算法设计与分析

合集下载

算法设计与分析电子教案

算法设计与分析电子教案

算法设计与分析电子教案一、教案概述本节课的主题是算法设计与分析。

通过本节课的学习,学生将了解算法的定义、算法的设计方法以及算法的分析方法,培养学生的算法设计和分析能力。

二、教学目标1.了解算法的定义和特点;2.掌握算法的设计方法:递归、贪心算法、动态规划、分治法等;3.能够使用算法设计和分析的方法解决实际问题;4.培养学生的算法设计和分析能力。

三、教学内容与教学方法1.算法的定义和特点(10分钟)通过讲解算法的定义和特点,引导学生了解算法的基本概念和要素,同时培养学生的逻辑思维能力。

教学方法为讲解和示例演示。

2.算法的设计方法(20分钟)介绍几种常用的算法设计方法,包括递归、贪心算法、动态规划和分治法。

通过具体的例子演示每种方法的具体应用,并引导学生进行思考和分析。

教学方法为讲解和示例演示。

3.算法的分析方法(30分钟)介绍算法的时间复杂度和空间复杂度的概念,以及常用的算法分析方法。

通过实际问题的例子,引导学生计算算法的时间复杂度和空间复杂度,并进行分析和比较。

教学方法为讲解和示例演示。

4.实际问题的算法设计与分析(30分钟)提供一些实际问题,要求学生利用所学的算法设计和分析的方法进行解决。

教师可以通过小组合作的形式进行实际问题的讨论和解答。

教学方法为小组合作和问题解答。

5.总结与评价(10分钟)教师对本节课的内容进行总结,并评价学生的学习情况和表现。

同时鼓励学生继续加强算法设计和分析的学习和实践。

四、教学资源和评价方式1.教学资源:-电子教案;-计算机及投影仪等教学设备;-教材和参考书。

2.评价方式:-课堂参与度和合作度;-实际问题的解答和分析能力;-课后作业的完成情况和质量。

五、教学中的关键环节和要点1.算法的定义和特点是理解算法的基础,要求学生掌握清晰的逻辑思维和表达能力。

2.算法的设计方法是学生解决实际问题的关键,需要学生理解每种方法的原理和特点,并进行实际问题的应用练习。

3.算法的分析方法是学生评估算法效果和性能的关键,需要学生理解时间复杂度和空间复杂度的概念,能够对给定算法进行分析。

算法设计与分析习题答案

算法设计与分析习题答案

算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。

以下是一些典型的算法设计与分析习题及其答案。

习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。

答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。

这个过程会不断重复,直到找到目标值或搜索范围为空。

```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。

答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。

```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。

电大计算机本科_算法设计与分析

电大计算机本科_算法设计与分析

电大计算机本科_算法设计与分析
算法设计与分析是计算机科学和数学领域的重要课程。

它涉及到一系
列算法设计、分析和实现的方面,涉及到算法流程、语法、数据结构等多
方面。

在算法设计与分析这门课程中,学生首先要学习怎么设计一个算法,
怎么从实际问题中提取算法,怎么分析算法复杂度,怎么评价算法效率。

接下来要学习算法,基本排序算法和选择算法,分治算法,贪婪算法,动
态规划,回溯算法,朴素贝叶斯,马尔科夫链等等各种算法。

学生还要熟
悉现代算法建模工具(如Matlab、SAS、C++),熟悉算法的优化技巧,
掌握算法的编码实现方法,并研究其实际应用。

本课程可以使学生充分发挥自己的能力,培养学生的算法设计能力,
提高实践能力,掌握算法的基本原理及运用,把握算法分析及其优化技术。

它不仅帮助学生提高数学思维能力,同时也有助于他们在计算机编程方面
的能力。

学习算法设计与分析有助于学生全面掌握算法设计这一重要组成
部分,也可以拓展学生的应用领域,使学生更具有竞争力。

学习算法设计与分析也有其困难之处,首先是算法编程比较抽象,学
生需要有较强的理论功底和数学能力。

计算机算法的设计与分析

计算机算法的设计与分析

计算机算法的设计与分析计算机算法的设计和分析随着计算机技术的不断发展,算法成为了关键的核心技术之一。

算法的设计和分析是指通过一系列的步骤和方法来解决计算机问题的过程。

本文将详细介绍计算机算法的设计和分析。

一、算法设计的步骤:1. 理解和定义问题:首先需要明确所要解决的问题,并对其进行深入的理解,确定问题的输入和输出。

2. 分析问题:对问题进行分析,确定问题的规模、特点和约束条件,以及可能存在的问题解决思路和方法。

3. 设计算法:根据问题的性质和特点,选择合适的算法设计方法,从而得到解决问题的具体算法。

常见的算法设计方法包括贪心算法、分治算法、动态规划算法等。

4. 实现算法:将步骤3中设计的算法转化为计算机程序,并确保程序的正确性和可靠性。

5. 调试和测试算法:对实现的算法进行调试和测试,包括样本测试、边界测试、异常输入测试等,以验证算法的正确性和效率。

二、算法分析的步骤:1. 理解算法的效率:算法的效率是指算法解决问题所需的时间和空间资源。

理解算法的时间复杂度和空间复杂度是进行算法分析的基础。

2. 计算时间复杂度:时间复杂度用来表示算法解决问题所需的时间量级。

常用的时间复杂度包括常数时间O(1)、对数时间O(logn)、线性时间O(n)、平方时间O(n^2)等。

3. 计算空间复杂度:空间复杂度用来表示算法解决问题所需的空间资源量级。

常用的空间复杂度包括常数空间O(1)、线性空间O(n)、指数空间O(2^n)等。

4. 分析算法的最坏情况和平均情况:算法的最坏情况时间复杂度和平均情况时间复杂度是进行算法分析的关键指标。

最坏情况时间复杂度表示在最不利条件下算法所需的时间量级,平均情况时间复杂度表示在一般情况下算法所需的时间量级。

5. 比较算法的优劣:通过对不同算法的时间复杂度和空间复杂度进行分析,可以对算法的优劣进行比较,从而选择合适的算法。

三、常见的算法设计与分析方法:1. 贪心算法:贪心算法通过每一步的选择来寻求最优解,并且这些选择并不依赖于其他选择。

算法设计与分析黄丽韵版

算法设计与分析黄丽韵版

算法设计与分析黄丽韵版(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。

确定性:算法中每一条指令必须有确切的含义。

不存在二义性。

只有一个入口和一个出可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。

输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。

输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。

算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解:健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。

效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。

一般这两者与问题的规模有关。

经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。

迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

《算法设计与分析》课件

《算法设计与分析》课件

常见的贪心算法包括最小生成树算法 、Prim算法、Dijkstra算法和拓扑排 序等。
贪心算法的时间复杂度和空间复杂度 通常都比较优秀,但在某些情况下可 能需要额外的空间来保存状态。
动态规划
常见的动态规划算法包括斐波那契数列、背包 问题、最长公共子序列和矩阵链乘法等。
动态规划的时间复杂度和空间复杂度通常较高,但通 过优化状态转移方程和状态空间可以显著提高效率。
动态规划算法的时间和空间复杂度分析
动态规划算法的时间复杂度通常为O(n^2),空间复杂度为O(n)。
04 经典问题与算法实现
排序问题
冒泡排序
通过重复地遍历待排序序列,比较相邻元素的大小,交换 位置,使得较大的元素逐渐往后移动,最终达到排序的目 的。
快速排序
采用分治策略,选取一个基准元素,将比基准元素小的元 素移到其左边,比基准元素大的元素移到其右边,然后对 左右两边的子序列递归进行此操作。
动态规划是一种通过将原问题分解为若干个子 问题,并从子问题的最优解推导出原问题的最 优解的算法设计方法。
动态规划的关键在于状态转移方程的建立和状态 空间的优化,以减少不必要的重复计算。
回溯算法
01
回溯算法是一种通过穷举所有可能情况来求解问题的算法设计方法。
02
常见的回溯算法包括排列组合、八皇后问题和图的着色问题等。
空间换时间 分治策略 贪心算法 动态规划
通过增加存储空间来减少计算时间,例如使用哈希表解决查找 问题。
将问题分解为若干个子问题,递归地解决子问题,最终合并子 问题的解以得到原问题的解。
在每一步选择中都采取当前状态下最好或最优(即最有利)的 选择,从而希望导致结果是最好或最优的。
通过将问题分解为相互重叠的子问题,并保存子问题的解,避 免重复计算,提高算法效率。

《算法设计与分析》(全)

《算法设计与分析》(全)
巢湖学院计算机科学与技术系
1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论

算法设计与分析

算法设计与分析

算法设计与分析算法是计算机科学中的核心概念,它是解决问题的一系列步骤和规则的有序集合。

在计算机科学的发展中,算法设计和分析扮演着至关重要的角色。

本文将探讨算法设计和分析的相关概念、技术和重要性。

一、算法设计的基本原则在设计算法时,需要遵循一些基本原则来确保其正确性和有效性:1. 正确性:算法设计应确保能够正确地解决给定的问题,即输出与预期结果一致。

2. 可读性:设计的算法应具有清晰的结构和逻辑,易于理解和维护。

3. 高效性:算法应尽可能地减少时间和空间复杂度,以提高执行效率。

4. 可扩展性:算法应具备良好的扩展性,能够适应问题规模的变化和增长。

5. 可靠性:设计的算法应具备稳定性和鲁棒性,对不同的输入都能给出正确的结果。

二、常见的算法设计技术1. 枚举法:按照规定的顺序逐个尝试所有可能的解,直到找到满足条件的解。

2. 递归法:通过将一个大问题分解成若干个小问题,并通过递归地解决小问题,最终解决整个问题。

3. 贪心算法:在每个阶段选择最优解,以期望通过一系列局部最优解达到全局最优解。

4. 分治算法:将一个大问题划分成多个相互独立的子问题,逐个解决子问题,并将解合并得到整体解。

5. 动态规划:通过将一个大问题分解成多个小问题,并存储已解决子问题的结果,避免重复计算。

三、算法分析的重要性算法分析可以评估算法的效率和性能。

通过算法分析,可以:1. 预测算法在不同规模问题上的表现,帮助选择合适的算法解决具体问题。

2. 比较不同算法在同一问题上的性能,从而选择最优的算法。

3. 评估算法在不同硬件环境和数据集上的表现,选择最适合的算法实现。

四、常见的算法分析方法1. 时间复杂度:衡量算法所需执行时间的增长率,常用的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。

2. 空间复杂度:衡量算法所需占用存储空间的增长率,常用的空间复杂度有O(1)、O(n)和O(n^2)等。

3. 最坏情况分析:对算法在最不利情况下的性能进行分析,可以避免算法性能不稳定的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法设计与分析第 1 章绪论算法理论研究的是算法的设计技术和算法的分析技术,前者是指面对一个问题,如何设计一个有效的算法,后者则是对已设计的算法,如何评价或者判断其优劣。

二者是相互依存的,设计出的算法需要检验和评价,对算法的分析反过来又将改进算法的设计。

1.1 算法的基本概念算法的概念在计算机科学领域几乎无处不在,在各种计算机软件系统的实现中,算法设计往往处于核心地位。

例如,操作系统是现代计算机系统中不可缺少的系统软件,操作系统的各个任务都是一个单独的问题,每个问题由操作系统中的一个子程序根据特定的算法来实现。

用什么方法来设计算法,如何判定一个算法的优劣,所设计的算法需要占用多少时间资源和空间资源,在实现一个软件系统时,都是必须予以解决的重要问题。

1.1.1 为什么要学习算法用计算机求解任何问题都离不开程序设计,而程序设计的核心是算法设计。

普通来说,对程序设计的研究可以分为四个层次:算法、方法学、语言和工具,其中算法研究位于最高层次。

算法对程序设计的指导可以延续几年甚至几十年,它不依赖于方法学、语言和工具的发展与变化。

例如,用于数据存储和检索的 Hah 算法产生于 20 世纪 50 年代,用于排序的快速排序算法发明于 20 世纪 60 年代,但他们至今仍被人们广为使用,可是程序设计方法已经从结构化发展到面向对象,程序设计语言也变化了几代,至于编程工具很难维持三年不变。

所以,对于从事计算机专业的人士来说,学习算法是非常必要的。

学习算法还能够提高人们分析问题的能力。

算法可以看做是解决问题的一类特殊方法——它不是问题的答案,而是经过精确定义的①、用来获得答案的求解过程。

因此,无论是否涉及计算机,特定的算法设计技术都可以看做是问题求解的有效策略。

著名的计算机科学家科努思(Donald ·Knuth)是这样论述这个问题的:“受过良好训练的计算机科学家知道如何处理算法,如何构造算法、操作算法、理解算法以及分析算法,这些知识远不只是为了编写良好的计算机程序而准备的。

算法是一种普通性的智能工具,一定有助于我们对其他学科的理解,不管是化学、语言学、音乐还是此外①算法固有的精确性限制了它所能够解决的问题种类,比如说,我们无法找到一个使人生活快乐的算法,也不能找到一个使人富有和出名的算法。

的学科。

为什么算法会有这种作用呢?我们可以这样理解:人们常说,一个人惟独把知识教给别人,才干真正掌握它。

实际上,一个人惟独把知识教给计算机,才干真正掌握它,也就是说,将知识表述为一种算法比起简单地按照常规去理解事物,用算法将其形式化会使我们获得更加深刻的理解。

”算法研究的核心问题是时间(速度)问题。

人们可能有这样的疑问:既然计算机硬件技术的发展使得计算机的性能不断提高,算法的研究还有必要吗?计算机的功能越强大,人们就越想去尝试更复杂的问题,而更复杂的问题需要更大的计算量。

现代计算技术在计算能力和存储容量上的革命仅仅提供了计算更复杂问题的有效工具,无论硬件性能如何提高,算法研究始终是推动计算机技术发展的关键。

下面看几个例子。

1.检索技术20 世纪 50~60 年代,检索的对象是规模比较小的数据集合。

例如,编译系统中的标识符表,表中的记录个数普通在几十至数百这样的数量级。

70~80 年代,数据管理采用数据库技术,数据库的规模在 K 级或者 M 级,检索算法的研究在这个时期取得了巨大的发展。

90 年代以来, Internet 引起计算机应用的急速发展,海量数据的处理技术成为研究的热点,而且数据驻留的存储介质、数据的存储方法以及数据的传输技术也发生了许多变化,这些变化使得检索算法的研究更为复杂也更为重要了。

近年来,智能检索技术成为基于 Web 信息检索的研究热点。

使用搜索引擎进行 Web 信息检索时,时常看到一些搜索引擎前 50 个搜索结果中几乎有一半来自同一个站点的不同页面,这是检索系统缺乏智能化的一种表现。

此外,在传统的 Web 信息检索服务中,信息的传输是按“Pull”的模式进行的,即用户找信息。

而采用“Puh”的方式,是信息找用户,用户不必进行任何信息检索,就能方便地获得自己感兴趣的信息,这就是智能信息推送技术。

这些新技术的每一项重要进步都与算法研究的突破有关。

2.压缩与解压缩随着多媒体技术的发展,计算机的处理对象由原来的字符发展到图象、图形、音频、视频等多媒体数字化信息,这些信息数字化后,其特点就是数据量非常庞大,同时,多媒体所需的高速传输速度也是计算机总线所不能承受的。

因此,对多媒体数据的存储和传输都要求对数据进行压缩。

声音文件的 MP3 压缩技术说明了压缩与解压缩算法研究的巨大成功,一个播放 3~4 分钟歌曲的MP3 文件通常只需 3MB 摆布的磁盘空间。

3.信息安全与数据加密2来盗用你的信用卡!”这的确是一个可怕的情景。

所以,在电子商务中,信息安全是最关键的问题,保证信息安全的一个方法就是对需要保密的数据进行加密。

在这个领域,数据加密算法的研究是绝对必须的,其必要性与计算机性能的提高无关。

1.1.2 算法及其重要特性算法(Algorithm)被公认为是计算机科学的基石。

通俗地讲,算法是解决问题的方法,严格地说,算法是对特定问题求解步骤的一种描述,是指令的有限序列,此外,算法还必须满足下列五个重要特性:⑵输出:一个算法有一个或者多个输出。

既然算法是为解决问题而设计的,那末算法实现的最终目的就是要获得问题的解。

没有输出的算法是无意义的。

⑶有穷性:一个算法必须总是(对任何合法的输入)在执行有穷步之后结束,且每一步都在有穷时间内完成。

⑷确定性:算法中的每一条指令必须有切当的含义,不存在二义性。

并且,在任何条件下,对于相同的输入只能得到相同的输出。

⑸可行性:算法描述的操作可以通过已经实现的基本操作执行有限次来实现。

问题输出输入算法(确定性、有穷性、可行性)图 1.1 算法的概念概念回顾算法和程序不同。

程序(Program)是对一个算法使用某种程序设计语言的具体实现,原则上,算法可以用任何一种程序设计语言来实现。

算法的有穷性意味着不是所有的计算机程序都是算法。

1.1.3 算法的描述方法算法设计者在构思和设计了一个算法之后,必须清晰准确地将所设计的求解步骤记录下来,即描述算法。

常用的描述算法的方法有自然语言、流程图、程序设计语言和伪代码等。

下面以欧几里德算法(用展转相除法求两个自然数 m 和n 的最大公约数)为例进行介绍。

3⑴自然语言用自然语言描述算法,最大的优点是容易理解,缺点是容易浮现二义性,并且算法通常都很冗长。

欧几里德算法用自然语言描述如下:①输入 m 和n;②求 m 除以n 的余数 r;③若 r 等于 0,则 n 为最大公约数,算法结束;否则执行第④步;④将 n 的值放在 m 中,将 r 的值放在 n 中;⑤重新执行第②步。

⑵流程图用流程图描述算法,优点是直观易懂,缺点是严密性不如程序设计语言,灵便性不如自然语言。

欧几里德算法用流程图描述如图 1.2 所示。

在计算机应用早期,使用流程图描述算法占有统治地位,但实践证明,除了一些非常简单的算法以外,这种描述方法使用起来非常不方便。

如今,只能在早期有关算法的教材中找到它的踪影了。

⑶程序设计语言用程序设计语言描述的算法能由计算机直接执行,而缺点是抽象性差,使算法设计者拘泥于描述算法的具体细节,忽略了“好”算法和正确逻辑的重要性,此外,还要求算法设计者掌握程序设计语言及其编程技巧。

开始欧几里德算法用 C++语言书写的程序如下:#includeintr=m%n;while(r!=0){m=n;n=r;r=m%n;}returnn;}voidmain(){cout<伪代码(Peudocode)是介于自然语言和程序设计语言之间的方法,它采用某一程序设计语言的基本语法,操作指令可以结合自然语言来设计。

至于算法中自然语言4输入 m 和 nr=m%nYNm=nn=r 输出n 结束图 1.2 用流程图描述算法r=0 的成份有多少,取决于算法的抽象级别,抽象级别高的伪代码自然语言多一些。

计算机科学家从来没有对伪代码的书写形式达成过一种共识,只是要求了解任何一种现代程序设计语言的人都能很好地理解。

欧几里德算法采用符合 C++语法的伪代码描述如下:算法 1.1——欧几里德算法 1.r=m%n;2.循环直到 r=02.1m=n;2.2n=r;2.3r=m%n;3.输出 n;伪代码不是一种实际的编程语言,但在表达能力上类似于编程语言,同时极小化了描述算法的不必要的技术细节,是比较合适的描述算法的方法,被称为“算法语言”或者“第一语言”。

1.1.4 算法设计的普通过程算法是问题的解决方案,这个解决方案本身并非问题的答案,而是能获得答案的指令序列。

不言而喻,由于实际问题千奇百怪,问题求解的方法千变万化,所以,算法的设计过程是一个灵便的充满智慧的过程,它要求设计人员根据实际情况具体问题具体分析。

可以肯定的是,发明(或者发现)算法是一个非常有创造性和值得付出的过程。

②在设计算法时,遵循下列步骤可以在一定程度上指导算法的设计。

1.理解问题在面对一个算法任务时,算法设计者往往不能准确地理解要求他做的是什么,对算法希翼实现什么惟独一个大致的想法就匆忙地落笔写算法,其后果往往是写出的算法漏洞百出。

在设计算法时需要做的第一件事情就是彻底理解要解决的问题,子细阅读问题的描述,手工处理一些小例子。

对设计算法来说,这是一项重要的技能:准确地理解算法的输入是什么?要求算法做的是什么?即明确算法的入口和出口,这是设计算法的切入点。

2.预测所有可能的输入算法的输入确定了该算法所解问题的一个实例。

普通而言,对于问题P,总有其相应的实例集 I,则算法 A 若是问题P 的算法,意味着把 P 的任一实例input∈I 作为算法 A 的输入,都能得到问题 P 的正确输出。

②这个普通过程并非一个绝招,能为任意的问题设计算法,一个公认的事实是——这样的绝招是不存在的。

3.通用分治递推式递归算法分析的第三种技术是利用通用分治递推式:其中 a,b,c,k 都是常数。

这个递推式描述了大小为n 的原问题分成若干个大小为 n/b 的子问题,其中 a 个子问题需要求解,而 cnk 是合并各个子问题的解需要的工作量。

下面使用扩展递归技术对通用分治递推式进行推导,并假定 n=bm。

nT(n)aTcnkbnna(aT2c)cnkbbaT(1)ammm1knncm1accnkbbkkkncamimibi 0camibiki0mbkmcai0amibk 这个求和是一个几何级数,其值依赖于比率 ra,注意到 am=alogbn=nlogba,有以下三种情况:1,由于 am=nlogba,所以 T(n)=O(nlogba)。

相关文档
最新文档