2作为催化剂时, 需要加入1,3-二(二苯基膦基)丙基(dppp), 首先形成Pd(OAc)2(dppp), 再得到离子型络合物Pd 0(dppp)(OAc)- [7], Pd 0(dppp)(OAc)-分解得到Pd(0)络合物Pd(dppp). 1.2 Suzuki 反应机理笔者[8]曾研究过Suzuki 反应, 利用苯硼酸和2,2'-二溴-5,5'-二噻吩通过催化量的金属钯络合物Pd(PPh 3)4进行交叉偶联反应(Eq. 1).当时采用的反应条件还是无氧无水操作[8], 产物熔点是145 ℃, 产率为51%.笔者在文献的基础上[9~11], 提出了一个离子型的反应机理, 该论文发表在一个国外化学期刊上[8]. 该反应可能的机理由三个主要步骤完成的: (a)氧化加成; (b)硼试剂参与; (c)还原消除.(1)氧化加成. 反应过程中, Pd(0)被加到有机卤化物中间, 有机卤化物中的碳原子通过极性转换由原来荷正电变为荷负电, 钯原子被氧化为Pd(II) (Scheme 2). 氧化加成的过程是速率决定步骤, 反应中, 有机卤化物的活性按卤原子如下次序递减: I >Br >>C.N o. 8王乃兴:钯催化的交叉偶联反应——2010年诺贝尔化学奖获奖工作介绍1321Scheme 2(2)硼试剂参与. 接着, 硼试剂中的C —B 键异裂, 碳原子荷负电, 形成的芳基负离子与钯正离子结合为ArPdAr', 而游离出来的卤离子(X -)与硼正离子配位得到XB(OH)2 (Eq. 2).(3)消除反应. 最后是还原消除过程, 钯有机物分解, 形成新的C —C 键, 金属钯游离出来, 再与PPh 3络合, 再生出活性钯催化剂Pd(PPh 3)4, 完成了催化过程.Scheme 3笔者在当时研究苯硼酸和2,2'-二溴-5,5'-二噻吩通过Pd(PPh 3)4催化进行的交叉偶联反应, 发现该反应采用弱碱Ba(OH)2作为辅助催化剂比其它强碱反应快, 收率高, 甚至用碳酸钾代替Ba(OH)2也往往引起副产物增加. 笔者采用了甲醇和甲苯(V ∶V =1∶1)的混合溶剂. 就溶剂效应而言, 甲醇溶剂对反应有利. 在反应过程中的氧化加成阶段, 甲醇产生的烷氧基负离子MeO -能够置换配位在钯上的卤负离子, 容易生成ArPdOR 中间体(Scheme 4).Scheme 4RPdOMe 的形成被认为是一个重要的中间体, 曾被分离得到过[12,13]. 1.3 Negishi 反应机理笔者曾制备了有机锌试剂[8], 采用一锅反应方法, 利用溴锌苯和2,5-二溴噻吩通过催化量的金属钯络合物Pd(PPh 3)4进行交叉偶联反应(Scheme 5).Scheme 5与Suzuki 反应相比, 利用Negishi 反应合成目标化合物, 产率没有Suzuki 反应高[8,14].Negishi 反应的机理与Suzuki 反应非常类似, 也是通过氧化加成、有机锌试剂(亲核试剂)参与和还原消除的三个主要步骤进行的, 下面用离子反应历程作以描述(Eq. 3, Schemes 6, 7):(1)氧化加成Scheme 6(2)有机锌试剂参与(3)消除反应Scheme 7Pd(0)游离出来, 再与PPh 3络合再生出催化剂Pd(PPh 3)4, 完成了催化循环.另外需要说明的是, 交叉偶联反应有许多种, 一些虽然没有得到诺贝尔化学奖, 但应用价值还是比较高, 例如Songashira 反应. Sonogashira 反应是钯配合物催化的卤代芳烃或者卤代烯烃与末端炔烃的交叉偶联反应, 它是一种合成芳炔、烯炔和炔酮等化合物的有效方法. 其反应如Eq. 4.Sonogashira 反应的本质是PdCl 2与CuI 复合催化剂催化末端炔烃与碘、溴代芳或者烯烃的交叉偶联反应. 2007年发表在Chem. Rev.上的Sonogashira 反应机理, 说明了铜盐作为助催化剂的过程, 是一个容易接受的机理(Scheme 8)[15].铜盐作为助催化剂的作用一些文献也作了报道[16]. 近年来Sonogashira 反应的应用报道较多, 读者可以参考相关文献[17~19].2 结束语Heck 反应、Negishi 反应和Suzuki 反应, 代表了钯催化的交叉偶联反应的最高成就, 反应非常新颖独特,1322有机化学V ol. 31, 2011Scheme 8确实在有机合成方法学的最前沿取得了重大突破, 这些原创性的成就卓有建树, 这些新方法首先在有机合成领域得到了普遍应用, 对发展有机合成的策略和技巧产生了长久和深远的影响.人类健康对特效新药的发展不断提出更高的要求, 天然产物作为先导药, 在这方面寄托了人们的无限期望[20]. 近年来, 海洋天然产物的生物医学活性引起了人们的高度重视. 海绵、珊瑚以及海洋微生物的次生代谢的天然产物, 结构新颖而活性显著, 已经成为人们挖掘具有自主知识产权的创新先导抗肿瘤等新药的战略新领域. 人工全合成这类复杂的化合物和天然产物对人类来说是一种艰难的挑战, Heck反应、Negishi反应和Suzuki反应的新方法无疑在这方面会发挥出巨大的作用.近年来, 围绕Heck反应、Negishi反应和Suzuki反应, 化学家发展了一些新的反应方法和条件, 如Ni代替Pd进行催化的交叉偶联反应. Iyer等[21]报道了Cu催化(CuI催化剂)的Heck反应, 相对Pd和Ni催化剂更为经济. 最近, Darcel等[22]报道了Fe催化的Suzuki反应, 产率较高. Nakamura等[23]不久前报道了Fe催化的Negishi 反应, 产物收率高且有立体专一性. 反应条件已经从开始需要无氧无水操作到现在可以在水相反应体系中进行. Chao等[24]报道了在水合溶剂中进行Suzuki反应的研究结果, 产物能够获得中等以上的收率. Bach等[25]在Tetrahedron的一篇文章中(其参考文41), 对笔者关于Suzuki反应和Negishi反应的报道作了一些介绍. 相信以后还会有一些新的关于催化的交叉偶联反应的研究论文不断发表出来.Heck不仅开创了著名的Heck反应, 而且他提出的有机化学反应机理也非常之透彻和精到, 可见他的有机化学之功底和对该方法的深刻的理解. 可是, Heck在完成Heck反应研究之后, 一度连科研经费都没有, 甚至不得不离开科学界. 笔者刚在德国应用化学刊物(Angew. Chem. Int. Ed. 2010,49, 2092)看到一篇关于德国合成化学教授H. Kunz的作者介绍, H. Kunz教授列出了他的五篇文章, 其中第二篇文章发表在Tetrahedron 上, 第三篇发表在Synthesis上. 笔者在中国科学院研究生院为硕博连读生讲授“有机反应”专业课, 学生对Heck反应、Negishi反应和Suzuki反应的兴趣非常浓厚. 希望年青一代的学者, 通过研究和借鉴Heck反应、Negishi反应和Suzuki反应, 提升我国在有机合成方法学方面的整体水平.在这篇简介文章结束时, 笔者再介绍几篇关于钯催化的交叉偶联反应的代表性综述文章. 一篇是Suzuki本人1995年在Chem. Rev.上的综述[26], 希望有兴趣的读者参阅. 另外3篇对相关钯催化的交叉偶联反应最新进展作了详细综述[27~29], 希望读者特别是青年学者能够继续深入学习和掌握这一研究领域. 最近, Suzuki和Negishi[30~31]还分别发表了他们的诺贝尔化学奖获奖演说. 就在这篇文章付印之际,作者又读到了一篇最新的关于非对映选择性的Negishi反应的论文, 该方法为此类反应的立体控制开拓了又一个新生面[32]. References1 Wang,N.-X. Organic Reac tions—The Reac tion of Polyni-trogen Compounds and Some Theoretic Questions, 2nd ed., Chemical Industry Press, Beijing, 2004, pp. 165~171 (in Chinese).(王乃兴, 有机反应—多氮化物的反应及有关理论问题(第二版), 化学工业出版社, 北京, 2004, pp. 165~171.)2 Li, J. J. Name Reactions, Springer, New York, 2006, p. 285.3 Kürti, L.; Czakó, B. Strategic Applications of Named Reac-tions in Organic Synthesis, Elsevier Academic Press, 2005, p. 196.4 Jutand, A. In The Mizoroki-Hec k Reac tion, Ed.: Oestreich,M., Wiley, United Kingdom, 1999, pp. 1~5.5 Dieck, H. A.; Heck, R. F. J. Am. Chem. Soc.1974, 96, 1133.6 Ziegler, C. B.; Heck, R. F. J. Org. Chem. 1978, 43, 2941.7 Kozuch, S.; Shaik, S.; Jutand, A.; Amatore, C. Chem. Eur. J.2004, 10, 3072.8 Wang,N.-X. Synth. Commun. 2003, 33, 2119.9 Anderson, C. B.; Burreson, B. J.; Michalowski, J. T. J. Org.Chem. 1976, 41, 1990.10 Zask, A.; Helquist, P. J. Org. Chem. 1978, 43, 1619.11 Aliprantis, A. O.; Canary, J. W. J. Am. Chem. Soc. 1994,116, 6985.12 Yoshida, T.; Okano, T.; Otsuka, S. J. Chem. Soc., DaltonTrans. 1976, 993.13 Grushin, V. V.; Alper, H. Orgnometallics1993, 12, 1890.14 Wang,N.-X. Chin. . Chem. 2004, 24, 350 (in Chi-N o. 8 王乃兴:钯催化的交叉偶联反应——2010年诺贝尔化学奖获奖工作介绍1323nese).(王乃兴, 有机化学, 2004, 24, 350.)15 Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.16 Doucet, H.; Hierso, J. C. Angew. Chem., Int. Ed. 2007, 46,834.17 Gelman, D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2003,42, 5993.18 Saha, D.; Dey, R.; Ranu, B. C. Eur. J. Org. Chem. 2010,6067.19 Karpov, A. S.; Merkul, E.; Rominger, F.; Müller, T. J. J.Angew. Chem., Int. Ed. 2005, 44, 6951.20 Harmata, M. Strategies and Tac tic s in Organic Synthesis,Elsevier, Oxford, 2010.21 Iyer, S.; Ramesh, C.; Sarkar, A.; Wadgaonkar, P. P. Tetrahe-dron Lett. 1997, 38, 8113.22 Bźziera, D.; Darcela, C. Adv. Synth. Catal. 2009, 351, 1732.23 Hatakeyama, T.; N akagawa, N.; N akamura, M. Org. Lett.2009, 11, 4496.24 Cho, S. Y.; Kang, S. K.; Ahn, J. H.; Ha, J. D.; Choi, J. K.Tetrahedron Lett. 2006, 47, 5237.25 Schröter, S.; Stock, C.; Bach, T. Tetrahedron2005, 61,2245.26 Norio Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.27 Roglans, A.; Pla-Quintana, A.; Moreno-Mañas, M. Chem.Rev. 2006, 106, 4622.28 Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41,1461.29 Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41,1486.30 Suzuki, A. Angew. Chem., Int. Ed.2011, 50, 6723.31Negishi, E. Angew. Chem., Int. Ed.2011, 50, 6738.32 Seel, S.; Thaler, T.; Takatsu, K.; Zhang, C.; Zipse, H.;Bernd, F.; Straub, B. F.; Mayer, P.; Knochel, P. J. Am. Chem.Soc. 2011, 133, 4774.(Y1012093 Li, L.)。