济南中考数学押题卷
山东省济南市市中区2024届中考数学考试模拟冲刺卷含解析

山东省济南市市中区2024届中考数学考试模拟冲刺卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是() A.8 B.9 C.10 D.122.(﹣1)0+|﹣1|=()A.2 B.1 C.0 D.﹣13.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.18的绝对值是()A.8 B.﹣8 C.18D.﹣185.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.106.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+47.下列计算正确的是()A.a+a=2a B.b3•b3=2b3C.a3÷a=a3D.(a5)2=a7816)A.4 B.±4 C.2 D.±29.-5的相反数是()A.5 B.15C.5D.15-10.下列各式计算正确的是()A.a+3a=3a2B.(–a2)3=–a6C.a3·a4=a7D.(a+b)2=a2–2ab+b2二、填空题(共7小题,每小题3分,满分21分)11.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=____.12.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.13.关于x的分式方程211x a ax x++--=2的解为正实数,则实数a的取值范围为_____.14.如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设AB=a,AC=b,用a,b表示GE,那么GE=___.15.如果一个矩形的面积是40,两条对角线夹角的正切值是43,那么它的一条对角线长是__________.16.因式分解:3a2-6a+3=________.17.如图,如果两个相似多边形任意一组对应顶点P、P′所在的直线都是经过同一点O,且有OP′=k·OP(k≠0),那么我们把这样的两个多边形叫位似多边形,点O叫做位似中心,已知△ABC与△A′B′C′是关于点O的位似三角形,OA′=3OA,则△ABC与△A′B′C′的周长之比是________.三、解答题(共7小题,满分69分)18.(10分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.19.(5分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是______;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.20.(8分)有一个n位自然数...abcd gh能被x0整除,依次轮换个位数字得到的新数bcd...gha能被x0+1整除,再依次轮换个位数字得到的新数cd...ghab能被x0+2整除,按此规律轮换后,d...ghabc能被x0+3整除,…,...habc g能被x0+n﹣1整除,则称这个n位数a...bcd gh是x0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数abc是3的一个“轮换数”,其中a=2,求这个三位自然数abc.21.(10分)已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.22.(10分)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=13AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形.23.(12分)计算:|﹣1|+9﹣(1﹣3)0﹣(12)﹣1.24.(14分)如图,已知与抛物线C1过A(-1,0)、B(3,0)、C(0,-3).(1)求抛物线C1的解析式.(2)设抛物线的对称轴与x 轴交于点P,D 为第四象限内的一点,若△CPD 为等腰直角三角形,求出 D 点坐标.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.2、A【解题分析】根据绝对值和数的0次幂的概念作答即可.【题目详解】原式=1+1=2故答案为:A.【题目点拨】本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.3、B【解题分析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4、C【解题分析】根据绝对值的计算法则解答.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.【题目详解】解:11 88 .故选C.【题目点拨】此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.5、C【解题分析】由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【题目详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.【题目点拨】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.6、A【解题分析】先将抛物线解析式化为顶点式,左加右减的原则即可.【题目详解】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.【题目点拨】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行; 7、A【解题分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【题目详解】A.a +a =2a ,故本选项正确;B.336 b b b ⋅=,故本选项错误;C.32a a a ÷= ,故本选项错误;D.525210()a a a ⨯==,故本选项错误.故选:A.【题目点拨】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键. 8、C【解题分析】【题目详解】4,4的算术平方根是2,2,故选C .【题目点拨】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.9、A【解题分析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.10、C根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.【题目详解】A. a+3a=4a,故不正确;B. (–a2)3=(-a)6,故不正确;C. a3·a4=a7,故正确;D. (a+b)2=a2+2ab+b2,故不正确;故选C.【题目点拨】本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、5【解题分析】试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=12AB=5.考点:直角三角形斜边上的中线.12、2【解题分析】试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考点:1折叠问题;2勾股定理;1相似三角形.13、a<2且a≠1【解题分析】将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.【题目详解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,∵分式方程的解为正实数,∴2-a>0,且2-a≠1,故答案为:a <2且a≠1.【题目点拨】分式方程的解.14、1133a b -+ 【解题分析】连接AG ,延长AG 交BC 于F .首先证明DG=GE ,再利用三角形法则求出DE 即可解决问题.【题目详解】连接AG ,延长AG 交BC 于F .∵G 是△ABC 的重心,DE ∥BC ,∴BF=CF ,23AD AE AG ABAC AF ===, ∵DG AD BFAB =,GE AE CF AC =, ∴DG GE BF CF=, ∵BF=CF ,∴DG=GE ,∵23AD a =,23AE b =, ∴2233DE DA AE b a =+=-, ∴111233GE DE b a ==-, 故答案为1133b a -. 【题目点拨】本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15、1.【解题分析】如图,作BH ⊥AC 于H .由四边形ABCD 是矩形,推出OA =OC =OD =OB ,设OA =OC =OD =OB =5a ,由tan∠BOH43BHOH==,可得BH=4a,OH=3a,由题意:212⨯⨯1a×4a=40,求出a即可解决问题.【题目详解】如图,作BH⊥AC于H.∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.∵tan∠BOH43BHOH==,∴BH=4a,OH=3a,由题意:212⨯⨯1a×4a=40,∴a=1,∴AC=1.故答案为:1.【题目点拨】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.16、3(a-1)2【解题分析】先提公因式,再套用完全平方公式.【题目详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.【题目点拨】考点:提公因式法与公式法的综合运用.17、1:1【解题分析】分析:根据相似三角形的周长比等于相似比解答.详解:∵△ABC与△A′B′C′是关于点O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=1OA,∴△ABC与△A′B′C′的周长之比是:OA:OA′=1:1.故答案为1:1.点睛:本题考查的是位似变换的性质,位似变换的性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.三、解答题(共7小题,满分69分)18、(1)32;(2)1.【解题分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=32(12﹣x),再根据S=32x(12﹣x)=﹣32(x﹣6)2+1,可得当x=6时,S有最大值为1.【题目详解】解:(1)∵△AEF∽△ABC,∴EF AK BC AD=,∵边BC长为18,高AD长为12,∴EF BCAK AD==32;(2)∵EH=KD=x,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+1.当x=6时,S有最大值为1.【题目点拨】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.19、(1)CH=AB.;(2)成立,证明见解析;(3)【解题分析】(1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB 即可.(2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB 即可.(3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.【题目详解】解:(1)如图1,连接BE,,在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°,∵点E 是DC 的中点,DE=EC ,∴点F 是AD 的中点,∴AF=FD ,∴EC=AF ,在△ABF 和△CBE 中,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△CBE ,∴∠1=∠2,∵EH ⊥BF ,∠BCE=90°,∴C 、H 两点都在以BE 为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC ,∴CH=BC ,又∵AB=BC ,∴CH=AB .(2)当点E 在DC 边上且不是DC 的中点时,(1)中的结论CH=AB 仍然成立.如图2,连接BE ,,在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°,∵AD=CD ,DE=DF ,∴AF=CE ,在△ABF 和△CBE 中,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△CBE ,∴∠1=∠2,∵EH ⊥BF ,∠BCE=90°,∴C 、H 两点都在以BE 为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC ,∴CH=BC ,又∵AB=BC ,∴CH=AB .(3)如图3,,∵CK≤AC+AK ,∴当C 、A 、K 三点共线时,CK 的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE ,∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH ,在△DFK 和△DEH 中,KDF HDE DF DEDFK DEH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DFK ≌△DEH ,∴DK=DH ,在△DAK 和△DCH 中,DA DC KDA HDC DK DH =⎧⎪∠=∠⎨⎪=⎩∴△DAK ≌△DCH ,∴AK=CH又∵CH=AB ,∴AK=CH=AB ,∵AB=3,∴AK=3,2,∴CK=AC+AK=AC+AB=323,即线段CK长的最大值是323.考点:四边形综合题.20、(1)见解析;(2) 201,207,1【解题分析】试题分析:(1)先设出两位自然数的十位数字,表示出这个两位自然数,和轮换两位自然数即可;(2)先表示出三位自然数和轮换三位自然数,再根据能被5整除,得出b的可能值,进而用4整除,得出c的可能值,最后用能被3整除即可.试题解析:(1)设两位自然数的十位数字为x,则个位数字为2x,∴这个两位自然数是10x+2x=12x,∴这个两位自然数是12x能被6整除,∵依次轮换个位数字得到的两位自然数为10×2x+x=21x∴轮换个位数字得到的两位自然数为21x能被7整除,∴一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”.(2)∵三位自然数是3的一个“轮换数”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次轮换得到的三位自然数是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次轮换得到的三位自然数是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的个位数字不是0,便是5,∴b=0或b=5,当b=0时,∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴这个三位自然数可能是为201,203,205,207,209,而203,205,209不能被3整除,∴这个三位自然数为201,207,当b=5时,∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c 只能是1,5,7,9;∴这个三位自然数可能是为251,1,257,259,而251,257,259不能被3整除,∴这个三位自然数为1,即这个三位自然数为201,207,1.【题目点拨】此题是数的整除性,主要考查了3的倍数,4的倍数,5的倍数的特点,解本题的关键是用5的倍数求出b 的值.21、(1)m ≥﹣112;(2)m =2. 【解题分析】(1)利用判别式的意义得到(2m +3)2﹣4(m 2+2)≥1,然后解不等式即可;(2)根据题意x 1+x 2=2m +3,x 1x 2=m 2+2,由条件得x 12+x 22=31+x 1x 2,再利用完全平方公式得(x 1+x 2)2﹣3x 1x 2﹣31=1,所以2m +3)2﹣3(m 2+2)﹣31=1,然后解关于m 的方程,最后利用m 的范围确定满足条件的m 的值.【题目详解】(1)根据题意得(2m +3)2﹣4(m 2+2)≥1,解得m ≥﹣112; (2)根据题意x 1+x 2=2m +3,x 1x 2=m 2+2,因为x 1x 2=m 2+2>1,所以x 12+x 22=31+x 1x 2,即(x 1+x 2)2﹣3x 1x 2﹣31=1,所以(2m +3)2﹣3(m 2+2)﹣31=1,整理得m 2+12m ﹣28=1,解得m 1=﹣14,m 2=2,而m ≥﹣112; 所以m =2.【题目点拨】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =1(a ≠1)的两根时,1212,b c x x x x a a+=-=.灵活应用整体代入的方法计算.22、(1)证明见解析;(2)从运动开始经过2s或53s或125s或682215-s时,△BEP为等腰三角形.【解题分析】(1)根据内错角相等,得到两边平行,然后再根据三角形内角和等于180度得到另一对内错角相等,从而证得原四边形是平行四边形;(2)分别考虑P在BC和DA上的情况求出t的值.【题目详解】解:(1)∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四边形ABCD是平行四边形.(2)∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD间的最短距离是4cm,∵AB=3cm,AE=13 AB,∴AE=1cm,BE=2cm,设经过ts时,△BEP是等腰三角形,当P在BC上时,①BP=EB=2cm,t=2时,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=12BE=1cm∵cos∠ABC=35 AB BMBC BP==,∴BP=53cm , t=53时,△BEP 是等腰三角形; ③BE=PE=2cm ,作EN ⊥BC 于N ,则BP=2BN ,∴cosB=35BN BE =, ∴325BN =, BN=65cm , ∴BP=125, ∴t=125时,△BEP 是等腰三角形; 当P 在CD 上不能得出等腰三角形,∵AB 、CD 间的最短距离是4cm ,CA ⊥AB ,CA=4cm ,当P 在AD 上时,只能BE=EP=2cm ,过P 作PQ ⊥BA 于Q ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠QAD=∠ABC ,∵∠BAC=∠Q=90°,∴△QAP ∽△ABC ,∴PQ :AQ :AP=4:3:5,设PQ=4xcm ,AQ=3xcm ,在△EPQ 中,由勾股定理得:(3x+1)2+(4x )2=22,∴ ,cm ,∴t=5+5+3﹣35=685-,答:从运动开始经过2s 或53s 或125s 或685-s 时,△BEP 为等腰三角形.【题目点拨】本题主要考查平行四边形的判定定理及一元二次方程的解法,要求学生能够熟练利用边角关系解三角形.23、1【解题分析】试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可.试题解析:解:|﹣1|10﹣(12)﹣1=1+3﹣1﹣2=1.点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键.24、(1)y = x2-2x-3,(2)D1(4,-1),D2(3,- 4),D3 ( 2,- 2 )【解题分析】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式;(2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标.【题目详解】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a×(-3)×1解得a=1,∴解析式为y= x2-2x-3,(2)如图所示,对称轴为x=1,过D1作D1H⊥x轴,∵△CPD为等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)过点D2F⊥y轴,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,- 4)由图可知CD1与PD2交于D3,此时PD3⊥CD3,且PD3=CD3,PD3=CD3故D3 ( 2,- 2 )∴D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使△CPD 为等腰直角三角形.【题目点拨】此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.。
2024年山东济南市中考数学模拟押题预测试题

2024年山东济南市中考数学模拟押题预测试题一、单选题1.抽查10袋某食品的质量,每袋食品的标准质量是100g ,超出部分记为正,不足部分记为负,统计结果如下表.则这10袋食品的总质量是( )A .1000gB .1001gC .1005gD .1010g 2.世界上几乎所有的生物都是由细胞组成的,科学家发现,一个细胞的平均质量约为0.00000000011毫克.用科学记数法表示0.00000000011正确的是( )A .91.110-⨯B .101.110-⨯C .111110-⨯D .101.110⨯ 3.下列三星堆文物图案中,既是中心对称图形又是轴对称图形的是( )A .B .C .D . 4.下列各运算中,计算正确的是( )A .326·a a a =B .()336x x =C .()4416ab ab =D .633b b b ÷= 5.如图,将直角梯形ABCD 沿AB 方向向下平移2个单位得到直角梯形EFGH ,已知6BC =,90A ∠=︒,45C ∠=︒,则阴影部分的面积为( )A .8B .10C .12D .6.计算1211x x +--的结果是( ) A .11x - B .11x - C .31x - D .31x- 7.将分别标有“美”、“丽”、“中”、“国”四个汉字的小球装在一个不透明的口袋中,这些小球除汉字以外其它完全相同,先将小球搅拌均匀,随机摸出一球,不放回,再搅拌均匀,随机又摸出一球,两次摸出的球上的汉字组成“中国”的概率是( )A .18B .16C .14 D .5168.将商品按单件利润为20元售出时,能卖出100个.已知该商品单价每上涨1元,其销售量就减少5个.设这种商品的售价上涨x 元时,获得的利润为y 元,则下列关系式正确的是( )A .()()201005y x x =+-B .()()201005y x x =--C .()()201005y x x =-+D .()()201005y x x =++9.如图是4个台阶的示意图,每个台阶的高和宽分别是1和2,将每个台阶拐角的顶点叫作拐点,记作m T (m 为1~7的整数),函数 (0)k y x x=>的图象为曲线L . 当曲线L 同时经过的拐点最多时, k 的值为 ( )A .6B .8C .12D .1610.将抛物线223y x x =-++中x 轴上方的部分沿x 轴翻折到x 轴下方,图像的其余部分不变,得到的新图像与直线y x m =+有4个交点,则m 的取值范围是( )A .5m ≤-B .2154m -≤<-C .2134m -<<-D .3m ≥-二、填空题11.在有理数范围内分解因式:224a a -=.12.方程1321x x =+的解为.13.如图,在ABC V 中,90BAC ∠=︒,AD 是高,AB AC >,E ,F 分别为AB ,BC 的中点,若C α∠=,则DEF ∠的度数为(用含α的式子表示).14.如图,四边形ABCD 内接于半圆O (点A ,B ,C ,D 在半圆O 上),AB 为⊙O 的直径,且110ADC ∠=︒,则BAC ∠的度数为 度.15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P 为AB 的黄金分割点(AP PB >),如果AB 的长度为10cm ,那么AP 的长度为cm .(结果保留根号)16.如图,正方形ABCD 的对角线交于点O ,点E 是直线BC 上一动点.若4AB =,则AE O E +的最小值是.三、解答题17.计算:()2012sin 60 3.1412π-⎛⎫︒+---- ⎪⎝⎭18.解不等式组480113x x x -≤⎧⎪+⎨<+⎪⎩,把解集在数轴上表示出来.19.把一张长方形的纸片ABCD 沿对角线BD 折叠,折叠后,边BC 的对应边BE 交AD 于F .(1)求证:(BF DF =长方形各内角均为90)︒;(2)若6AB =,8BC =,求DF 的长.20.如图,在电视背景墙上,银幕投影区域的下沿B 距离地面的高度BC 为72cm ,投影区域的上沿A 距离地面228厘米.小明为了获得最大的投影效果,将投影仪镜调整到影像达到银幕投影区域的上下沿.经测量,此时投影仪镜头D 到上沿A 的仰角为17.7︒,到下沿B的俯角为11.3︒,求此时镜头D 到地面的距离.(参考数据:tan11.30.2,tan17.70.32︒≈︒≈)21.随着经济水平的提升,人们越来越重视人体健康,目前,国际上常用身体质量指数“BMI ”作为衡量人体健康状况的一个指标,其计集式为2BMI m h =(m 表示体重,单位:kg ;h 表示身高,单位:m).,BMI 数值标准为:16BMI <为瘦弱(不健康);1618.5BMI ?为偏瘦:18.524BMI <<为正常;2428BMI ≤<为偏胖;28BMI ≥为肥胖(不健康)其校为了解中学生的健康情况,随机抽取了40名学生体检结果的身高数据,绘制了如下两幅不完整的统计图.(1)a =,b =;(2)样本中数据的中位数所在的范围是(3)小张身高1.70m ,BMI 值为27,他想通过健身减重使自己的BMI 值kg .(结果精确到1kg )达到正常,则他的体重至小需要减掉kg .(结果精确到1kg )22.如图,O e 是ABC V 的外接圆,AB 是O e 的直径,切线CD 交AB 的延长线于点D ,BE CD ⊥,垂足为点E ,延长EB 交O e 于点F ,连接,OF CF .(1)求证:CF 平分BFO ∠;(2)若O e 的半径为4,45BE =,求tan A 的值. 23.某超市采购A ,B 两种品种的苹果进行销售,A 品种苹果的进货价格为每千克4元,B 品种苹果的进货价格为每千克2元,该超市销售2千克A 品种苹果和5千克B 品种苹果时售价为37元,销售3千克A 品种苹果和4千克B 品种苹果时总售价为38元.(1)求该超市销售1千克A 品种苹果和1千克B 品种苹果的售价分别是多少元?(2)该超市准备采购A ,B 两种品种苹果共200千克,若这批苹果全部售出,且利润不低于528元,则该超市最多采购A 品种苹果多少千克?24.如图,在平面直角坐标系xOy 中,直线y kx b =+与y 轴交于点()0,2A ,与x 轴交于点()4,0B -,与反比例函数m y x=在第三象限内的图象交于点()6,C a -.(1)求反比例函数的表达式;(2)当m kx b x+>时,求x 的取值范围; (3)当点P 在y 轴上,ABP V 的面积为6时,直接写出点P 的坐标.25.综合应用如图,抛物线2y x bx c =-++与x 轴交于点()1,0A B ,,与y 轴交于点()0,3C .(1)求抛物线的解析式;(2)直线y x =-与抛物线在第二象限交于点M ,若动点N 在OM 上运动,线段CN 绕点N 顺时针旋转,点C 首次落在x 轴上时记为点D ,在点N 运动过程中,判断CND ∠的大小是否发生变化?并说明理由.(3)在(2)的条件下,连接CD ,记CND △的外接圆的最小面积为1S ,记CND △的外接圆的最大面积为2S ,试求21S S -的值(结果保留π).26ABCD D 的正方形AEFG 按图1位置放置,AD 与AE 在同一直线上,AB 与AG 在同一直线上.连接DG ,BE ,易得DG BE =且DG BE ⊥(不需要说明理由).(1)如下图,小明将正方形ABCD 绕点A 逆时针旋转,旋转角为(15165)αα︒<<︒. ①连接DG ,BE ,判断DG 与BE 的数量关系和位置关系,并说明理由;②在旋转过程中,如下图,连接BG ,GE ,ED ,DB ,求四边形BGED 面积的最大值.(2)如下图,分别取BG ,GE ,ED ,DB 的中点M ,N ,P ,Q ,连接MN ,NP ,PQ ,QM ,则四边形MNPQ 的形状为______,四边形MNPQ 面积的最大值是______.。
精品解析:2024年济南市中考数学模拟预测题(一)(解析版)

2024年济南市中考数学模拟试题(一)满分:150分 时间:120分钟一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 倒数的相反数是( )A. B.C. D. 2023【答案】B 【解析】【分析】根据乘积为1的两个数互为倒数,只有符号不同的两个数互为相反数,进行求解即可.【详解】解:倒数的相反数是;故选B .2. 清明节期间某市共接待国内游客约721000人次,将721000用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】根据科学记数法的表示方法:为整数,进行表示即可,确定的值,是解题的关键.【详解】解:;故选C .3. 下列各式计算正确的是( )A. B. C. D. 【答案】A 【解析】【分析】此题考查了合并同类项,根据合并同类项法则判断即可.【详解】解:A .,故选项正确,符合题意;2023-2023-1202312023-2023-12023372110⨯472.110⨯57.2110⨯60.72110⨯10,110,na a n ⨯≤<,a n 572100072110.=⨯220m n nm -+=2242m m m +=22532m m -=2243m n m n mn-=220m n nm -+=B .,故选项错误,不符合题意;C .,故选项错误,不符合题意;D .,故选项错误,不符合题意.故选:A .4. 下列几何体中,其俯视图与左视图完全相同的是( )A. B. C. D.【答案】C 【解析】【分析】本题考查几何体的三视图.根据主视图、左视图、俯视图分别是从物体正面、左面、上面看所得的图形即可判断.【详解】A ,俯视图是带圆心的圆,左视图是等腰三角形,此选项不符合题意;B ,俯视图是矩形,左视图是圆,此选项不符合题意;C ,俯视图、左视图都是正方形,此选项符合题意;D ,俯视图是三角形,左视图是矩形,此选项不符合题意.故选:C .5. 如图,直线,,它的顶点分别在直线上,且,若,则的度数为( )A. B. C. D. 【答案】D 【解析】【分析】本题考查了平行线的性质,根据两直线平行,内错角相等得到,再结合已知即可求出的度数,再根据直角三角形两锐角互余即可求出的度数,解题的关键是熟练掌握平行线的性质:两直线平行,同位角相等; 两直线平行,内错角相等;两直线平行,同旁222m m 2m +=222532m m m -=22243m n m n m n -=a b ∥Rt ,90ABC ABC ∠=︒△A B 、,a b CAB BAE ∠=∠150∠=︒2∠75︒85︒60︒65︒150DAE ∠=∠=︒CAB BAE ∠=∠CAB ∠2∠内角互补.【详解】∵直线,∴,∵,∴,∵,∴故选:.6. 如图,直线与直线交于点,则方程组的解是( )A. B. C. D. 【答案】A 【解析】【分析】本题考查的是二元一次方程和一次函数的关系,两直线的交点就是两直线解析式所组成方程组的解.【详解】解:∵直线与直线交于点,∴方程组的解为.即:方程组的解为.故选:A .a b ∥150DAE ∠=∠=︒CAB BAE ∠=∠25CAB ∠=︒90ABC ∠=︒290902565CAB ∠=︒-∠=︒-︒=︒D 151:33l y x =-2:5l mx ny +=(1,2)A 5315x y mx ny -=⎧⎨+=⎩12x y =⎧⎨=⎩21x y =⎧⎨=⎩12x y =-⎧⎨=-⎩21x y =-⎧⎨=-⎩151:33l y x =-2:5l mx ny +=(1,2)A 51335y x mx ny ⎧=-⎪⎨⎪+=⎩12x y =⎧⎨=⎩5315x y mx ny -=⎧⎨+=⎩12x y =⎧⎨=⎩7. 现有一批苹果,从中抽取20个,测得它们的直径(单位:)如下表所示:直径/74757677787980个数1242632那么这20个苹果直径的众数和中位数分别是( )A. 77,80 B. 77,77C. 78,78D. 78,77【答案】C 【解析】【分析】本题考查了中位数和众数的定义,根据一组数据中出现次数最多的是众数,将一组数据从小到大(或从大到小)排列,处在最中间的数(或最中间两个数的平均数)是中位数,计算即可得出答案,熟练掌握中位数和众数的定义是解此题的关键.【详解】解:由表格可得:20个苹果的直径处在第和第个数据为,出现的次数最多,有次,故中位数为:,众数为,故选:C .8. 九章算术是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少天.已知快马的速度是慢马的倍,求规定时间.设规定时间为天,则可列方程为( )A. B.C.D.【答案】A 【解析】【分析】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.【详解】解:规定时间为天,慢马所需的时间为天,快马所需的时间为天,又快马速度是慢马的倍,可列出方程.故选:A .的mm mm 1011787867878782+=78《》90032x 900900213x x ⨯=+-900900213x x =⨯+-900900213x x =⨯-+900900213x x ⨯=-+ x ∴()1x +()3x - 2∴900900213x x ⨯=+-9. 在同一平面直角坐标系中,函数与(其中m ,n 是常数,)的大致图象可能是( )A. B.C. D.【答案】C 【解析】【分析】本题考查的知识点是一次函数及反比例函数图像与性质,解题关键是结合函数解析式及选项图像判断m ,n 的取值范围是否相符.先根据一次函数图像判断m ,n的取值范围,确定的取值范围后,即可判断反比例函数图像中的m ,n 的取值范围是否一致,从而判断选项是否正确.【详解】A 选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在一、三象限,与图像不符,A 选项错误;B 选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在一、三象限,与图像不符,B 选项错误;C 选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在二、四象限,与图像相符,C 选项正确;D 选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在二、四象限,与图像不符,D 选项错误.故选:C .10. 如图,四边形中,F 是上一点,E 是上一点,连接.若,,,平分,则下列结论中:①;②;③;④垂直平分,正确的个数有( )y mx n =+ny mx=0mn ≠nmy mx n =+0m <0n <0nm>ny mx=0k >y mx n =+0m >0n >0n m >ny mx =0k >y mx n =+0m <0n >0n m <n y mx =0k <y mx n =+0m >0n <0n m <n y mx=0k <ABCD CD BF AE AC DE 、、AB AC =AD AE =80BAC DAE ∠=∠=︒AE BAC ∠ABE ACD △△≌BE EF =100BFD ∠=︒AC DEA. 1个B. 2个C. 3个D. 4个【答案】C 【解析】【分析】本题主要考查的是全等三角形的性质和判定、等腰三角形的性质、四边形的内角和,熟练掌握相关知识是解题的关键.依据可证明,由全等三角形的性质可得到,则,然后依据四边形的内角和为可求得的度数,然后再证明,则依据等腰三角形的性质可得到与的关系.【详解】解:,即,,故①正确,,故③正确.平分,平分.又,平分,是的垂直平分线,故④正确.由已知条件无法证明,故②错误.故选:C.SAS ABE ACD ≌AEB ADC ∠=∠180AEF ADC ∠+∠=︒360︒BFD ∠40EAC DAC ==︒∠∠AC DE BAC DAE ∠=∠ ,BAE EAC DAC EAC∠+∠=∠+∠BAE DAC ∴∠=∠BAE DAC AB AC AE AD ∠==∠= ,,ABE ACD ∴ ≌ABE ACD≌AEB ADC ∴∠=∠180AEB AEF ∠+∠=︒ 180AEF ADC ∴∠+∠=︒180********BFD EAD ∴∠=︒-∠=︒-︒=︒AE BAC ∠40EAC ∴∠=︒80DAE =︒∠ AC ∴EAD ∠AE AD= AC DE ∴⊥AC DE AC ∴DE BE EF =二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.12. 若一个多边形的内角和比外角和大,则这个多边形的边数为______.【答案】【解析】【分析】本题考查了多边形的内角和公式与外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是是解题的关键,根据多边形的内角和公式,外角和等于列出方程求解即可.【详解】解:设多边形的边数是,根据题意得,,解得.故答案为:.13. 在平面直角坐标系中,已知点A 的坐标为,线段轴,且,那么点B 的坐标是__________________.【答案】或【解析】【分析】本题考查了点的坐标;先根据轴得到点B 的纵坐标为,再根据分情况求出点B 的横坐标即可.【详解】解:∵点A 的坐标为,线段轴,∴点B 的纵坐标为,24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-360︒6360︒()2180n -⋅︒360︒n ()2180360360n -⋅︒-︒=︒6n =6()2,8--AB x 6AB =()8,8--()4,8-AB x 8-6AB =()2,8--AB x 8-∵,∴点B 的横坐标为或,即点B 的坐标是或,故答案为:或.14. 关于x 的一元二次方程有两个实数根,则m 的取值范围是___________.【答案】且【解析】【分析】本题考查了一元二次方程根的判别式及一元二次方程的定义.根据一元二次方程的根与有如下关系:①当时,方程有两个不相等的两个实数根;②当时,方程有两个相等的两个实数根;③当时,方程无实数根.及一元二次方程的定义即可得出结果.【详解】解:由题意得:且,即且,解得:且,故答案为:且.15. 某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物,装卸货物共用,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为,两车之间的距离()与货车行驶时间()之间的函数图象如图所示,图中点的坐标为___________【答案】【解析】【分析】本题考查了函数图象;设快递车从甲地到乙地的速度为千米时,根据3小时相距120千米即可6AB =268--=-264-+=()8,8--()4,8-()8,8--()4,8-()()222120m x m x m -+++-=34m ≥2m ≠()200ax bx c a ++=≠24b ac ∆=-0∆>Δ0=Δ0<()()()2214220m m m ∆=+---≥20m -≠22441416160m m m m ++-+-≥20m -≠34m ≥2m ≠34m ≥2m ≠45min 60km /h y km x h B ()3.75,75x /列方程求解,根据条件段所用的时间是45分钟,利用甲和乙之间的距离减去货车行驶的距离即可求得点对应的纵坐标,即可求解.【详解】解:设快递车从甲地到乙地的速度为千米时,则,解得:.则甲、乙两地之间的距离是(千米);快递车返回时距离货车的距离是:(千米),即点的纵坐标为∵装卸货物共用,∴点的横坐标为故答案:.16. 如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,若点为抛物线上一点且横坐标为,点为轴上一点,点在以点为圆心,为半径的圆上,则的最小值______ .##【解析】【分析】先求出点,点,作点关于轴对称的点,则点,连接交与轴于,交于,过点作轴于,连接,当点与点重合,点与点重合时,为最小,最小值为线段的长,然后可在中由勾股定理求出,进而可得,据此可得出答案.【详解】解:对于,当时,,为AB B a /()360120a -=100a =3100300⨯=4530060(37560-+=B 7545min 450.7560=B 3.75()3.75,75234y x x =--+x A B A B y C D 3-E y F A 2DE EF +22-+()4,0A -()3,4D -D y T ()3,4T AE M A N T TH x ⊥H AF E M F N DE EF +TN Rt ATH TA TN 234y x x =--+0y =2340x x --+=解得:,,点的坐标为,对于,当时,,点的坐标为,作点关于轴对称的点,则点,连接交与y 轴于,交于,过点作轴于,连接,当点与点重合,点与点重合时,为最小,最小值为线段的长.理由如下:当点与点不重合,点与点不重合时,根据轴对称的性质可知:,,根据“两点之间线段最短”可知:,即:,,,即:,当点与点重合,点与点重合时,为最小.点,,,,,,在中,,,14x =-21x =∴A ()4,0-234y x x =--+3x =-4y =∴D ()3,4-D y T ()3,4T AE M A N T TH x ⊥H AF E M F N DE EF +TN E M F N DE TE =DE EF TE EF ∴+=+TE EF AF AT ++>TE EF AF TN AN ++>+2AF AN == TE EF TN ∴+>DE EF TN +>∴E M F N DE EF + ()3,4T()4,0A -3OH ∴=4TH =4OA =7AH OA OH ∴=+=Rt ATH 7AH =4TH =由勾股定理得:,.即..【点睛】此题主要考查了二次函数与轴的交点,利用轴对称求最短路线,圆的性质,勾股定理等,解答此题的关键是准确的求出二次函数与轴的交点坐标,难点是确定当为最小时,点,的位置.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤.)17. 计算:【答案】【解析】【分析】本题主要考查了实数的运算,求特殊角三角函数值,零指数幂,负整数指数幂,先计算特殊角三角函数值,,零指数幂,负整数指数幂,再根据实数的运算法则求解即可.【详解】解:.18. 解不等式组,并写出它的所有正整数解.【答案】;1,2,3.【解析】【分析】本题主要考查了解一元一次不等式组,求不等式组的整数解,正确求出每个不等式的解集是解题的关键.先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而求出不等式组的整数解即可.TA ==2TN TA AN ∴=-=-DE EF +2-2-xx DE EF +EF )201tan 6012-⎛⎫︒-+ ⎪⎝⎭3+)201tan 6012-⎛⎫︒-+ ⎪⎝⎭14=+-+3=6341213x x x x +≤+⎧⎪⎨+>-⎪⎩①②14x ≤<【详解】解:,解不等式①得:,解不等式②得:,∴不等式组的解集为,∴不等式组的所有正整数解有1,2,3.19. 如图,在平行四边形中,的平分线交于点E ,的平分线交于点F .求证:.【答案】见解析【解析】【分析】本题考查了平行四边形的性质、全等三角形的判定与性质以及角平分线定义等知识,熟练掌握平行四边形的性质,证明三角形全等是解题的关键.根据平行四边形性质得,,,则,再证明,然后证明,即可得出结论.【详解】证明:四边形是平行四边形,,,,.平分,平分,,.,在和中,,,6341213x x x x +≤+⎧⎪⎨+>-⎪⎩①②1x ≥4x <14x ≤<ABCD ABD ∠BE AD CDB ∠DF BC AE CF =AB CD =A C ∠=∠AB CD ∥ABD CDB ∠=∠ABE CDF ∠=∠()ASA ABE CDF ≌△△ ABCD AB CD ∴=A C ∠=∠AB CD ∥ABD CDB ∴∠=∠BE ABD ∠DF CDB ∠12ABE ABD ∴∠=∠12CDF CDB ∠=∠ABE CDF ∴∠=∠ABE CDF A C AB CDABE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ABE CDF ∴△△≌.20. 为进一步提升学生数学核心素养,某校拟开展初中数学实践作业成果展示活动,作业项目包括:测量、七巧板、调查活动、无字证明、数学园地设计(分别用字母A ,B ,C ,D ,E 依次表示这五项作业).为了解学生上交的作业项目,现随机调查了若干名学生(每位同学只上交一种作业),并将调查结果绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了______名学生;(2)请根据以上信息直接补全条形统计图;(3)扇形统计图中作业D “无字证明”的圆心角的度数是______度;(4)若参加成果展示活动的学生共有人,请你估计上交A “测量”作业的学生人数.【答案】(1)(2)件解析(3)(4)名【解析】【分析】(1)用项目B 的人数除以其人数占比即可得到答案;(2)先求出项目C 的人数,再补全统计图即可;(3)用乘以项目D 的人数占比即可得到答案;(4)用乘以样本中项目A 的人数占比即可得到答案.【小问1详解】解:名,∴本次共调查了名学生,故答案:;【小问2详解】为AE CF ∴=60012036150360︒6003630%120÷=120120解:项目C 的人数为名,∴补全统计图如下所示:【小问3详解】解:,∴扇形统计图中作业D “无字证明”的圆心角的度数是度,故答案为:;【小问4详解】解:名,∴估计上交A “测量”作业的学生人数为名.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,正确读懂统计图是解题的关键.21. 春节期间,白居寺长江大桥凭借其独特的造型、科幻的氛围、“星际穿越”的视感吸引众多游客纷纷前来打卡拍照.某校数学社团的同学们欲测量白居寺长江大桥桥塔的高度,如图2,他们在桥下地面上架设测角仪(测角仪垂直于地面放置),此时测得白居寺长江大桥桥塔最高点的仰角,然后将测角仪沿方向移动100.5米到达点处,并测出点的仰角,测角仪高度米.(点在同一水平线上,)(1)白居寺长江大桥桥塔的高度约为多少米?(结果保留到个位,参考数据:,1203036121824----=1236036120︒⨯=︒363630600150120⨯=150MB CM A 35ACE ∠=︒MB N A 45ADE ∠=︒1.6CM DN ==M N B ,,AB BM ⊥AB sin 350.57︒≈,)(2)如图3,在(1)问条件下,小明在某大楼处测得白居寺长江大桥桥塔最高点的仰角,最低点的俯角,则小明所在地处与的水平距离约为多少米?(结果保留到个位,参考数据:,,,,,)【答案】(1)2361 (2)141.66【解析】【分析】本题考查解直角三角形的应用,通过仰角俯角问题测量物体高度,熟练掌握锐角三角函数的定义是解答本题的关键.(1)延长,交于点,设, 则,在中, ,可得,在中,,,求出,再根据得出答案;(2)延长交于点,由题意可知,,根据题意可得,设,则,根据,,可得,解得,从而可得的值.【小问1详解】解:如图所示,延长,交于点,由题意得, , 设, 则在中,.cos350.82︒≈tan 350.70︒≈ 1.41≈Q A 18AQG ∠=︒B 53BQG ∠=︒Q AB sin 720.95︒≈cos 720.3︒≈tan 723︒≈sin 370.6︒≈cos370.8︒≈tan 370.75︒≈CD AB F DF x =100.5CF x =+Rt ADF 45ADF ∠=︒AF x =Rt ACF 35ACE ∠=︒tan 350.7100.5AF x CF x ︒==≈+x AB AF BF =+QG AB M QM AB ⊥236.1AB =72,37A B ∠=︒∠=︒AM x =236.1BM x =-tan tan 723QM A AM∠=︒=≈tan tan 370.75QM B BM ∠=∠︒=≈tan 370.75tan 72236.13AM x BM x ︒===︒-47.22x =QM CD AB F 100.5CD MN ==DF BN =90, 1.6AFD CM DN BF ∠=︒===DF x =100.5CF x =+Rt ADF 45ADF ∠=︒在中,, 经检验是原方程的解且符合题意米白居寺长江大桥桥塔的高度约为米;【小问2详解】解:延长交于点,由题意可知,,设,则解得故处与的水平距离约为米22. 如图,在中,,以为直径作交于点E ,连接,.AF x∴=Rt ACF 35ACE ∠=︒tan 350.7100.5AF x CF x ︒==≈+234.5x ∴≈234.5x ≈234.5 1.6236.1AB AF BF ∴=+=+=∴AB 236.1QG AB M QM AB ⊥236.1AB = 18AQG ∠=︒53BQG ∠=︒72,37A B ∴∠=︒∠=︒AM x =236.1BM x=-tan tan 723QM A AM∠=︒=≈ tan tan 370.75QM B BM ∠=∠︒=≈tan 370.75tan 72236.13AM x BM x ︒∴===︒-47.22x =∴tan 7247.223141.66QM AM =⋅︒=⨯=Q AB 141.66Rt ABC △90ACB ∠=︒AD O AB CE CE BC =(1)求证:是的切线;(2)若,,求的半径.【答案】(1)见解析(2)⊙O 的半径为3【解析】【分析】对于(1),连接,先说明,可得,再根据同角的余角相等得,然后根据“等边对等角”得,进而得出,即可得出答案;对于(2),设的半径为r ,根据勾股定理可得,再根据勾股定理用含有r 的式子表示,即可得出关于r 的方程,然后求出解即可.【小问1详解】证明:如图,连接,∵,∴.∵是的直径,∴,∴.∵,∴,∴.∵,∴.CE O 2CD=AB =O OE A B ∠∠=︒+9090DEC CEB ∠+∠=︒A DEC ∠=∠OED ODE ∠=∠90OEC ∠=︒O222(22)(r B C ++=2BC OE 90ACB ∠=︒A B ∠∠=︒+90AD O 90AED DEB ∠=∠=︒90DEC CEB ∠+∠=︒CE BC =B CEB ∠=∠A DEC ∠=∠OE OD =OED ODE ∠=∠∵,∴,即,∴.∵是的半径,∴是的切线;【小问2详解】解:在中,,,设的半径为r ,则,,∴,∴.在中,,∴,∴,∴,∴,解得,或(舍去).∴的半径为3.【点睛】本题主要考查了切线的判定,勾股定理,直径所对的圆周角是直角,等腰三角形的性质,同角的余角相等,勾股定理是求线段长的常用方法.23. 赣南脐橙,江西省赣州市特产,中国国家地理标志产品.某赣南橙种植基地11月20号开始采摘发售,果农根据果实的大小和甜度将赣南橙划分为A 级和B 级两个类别.采摘发售第一周,A 级累计销售19200元,B 级累计销售16000元.已知A 级每箱单价比B 级多,销量比B 级少40箱.(1)赣南橙A 级、B 级每箱售价分别是多少元?(2)某商店计划从该基地购进A 、B 两个等级的赣南橙共40箱,且A 级的数量不少于B 级的数量的.该商店如何购进才能使花费最小,并求出最小花费.【答案】(1)级每箱售价120元,级每箱售价80元(2)购进级10箱,级30箱,花费3600元,此时花费最小【解析】90A ADE ∠+∠=︒90DEC OED ∠+∠=︒90OEC ∠=︒OE CE ⊥OE O CE O Rt ABC △90ACB ∠=︒AB =O OD OE r ==22AC r =+222AC BC AB +=222(22)(r B C ++=Rt OEC △90OEC ∠=︒222OE CE OC +=222(2)r B C r +=+222(2)B C r r =+-2222(22)(2)(r r r +++-=3r =3r =-O 50%13A B A B【分析】本题考查了分式方程的应用以及一次函数的应用,理解题意,列方程及函数关系式是解决问题的关键.(1)设赣南橙级每箱售价元,则级每箱售价元,根据“A 级每箱单价比B 级多,销量比B 级少40箱”列方程即可求解;(2)设购进级箱,则购进级箱,根据“A 级的数量不少于B 级的数量的”列不等式求得的取值范围,再列出函数关系式,根据一次函数的性质即可求解.【小问1详解】解:设赣南橙级每箱售价元,则级每箱售价元,由题意,得:,解得:,经检验,是原方程的解且符合实际意义,则,即:赣南橙级每箱售价120元,级每箱售价80元;【小问2详解】设购进级箱,则购进级箱,则,可得,且为整数,商店购进的花费为,∵,∴随增大而减小,则当时,有最小值,最小值为,即:购进级10箱,级30箱,花费3600元,此时花费最小.24. 如图,一次函数的图象与反比例函数(为常数且)的图象交于,两点.B x A ()150%x +50%B a A ()40a -13a B x A ()150%x +()192001600040150%x x =-+80x =80x =()150%120x +=A B B a A ()40a -01403a a a ≥⎧⎪⎨-≥⎪⎩030a ≤≤a ()1204080404800w a a a =-+=-+400-<w a 30a =w 403048003600w =-⨯+=A B 4y x =+k y x=k 0k ≠()1,A a -B(1)求此反比例函数的表达式及点的坐标;(2)当反比例函数值大于一次函数值时,直接写出的取值范围;(3)在轴上存在点,使得的周长最小,求点的坐标并直接写出的周长.【答案】(1), (2)或 (3)点的坐标为,【解析】【分析】本题主要考查了一次函数与反比例函数综合,轴对称最短路径问题,灵活运用所学知识是解题的关键.(1)先把点坐标代入一次函数解析式求出点的坐标,再把点的坐标代入反比例函数解析式求出反比例函数解析式,再联立一次函数与反比例函数解析式即可求出点的坐标;(2)利用图象法求解即可;(3)如图所示,作点关于轴的对称点,连接交轴于点,此时的值最小,则的周长最小,再求出直线的解析式即可求出点的坐标,由,,,可求出、的值,最后根据的周长为.【小问1详解】解:点在一次函数的图象上,,点,点在反比例函数的图象上,,反比例函数的表达式为,B x y P APB △P APB △3y x=-()3,1B -10x -<<3x <-P 50,2⎛⎫ ⎪⎝⎭A A AB A y A 'BA 'y P PA PB +APB △BA 'P ()1,3A -()3,1B -()1,3A 'AB A B 'APB △PA PB AB A B AB '++=+ ()1,A a -4y x =+∴143a =-+=∴()1,3A - ()1,3A -k y x=∴133k =-⨯=-∴3y x =-联立,解得: 或,;【小问2详解】观察函数图象可知:当或时,一次函数的图象在的图象的下方,当反比例函数值大于一次函数值时,的取值范围为:或;【小问3详解】作点关于轴的对称点,连接交轴于点,此时的值最小,则的周长最小,如图所示.点,点,设直线的表达式为,则,解得:,直线表达式为, 在中,令,则,点,,,,,的周长为.的34y x y x ⎧=-⎪⎨⎪=+⎩13x y =-⎧⎨=⎩31x y =-⎧⎨=⎩∴()3,1B -10x -<<3x <-4y x =+3y x=-∴x 10x -<<3x <-A y A 'BA 'y P PA PB +APB △ ()1,3A -∴()1,3A 'BA '()0y mx n m =+≠331m n m n +=⎧⎨-+=⎩1252m n ⎧=⎪⎪⎨⎪=⎪⎩∴BA '1522y x =+1522y x =+0x =52y =∴50,2P ⎛⎫ ⎪⎝⎭ ()1,3A -()3,1B -()1,3A '∴AB ==A B =='∴APB △PA PB AB A B AB '++=+=+25. 如图1,在矩形中,,点分别是上的中点,过点分别作与交于点,连接.特例感知(1)以下结论中正确的序号有______;①四边形是矩形;②矩形与四边形位似;③以为边围成的三角形不是直角三角形;类比发现(2)如图2,将图1中的四边形绕着点旋转,连接,观察与之间的数量关系和位置关系,并证明你的发现;拓展应用(3)连接,当的长度最大时,①求的长度;②连接,若在内存在一点,使的值最小,求的最小值.【答案】(1)①②;(2)与的夹角是,见解析;(3)①;②【解析】【分析】(1)根据矩形的判定与性质、位似图形的性质以及直角三角形的判定逐个判断即可;(2),连接、,延长、,设交点为N,设、交于点M ,先根据矩形的性质和勾股定理求得,再利用锐角三角函数求得,进而得到,利用位似图形的性ABCD CD ==,E G ,AD AB ,E G ,,EF AD FG AB FG ⊥⊥EF F CF AGFE ABCD AGFE ,,ED CF BG AGFE A BG CF BG CE CE BG ,,AC AF CF ACF △P CP AP ++CP AP ++BG CF =CF BG 30︒AC AF CF BG AC BG 8AC =30BAC ∠=︒AB AC =质得到,进而证明,利用相似三角形的性质和三角形的内角和定理可求解;(3)先根据题意得到当点C 、A 、C 共线时取等号,此时的长度最大,①利用勾股定理求解即可;②将绕着点A 顺时针旋转,且使,连接.同理将绕着点A 顺时针旋转,得到,且使,连接.先证明,得到 ,利用的边角关系得到,然后根据两点之间线段最短得到当C 、P 、K 、L四点共线时,的长最小,过点L 作垂直的延长线于点Q ,可得,在中,根据勾股定理求解即可.【详解】解:(1)∵四边形是矩形,∴∵,∴,∴四边形是矩形,故①正确;∵点分别是上的中点,∴,,即,∴矩形与四边形位似,故②正确;延长交于H ,则四边形、四边形是矩形,∴,,,∴是直角三角形,则以为边围成的三角形是直角三角形,故③错误,故答案为:①②;(2)与的夹角.证明:如图,连接、,延长、,设交点为N ,设、交于点M ,AG AB AF AC ==ACF ABG △∽△CE AP 30︒AK =PK AF 30︒AL AL =LK APF AKL ∽KL =APK △PK AP =CL LO CA 30LAQ ∠=︒Rt CLQ △CL ABCD 90A B BCD D ∠=∠=∠=∠=︒,,EF AD FG AB ⊥⊥90A AGF AEF ∠=∠=∠=︒AGFE ,E G ,AD AB 12AG AB =12AE AD =12AG AE AB AD ==ABCD AGFE GF CD EFHD BCHG HF DE =CH BG =90CHF ∠=︒CHF ,,ED CF BG BG CF =CF BG 30︒AC AF CF BG AC BG∵四边形是矩形,∴,,∴,则,∴,∴由(1)知,矩形与四边形位似,∴,∴,∴,,又,∴;(3)∵,∴当点C 、A 、E 共线时取等号,此时的长度最大,①如图,由(2)知,,,,∵,∴;②如图,将绕着点A 顺时针旋转,且使,连接.同理将绕着点A顺时针旋ABCD AB CD ==4ADBC ==8AC ==1sin 2BC BAC AC ∠==30ACD BAC ∠=∠=︒AB AC ==ABCD AGFE AG AB AF AC ==CAF BAG ∠=∠ACF ABG △∽△BG AB CF AC ==ACF ABG ∠=∠CMN AMB ∠=∠30CNG BAC ∠=∠=︒AC AE CE +≥CE 90CEF ∠=︒10CE AC AE =+=EF =BG CF =CF ==BG ==AP 30︒AK =PK AF转,得到,且使,连接.根据旋转,可得,根据两边对应成比例且夹角相等可得,∴,过P 作于S ,则,,∴,则,∴,∴,∵,即,当C 、P 、K 、L 四点共线时,的长最小,由题意,,,,过点L 作垂直的延长线于点Q ,可得,∴,,则,在中,根据勾股定理得∴的最小值为【点睛】本题是一道压轴题,主要考查了矩形的判定与性质、位似图形的判定与性质、相似三角形的判定与性质、旋转的性质、解直角三角形、等腰三角形的判定、三角形的内角和定理、最短路径等知识,涉及知识点较多,综合性强,熟练掌握相关的知识与联系,适当添加辅助线是解答的关键.26. 如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点.30︒AL AL =LK 30PAF KAL FAK ∠=∠=︒-∠APF AKL ∽KL =PS AK ⊥12PS AP =AS AP =KS AK AS AP =-=tan PS PKS KS ∠==30PKS ∠=︒PK AP =CP PK KL CL ++≥CP AP CL ++≥CL 150LAC ∠=︒4AF =8AC =AL =LQ CA 30LAQ ∠=︒QL =6AQ =14CQ AC AQ =+=Rt CLQ △CL ==CP AP ++()240y ax bx a =++≠x ()1,0A -()4,0C y B(1)求该抛物线的解析式以及顶点坐标;(2)若点是抛物线上的一个动点,满足与的面积相等求出点的坐标;(3)若点在第一象限内抛物线上,过点作轴于点,交于点,且满足与相似,求出点的横坐标.【答案】(1), (2) (3)点的横坐标为【解析】【分析】(1)根据题意列方程组,解方程组得到该抛物线的解析式为,由于,于是得到抛物线的解析式的顶点坐标为,;(2)根据点是抛物线上的一个动点,与的面积相等,于是得到,求得点的纵坐标为4,解方程即可得到;(3)设直线的解析式为,解方程得到直线的解析式为,设,则,,根据已知条件得到是等腰直角三角形,是等腰直角三角形,求得,得到,①当时,②当时,根据相似三角形的性质解方程即可得到结论.【小问1详解】抛物线与轴交于、两点,,D ABD △BCD △.D E E EF x ⊥F BC P BFP △CEP △E 325(,24234y x x =-++()3,4D E 2234y x x =-++2232534()24y x x x =-++=--+3(225)4D ABD △BCD △BD AC ∥D (3,4)D BC y kx b =+BC 4y x =-+(,0)F m 2(,34)E m m m -++(,4)P m m -+BOC CPF )CP m =-)BP m =--=BPF CPE ∽BPF EPC ∽ ()240y ax bx a =++≠x ()1,0A -()4,0C 0401644a b a b =-+⎧∴⎨=++⎩解得,该抛物线的解析式为,,抛物线的解析式的顶点坐标为;【小问2详解】抛物线与轴交于点,,点是抛物线上的一个动点,与的面积相等,,点的纵坐标为,当时,即,解得,,;【小问3详解】设直线的解析式为,,解得,直线的解析式为,13a b =-⎧⎨=⎩∴234y x x =-++2232534()24y x x x =-++=--+ ∴325,24⎛⎫ ⎪⎝⎭ 234y x x =-++y B ()0,4B ∴ D ABD △BCD △BD AC ∴∥D ∴44y =2344x x -++=10x =23x =()3,4D ∴BC y kx b =+440b k b =⎧∴⎨+=⎩14k b =-⎧⎨=⎩∴BC 4y x =-+设,则,,,是等腰直角三角形,,,是等腰直角三角形,,,当时,则,,解得,且,当时,则,,解得或不合题意舍去,点的横坐标为.【点睛】本题是二次函数的综合题,考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,待定系数法求函数的解析式,三角形的面积公式,分类讨论是解题的关键.(),0F m ()2,34E m m m -++(),4P m m -+4OB OC == BOC ∴45BCO ∴∠=︒EF AC ⊥ CPF ∴△)4CP m ∴=-)4BP m ∴=-=①BPF CPE ∽PE PC PF PB=23444m m m m-+++-∴=-m =4m =0m > 4m ≠m ∴=②BPF EPC ∽PB PF PE PC==2m =0(m =)∴E 2。
2024届山东省济南长清区六校联考中考押题数学预测卷含解析

2024届山东省济南长清区六校联考中考押题数学预测卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( ) A .24d h πB .22d h πC .2d h πD .24d h π2.不等式组1240x x >⎧⎨-≤⎩的解集在数轴上可表示为( )A .B .C .D .3.如图,l 1∥l 2,AF :FB=3:5,BC :CD=3:2,则AE :EC=( )A .5:2B .4:3C .2:1D .3:24.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( ) A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×1085.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3) B .(1,﹣3)C .(2,2)D .(5,﹣1)6.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是( ) A .若点(3,6)在其图象上,则(﹣3,6)也在其图象上 B .当k >0时,y 随x 的增大而减小C .过图象上任一点P 作x 轴、y 轴的线,垂足分别A 、B ,则矩形OAPB 的面积为kD .反比例函数的图象关于直线y=﹣x 成轴对称7.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?()A.350 B.351 C.356 D.3588.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.9.下列各数中比﹣1小的数是()A.﹣2 B.﹣1 C.0 D.110.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为()A.27.1×102B.2.71×103C.2.71×104D.0.271×10511.一次函数112y x=-+的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限12.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积()A.11 B.10 C.9 D.16二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若不等式组220x ab x->⎧⎨->⎩的解集为11x-<<,则2009()a b+=________.14.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为(用含n的代数式表示).15.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若S EBMF=1,则S FGDN=_____.16.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.17.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(20,53),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_______18.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C 点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.(1)求该抛物线的解析式;(2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=22时,求P点坐标.20.(6分)已知关于x的方程x2-(m+2)x+(2m-1)=0。
2024年山东省济南市中考数学模拟押题预测试题

2024年山东省济南市中考数学模拟押题预测试题一、单选题1.古代中国建筑之魂——传统的榫卯结构,榫卯是中国古代建筑、家具及其它木制器械的主要结构方式,是在两个木构件上所采用的一种凹凸结合的连接方式.如图所示是榫卯结构中的一个部件,它的主视图是( )A .B .C .D .2.2024年5.5G 技术正式开始商用,它的数据下载的最高速率从5G 初期的1Gbps 提升到10Gbps ,给我们的智慧生活“提速”.其中10Gbps 表示每秒传输10000000000 位(bit )的数据. 将10000000000用科学记数法表示应为( )A .110.110⨯B .10110⨯C .11110⨯D .91010⨯ 3.创新驱动发展,也使人们的生活更加便捷.如图是一款手机支撑架,我们可以通过改变面板张角的大小来调节视角舒适度.小明将该支撑架放置在水平桌面上,并调节面板CD 的张角至视角舒适,若张角70BCD ∠=︒,支撑杆CB 与桌面夹角65B ∠=︒,那么此时面板CD 与水平方向夹角1∠的度数为( ).A .45︒B .55︒C .65︒D .70︒4.窗花是中国传统民间艺术之一,下列四个窗花作品既是轴对称图形又是中心对称图形的是( )A .B .C .D . 5.下列运算正确的是( )A .224x x x +=B .236x x x ⋅=C .()325x x =D .532x x x ÷= 6.已知实数a 、b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b ->C .0a b ⋅>D .a b >7.若点()()()1233,,1,,2,A y B y C y --都在反比例函数3y x=-的图象上,则123,,y y y 的大小关系是( )A .123y y y <<B .312y y y <<C .321y y y <<D .213y y y <<8.“配紫色”游戏规则为红色和蓝色可配成紫色.现有两个不透明的纸箱,分别装有红、黄、蓝、绿四张不同颜色的卡片(卡片除颜色不同外其它均相同),从两个纸箱中各抽取一张卡片,则配成紫色的概率为( )A .14 B .16 C .18 D .1129.如图,在平行四边形ABCD 中,5,AD AB B ∠==是锐角,AE BC ⊥于点,E F 为AB 的中点,连接,DF EF ,若90EFD ∠=o ,则AE 的长是( )A .6B .8C .D .10.已知抛物线 ²30y ax bx a =++<()与x 轴交于()1,0A ,()3,0B - 两点, 与y 轴交于点C .若点P 在抛物线的对称轴上,线段PA 绕点P 逆时针旋转90︒后,点A 的对应点A '恰好也落在此抛物线上,则点P 的坐标为( )A .()1,1-B .()1,1--C .()1,1- 或()1,2--D .()1,1-- 或()1,2-二、填空题11.分解因式:22254y x -=.12.在一个不透明的布袋中装有黄、白两种颜色的球,除颜色外其他都相同,从袋中随机取出一个球是黄球的概率为0.4,若袋中有12个白球,则布袋中黄球可能有个.13.若关于x 的一元二次方程2210mx x +-=有两个不相等的实数根,则m 的取值范围为.14.如图,在矩形ABCD 中,2AB =, BC =A 为圆心,AD 的长为半径画弧交边BC 于点E ,则图中阴影部分的面积是.(结果保留π)15.周末甲乙两人沿相同的路线前往距离学校10km 的公园游玩,图中l 1和l 2分别表示甲乙两人前往目的地所走的路程S (千米)随时间t (分)变化的函数图像,以下说法:①甲比乙晚12分钟到达;②甲平均速度为0.25千米/小时;③甲乙相遇时,乙走了6千米;④甲乙相遇后4分钟,乙到达目的地;其中正确的是.(填序号)16.如图,正方形ABCD 中,4AB =,M 是CD 边上一个动点,以CM 为直径的圆与BM 相交于点Q ,P 为CD 上另一个动点,连接AP ,PQ ,则AP PQ +的最小值是 .三、解答题17.计算:011sin 602-⎛⎫++- ⎪⎝⎭⎝⎭o . 18.解不等式组:()324134x x x x ⎧+>+⎪⎨+<⎪⎩①②,并写出它的所有整数解.19.如图,菱形ABCD 中,点M ,N 分别在边AD AB ,上,DM BN =.求证:DN BM =.20.为丰富群众文化生活,某公园修建了露天舞台,在综合与实践活动中,要利用测角仪测量背景屏幕最高点C 离地面高度.如图,已知舞台台阶5AB =m ,24BAD ∠=︒,某学习小组在舞台边缘B 处测屏幕最高点C 的仰角45CBF ∠=︒,在距离B 点2m 的E 处测得屏幕最高点C 的仰角60CEF ∠=︒,已知点A ,B ,C ,D ,E ,F ,G 在同一平面内,且A ,G ,D 三点在同一直线上,B ,E ,F 三点在同一直线上.参考数据:sin 24︒取0.41.7.(1)求BG 的长(结果保留整数);(2)求最高点C 离地面的高度CD 的长(结果保留整数).21.阅读是人类获取知识、启智增慧、培养道德的重要途径,可以让人得到思想启发,树立崇高理想,涵养浩然之气.某初级中学为了解学生近两周平均每天在家阅读的时长(单位:小时)的情况,从本校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布直方图和扇形统计图.根据以上信息,解答下列问题:(1)在这次抽样调查中,样本容量是______;(2)请补全频数分布直方图,并计算在扇形统计图中B 类所对应扇形的圆心角的度数;(3)在抽取的样本中,学生平均每天在家阅读时长的中位数在______类(填A 、B 、C 、D 中正确的);(4)若该校有1200名学生,试估计该校学生近两周平均每天在家阅读时长不足1个小时的人数.22.如图,AB 为O e 的直径,弦CD AB ⊥于点H ,O e 的切线CE 与BA 的延长线交于点E ,AF CE ∥,AF 与O e 的交点为F .(1)求证:AF CD =;(2)若O e 的半径为6,2AH OH =,求AE 的长.23.我校为了提高教职工的身体素质,举办了“坚持锻炼,活力无限”的健身活动,并准备购买一些体育器材为活动做准备.已知购买1副羽毛球拍的费用是购买1副乒乓球拍费用的2倍,350元全部购买羽毛球拍的数量比全部购买乒乓球拍的数量少5副.(1)购买一副乒乓球拍和一副羽毛球拍各需多少元?(2)已知该中学需要购买两种球拍共80副,羽毛球拍的数量不超过40副.现商店推出两种购买方案,方案A :购买一副羽毛球拍赠送一副乒乓球拍;方案B :按总价的八折付款.试说明选择哪种购买方案更实惠.24.【阅读材料】解方程()2112x x ⎛⎫+-=- ⎪⎝⎭时,先两边同乘以x ,得()()122x x x +-=-,解之得12x =-,21x =,经检验无增根.【模仿练习】(1)解方程()6336x x ⎛⎫-+= ⎪⎝⎭. 【拓展应用】(2)如图,等腰直角ABC V 的直角顶点A 的坐标为(),0m ,B ,C 两点在反比例函数6y x=的图象上,点B 的坐标是6,n n ⎛⎫ ⎪⎝⎭,且0m n >>. ①当3m =时,求n 的值.②是否存在这样的A 点,使符合条件的ABC V 不存在?如果不存在,请说明理由;如果存在,请求出一个这样的A 点坐标.25.如图,在平面直角坐标系中,抛物线22y ax bx =+-过点102,3⎛⎫ ⎪⎝⎭且交x 轴于点()1,0A ,点B ,交y 轴于点C ,顶点为D ,连接AC ,BC .(1)求抛物线的表达式.(2)点P 是直线BC 下方抛物线上的一动点,过点P 作PM AC P 交x 轴于点M ,PH x ∥轴交BC于点H PM PH +的最大值,以及此时点P 的坐标. (3)连接DA ,把原抛物线沿射线DA 方向平移52个单位长度后交x 轴于A ',B '两点(A '在B '右侧),在新抛物线上是否存在一点G ,使得45GA B ∠=''︒,若存在,求出点G 的坐标,若不存在,请说明理由.26.【探究与证明】学校开展艺术作品展示活动,九年级数学兴趣小组制作菱形木质框架时(如图①),通过平移支架开展数学探究,探索数学奥秘.【动手操作】菱形框架固定不动,在AC 平移支架EGF ∠顶点G .如图,菱形ABCD 中,已知60B EGF ∠=∠=︒,EGF ∠的顶点G 在菱形对角线AC 上运动,角的两边分别交边BC CD 、于点E 、F .如图②,当顶点G 运动到与点A 重合时,观察图中EC CF 、和BC ,试猜想这三条线段之间的数量关系....,并证明你的猜想. 【类比探究】(1)如图③,当顶点G 运动到AC 中点时,请直接写出.....线段EC CF 、和BC 的数量关系;(2)在顶点G 的运动过程中,若AC n CG=,请直接写出.....线段EC CF 、和BC 的数量关系. 【问题解决】如图④,已知菱形边长为8,7BG =,65CF =,当2n >时,求EC 的长度.。
2024年中考数学考前押题密卷+全解全析(山东济南卷)

2024年中考数学考前押题密卷全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.下列各数的相反数中,最大的是( ) A .23B .23−C .1D .1−【答案】D【分析】此题主要考查了有理数大小比较的方法,首先求出所给个数的相反数,然后根据有理数大小比较的方法,判断出所给的各数的相反数中,最大的是哪个数即可,解答此题的关键是要明确:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小. 【详解】解:23、23−、1、1−的相反数分别是23−、23、1−、1,221133−<−<<, ∴所给的各数的相反数中,最大的是1−.故选:D .2 )A .B .C .D .【答案】B【分析】本题考查了几何体的三视图,结合俯视图是从上面往下面看到的,据此即可作答. 【详解】解:结合几何体的特征,俯视图是长方形且中间是有一条实线 ,即是俯视图为,故选:B3.据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为( ) A .612.08910⨯ B .61.208910⨯ C .71.208910⨯ D .80.1208910⨯【答案】C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10na ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:将12089000用科学记数法表示应为71.208910⨯, 故选:C .4.直尺和三角板如图摆放,若155∠=︒,则2∠的大小为( )A .35︒B .55︒C .135︒D .145︒【答案】D【分析】本题主要考查了平行线的性质,三角板中角度的计算,熟知两直线平行,内错角相等是解题的关键.根据平行线的性质得到3435∠∠==︒,再由邻补角互补即可得出结果. 【详解】解:如图所示:1+3=90∠∠︒,∵155∠=︒, ∴335∠=︒,由题意得,直尺的两边平行, ∴3435∠∠==︒, ∴21804145=︒−=︒∠∠, 故选D .5.陇南康县王坝生态民俗旅游区,环境优美,群山叠翠,被誉为“陇上田园、诗画王坝”.下面四个艺术字中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】本题考查中心对称图形和轴对称图形的定义,根据中心对称图形的定义(把一个图形绕着某一个点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,)和轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;)进行逐一判断即可.【详解】解:A 、既不是中心对称图形,也不是轴对称图形,不符合题意; B 、既不是中心对称图形,也不是轴对称图形,不符合题意; C 、既是轴对称图形又是中心对称图形,符合题意;D 、既不是中心对称图形,也不是轴对称图形,不符合题意; 故选:C .6.若0a b <<,则下列结论正确的是( ) A .a b a b −<−<< B .b a a b −<−<< C .a b b a <<−<− D .a b a b <<−<−【答案】C【分析】本题考查的是不等式的性质.根据不等式的性质解答即可. 【详解】解:0a b <<Q ,0a b ∴−>−>, a b b a ∴<<−<−.故选:C .7.不透明袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再从中随机摸出一个小球,则两次都摸到蓝球的概率为( )A .14 B .13C .12D .23【答案】A【分析】本题考查列表法与树状图法,列表可得出所有等可能的结果数以及两次都摸到蓝球的结果数,再利用概率公式可得出答案. 【详解】解:列表如下:共有4种等可能的结果,其中两次都摸到蓝球的结果有1种,∴两次都摸到蓝球的概率为14. 故选:A .8.已知ABCD Y 中,∠A =55°,分别以点B ,点C 为圆心,以大于12BC 的长为半径画弧,分别交于点M ,N ,作直线MN 交DC 于点E ,则ABE ∠的度数为( )A .55°B .60°C .65°D .70°【答案】D【分析】由ABCD Y 得55C A ∠=∠=︒,根据题意得MN 是BC 得垂直平分线,则BE CE =,得55C EBC ∠=∠=︒,即求得ABE ∠的度数.【详解】∵解:四边形ABCD 是平行四边形,∴55C A ∠=∠=︒,180A ABC ∠+∠=︒,则18055125ABC ∠=︒−︒=︒,∵以点B ,点C 为圆心,以大于12BC的长为半径画弧,分别交于点M ,N ,作直线MN 交DC 于点E , ∴MN 是BC 得垂直平分线,则BE CE =, 所以55C EBC ∠=∠=︒,那么1255570ABE ABC EBC ∠=∠−∠=︒−︒=︒, 故选:D .【点睛】本题主要考查的是平行四边形性质以及垂直平分线等知识内容,熟练掌握垂直平分线性质是解题的关键.9.如图,点P 是平行四边形ABCD 边上一动点,A D C B →→→的路径移动,设点Р经过的路径长为x ,BAP △的面积是y ,则大致能反映y 与x 之间的函数关系的图象是( )A .B .C .D .【答案】C【分析】本题考查动点问题的函数图像,一次函数的图像,平行四边形的性质.注意分段考虑.解题的关键是数形结合的应用.根据题意分三段来考虑,点P 沿A D →移动,BAP △的面积逐渐变大;点P 沿→D C 移动,BAP △的面积不变;点P 沿C B →移动,BAP △的面积逐渐减小,据此选择即可.【详解】解:如图,过点B 作BH AD ⊥交DA 的延长线于H ,设BH h =,AB 与CD 之间的距离为m ,点P 沿A D →移动,1122BAPSAP BH hx =⋅=,h 是定值,则y 是x 的一次函数,且BAP △的面积逐渐变大; 点P 沿→D C 移动,12BAPSAB m =⋅,m 与AB 是定值,即BAP △的面积不变; 点P 沿C B →移动,()()1122BAPSAD CD BC x BH h AD CD BC x =++−⋅=++−,h 是定值,则y 是x 的一次函数,且BAP △的面积逐渐减小; 故选:C .10.在平面直角坐标系中,横、纵坐标都是整数的点叫做整点,记函数()20y x a a =−+>的图象在x 轴上方的部分与x 轴围成的区域(不含边界)为W .例如当2a =时,区域W 内的整点个数为1,若区域W 内恰有7个整点,则a 的取值范围是( )A .23a <≤B .23a ≤<C .34a <≤D .34a ≤<【答案】C【分析】根据题意对2,3,4a =时的二次函数图象进行分析,发现每次向上平移1即将上一次的边界整点包括在内,找到规律即可求得a 的取值范围【详解】当2a =时,区域W 内的整点个数为1,此时22y x =−+令0y =,解得x =0x =,解得2y =故函数22y x =−+的图像在x 轴上方的部分与x 轴围成的区域中,整数点有(0,1)有()()()1,11,1,0,2−,三个整数点在边界上如图,当3a =时,此时顶点为(0,3),在W 区域内有点()()()()1,11,1,0,2,0,1−,四个整数点,边界上有()()()0,31,2,1,2−,三个整数点,当4a =时,W 将3a =时,在边界上是的整数点包括进来,即此时恰好有7个点, 所以34a <≤ 故选C【点睛】本题考查了二次函数平移,二次函数的图像的性质,找到规律是解题的关键.第Ⅱ卷二、填空题(本大题共5个小题,每小题3分,共15分) 11.分解因式:21236x y xy y −+= . 【答案】()26y x −【分析】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键. 先提取公因式,再运用完全平方公式进行分解即可. 【详解】解:()()222123612366x y xy y y x x y x −+=−+=−.故答案为:()26y x −.12.在平面直角坐标系中,已知点()3,2P −与点()3,Q a −关于原点对称,则=a . 【答案】2【分析】本题主要考查了平面直角坐标系内关于原点对称两点坐标特征,根据关于原点对称的点横、纵坐标均互为相反数这一特征求解即可. 【详解】解:已知点()3,2P −与点()3,Q a −关于原点对称,则2a −=−,即2a =故答案为:213.若关于x 的一元二次方程2(2)26k x kx k −−+=有实数根,则k 的取值范围为 . 【答案】32k ≥且2k ≠【分析】根据二次项系数非零及根的判别式△0≥,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:关于x 的方程2(2)26k x kx k −−+=有两个实数根, 2Δ(2)4(2)(6)0k k k ∴=−−−−≥,解得:32k ≥,20k −≠, 2k ∴≠,k ∴的取值范围为32k ≥且2k ≠,故答案为:32k ≥且2k ≠.【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式0∆≥,列出关于k 的一元一次不等式组是解题的关键.14.如图,△ABC 在边长为1个单位的方格纸中,△ABC 的顶点在小正方形顶点位置,那么∠ABC 的正切值为 .【答案】12/0.5【分析】根据题意和图形,可以求得AC 、BC 和AB 的长,然后根据勾股定理的逆定理可以判断ACB △的形状,然后即可求得ABC ∠的正弦值.【详解】解:由图可得,AC =AB BC =∴222AC BC AB +=,∴ACB △是直角三角形,∴1tan 2AC ABC BC ∠===,故答案为:12.【点睛】本题考查勾股定理的逆定理、解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.15.如图,菱形ABCD 的边长为2,以C 为圆心,BC 为半径画弧至点D ,恰好经过点A ,再以A 为圆心,AD 为半径画弧至点B ,恰好经过点C ,求图中的阴影面积 .【答案】83π−【分析】此题主要考查了菱形的性质以及等边三角形判定和扇形的面积公式的应用,根据已知得出ABC 是等边三角形是解题关键.先证得ABC 是等边三角形,进而利用扇形面积和菱形面积求出即可. 【详解】解:连接AC BD ,,交于点O ,∵菱形ABCD 的边长为2,2AB BC ∴==,AC BD ⊥, AB AC =,ABC ∴是等边三角形,60BAC ∴∠=︒,2AB AC ==,1OA =,OB OD =,OB OD ∴=,BD ∴=,2120CD BC BAD ∴==∠=︒,,∴图中阴影部分的面积为:21202182236023ππ⎛⨯⨯−⨯⨯=− ⎝故答案为:83π−16.如图,线段AC 与BD 相交于点E ,保持60BEC ∠=︒,已知3AC =,2BD =,则AD BC +的最小值是 .【分析】过点B 作BF AC ∥,过点A 作AF BC ∥交BF 于F ,过点D 作DH BF ⊥于H ,连接DF ,则四边形ACBF 为平行四边形,从而得AF BC =,3BF AC ==,60DBH BEC ∠=∠=︒,在Rt BDH △中分别求出1BH =,DH 2HF BF BH ==,由此可求出DF =AD BC AD AF DF +=+≥可得出AD BC +的最小值.此题主要考查了平行四边形的性质,直角三角形的性质,勾股定理等,正确地作出辅助线构造平行四边形和直角三角形,理解两点之间线段最短是解决问题的关键.【详解】解:过点B 作BF AC ∥,过点A 作AF BC ∥交BF 于F ,过点D 作DH BF ⊥于H ,连接DF ,如下图所示:BF AC ∥,AF BC ∥,3AC =,∴四边形ACBF 为平行四边形,AF BC ∴=,3BF AC ==,又60BEC ∠=︒,60DBH BEC ∴∠=∠=︒,在Rt BDH △中,9030BDH DBH ∠=︒−∠=︒,2BD =,1BH ∴=,由勾股定理得:DH312HF BF BH ∴=−=−=,在Rt DHF △中,由勾股定理得:DF ==AF BC =,AD BC AD AF ∴+=+,根据“两点之间线段最短”得:AF AD DF +≥,即AF AD +≥AF AD ∴+AD BC ∴+三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)17.(6分)计算:()()220241312π−⎛⎫−−+ ⎪⎝⎭. 【答案】6【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算加减法即可.【详解】解:()()220241312π−⎛⎫−−+ ⎪⎝⎭1214=+−+6=.18.(6分)计算(1)解不等式组23789x xx x⎧>⎪⎨⎪−<⎩;(2)化简22211444a a a a a −−÷−+−.【答案】(1)0x > (2)222a a a −−−−【分析】本题主要考查解不等式组、分式的混合运算等知识点,掌握相关计算方法和步骤成为解题的关键. (1)先分别求出各不等式的解集,然后再确定不等式组的解集即可; (2)根据分式的混合运算法则计算即可. 【详解】(1)解:23789x xx x ⎧>⎪⎨⎪−<⎩①②解不等式①可得:0x >, 解不等式②可得:4x >−, 所以原不等式组的解集为:0x >.(2)解:22211444a a a a a −−÷−+− ()()()()()2111222a a a a a a +−−=−÷+−− ()()()()()2221112a a a a a a +−−=−⨯+−−()()221a a a +=−−+222a a a −−=−−.19.(6分)如图,点A 、F 、C 、D 在一条直线上,AB DE ∥且AB DE =,AF DC =.(1)求证:ACB DFE ∠=∠;(2)求证:四边形BFEC 是平行四边形. 【答案】(1)见解析 (2)见解析【分析】本题考查了平行线的判定与性质,全等三角形的判定与性质,平行四边形的判定,解题关键是掌握全等三角形的判定与性质及平行四边形的判定方法.(1)根据平行线的性质“两直线平行,内错角相等”得A D ∠=∠,再根据AF CD =,等量交换得AC DF =,结合已知条件AB DE =,根据全等三角形判定(边角边),得ABC DEF ≌△△,即可得ACB DFE ∠=∠; (2)根据(1)得ABC DEF ≌△△,由全等三角形的性质得BC EF =,ACB DFE ∠=∠,根据平行线的判定“内错角相等,两直线平行”得BC EF ∥,再根据平行四边形的判定“一组对边平行且相等的四边形是平行四边形”,即可证得结论. 【详解】(1)证明:AB DE ∥,A D ∴∠=∠,又AF CD =,AF CF CD CF ∴+=+,即AC DF =,在ABC 和DEF 中,AB DEA D AC DF =⎧⎪∠=∠⎨⎪=⎩,()SAS ABC DEF ∴≌,ACB DFE ∴∠=∠.(2)证明:由(1)得ABC DEF ≌△△, BC EF ∴=,ACB DFE ∠=∠, BC EF ∴∥,四边形BFEC是平行四边形.20.(8分)某学校组织学生采摘山楂制作冰糖葫芦(每串冰糖葫芦由5颗山楂制成).同学们经过采摘、筛选、洗净等环节,共得到7.6kg的山楂.甲、乙两位同学各随机分到了15颗山楂,他们测量了每颗山楂的重量(单位:g),并对数据进行整理、描述和分析.下面给出了部分信息.a.甲同学的山楂重量的折线图:b.乙同学的山楂重量:8,8.8,8.9,9.4,9.4,9.4,9.6,9.6,9.6,9.8,10,10,10,10,10c.甲、乙两位同学的山楂重量的平均数、中位数、众数:根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)对于制作冰糖葫芦,如果一串冰糖葫芦中5颗山楂重量的方差越小,则认为这串山楂的品相越好.①甲、乙两位同学分别选择了以下5颗山楂制作冰糖葫芦.据此推断:品相更好的是(填写“甲”或“乙”);②甲同学从剩余的10颗山楂中选出5颗山楂制作一串冰糖葫芦参加比赛,首先要求组成的冰糖葫芦品相尽可能好,其次要求冰糖葫芦的山楂重量尽可能大.他已经选定的三颗山楂的重量分别为9.4,9.5,9.6,则选出的另外两颗山楂的重量分别为和;(3)估计这些山楂共能制作多少串冰糖葫芦.【答案】(1)9.4,10(2)①甲,②9.3,9.6(3)160串【分析】(1)根据中位数和众数的概念,即可求解;(2)①根据方差的定义,即可求解;②根据题意可知,剩余两个山楂的重量应该尽可能大,且接近已有的三个山楂的重量,以保证方差最小,据此解答即可.(3)已知总重量和调查的平均数,用总数量除以调查的平均数先求出大概有多少个山楂,再用山楂数除以每串冰糖葫芦的山楂数即可求出能制作多少串冰糖葫芦.【详解】(1)解:根据甲的折线图可以看出,这组数据从小到大排列,中间第8个数为9.4,也就是说这组数据的中位数为9.4,所以9.4m=;根据乙同学的山楂重量数据可以发现,重量为10克出现的次数最多,也就是说这组数据的众数为10,所以10n=.(2)解:①根据题意可知甲同学的5个冰糖葫芦重量分布于9.19.2−之间,乙同学的5个冰糖葫芦重量分布于8.89.4−,从中可以看出,甲同学的5个数据比乙同学的5个数据波动较小,所以,甲同学的5个冰糖葫芦重量的方差较小,故甲同学冰糖葫芦品相更好.②要求数据的差别较小,山楂重量尽可能大,∴可供选择的有9.3、9.6、9.9,当剩余两个为9.3、9.6,这组数据的平均数为9.48,方差为:222221[(9.39.48)(9.49.48)(9.59.48)(9.69.48)(9.69.48)]0.01365−+−+−+−+−⨯=,当剩余两个为9.6、9.9,这组数据的平均数为9.6,方差为:222221[(9.49.6)(9.59.6)(9.69.6)(9.69.6)(9.99.6)]0.0285−+−+−+−+−⨯=,当剩余两个为9.3、9.9,这组数据平均数为9.54,方差为:222221[(9.39.54)(9.49.54)(9.59.54)(9.69.54)(9.99.54)]0.04245−+−+−+−+−⨯=,据此,可发现当剩余两个为9.3、9.6,方差最小,山楂重量也尽可能大.(3)解:7.6千克7600=克,76009.5800÷=(个),8005160÷=(串),答:能制作160串冰糖葫芦.【点睛】本题考查了折线统计图,平均数,众数,中位数和方差,熟记方差的计算公式以及方差的意义是解题的关键.21.(8分)如图1,是一款手机支架图片,由底座、支撑板和托板构成.图2是其侧面结构示意图,量得托板长17cm AB =,支撑板长16CD cm =,底座长14cm DE =,托板AB 连接在支撑板顶端点C 处,且7cm CB =,托板AB 可绕点C 转动,支撑板CD 可绕D 点转动.如图2,若7060DCB CDE ∠=︒∠=︒,.(参考数值sin400.64cos400.77︒≈︒≈,,tan400.84︒≈ 1.73≈)(1)求点C 到直线DE 的距离(精确到; (2)求点A 到直线DE 的距离(精确到0.1cm). 【答案】(1)点C 到直线DE 的距离约为13.8cm (2)点A 到直线DE 的距离约为21.5cm【分析】(1)如图2,过点C 作CN DE ⊥,垂足为N ,然后根据三角函数可得sin CNCDN CD ∠=,即·sin CN CD CDN ∠=,最后将已知条件代入即可解答;(2)如图2,过A 作AM DE ⊥,交DE 的延长线于点M ,过点C 作CF AM ⊥,垂足为F ,再说明Rt ACF 中,9040AFC A ∠=︒∠=︒,,10cm AC =,然后根据三角函数和线段的和差即可解答. 【详解】(1)解:如图2,过点C 作CN DE ⊥,垂足为N由题意可知,16cm 60CD CDE =∠=︒,, 在Rt CDN △中,sin CNCDN CD ∠=,∴·sin 1613.8cm CN CD CDN ∠====.答:点C 到直线DE 的距离约为13.8cm .(2)解:如图3,过A 作AM DE ⊥,交DE 的延长线于点M ,过点C 作CF AM ⊥,垂足为F ,∴CN FM CN FM =,∥在Rt ACF 中,90703040AFC A BCN ∠=︒∠=∠=︒−︒=︒,,17710cm AC AB BC =−=−=, ∴·cos40100.777.7cm AF AC =︒≈⨯≈, ∴7.713.821.5cm AM AF FM =+=+=. 答:点A 到直线DE 的距离约为21.5cm .【点睛】本题主要考查了解直角三角形,正确的理解正弦、余弦的定义是解答本题的关键.22.(8分)如图,AB 是O 的直径,C ,D 是O 上的两点,且BC DC =,BD 交AC 于点E ,点F 在AC 的延长线上,BE BF =.(1)求证:BF 是O 的切线; (2)若12EF =,3cos 5ABC ∠=. ①求BF 的长; ②求O 的半径. 【答案】(1)见解析(2)①10;②O 的半径为203【分析】此题考查了切线的判定、圆周角定理、解直角三角形等知识,熟练掌握相关定理并结合图形进行正确推理是解题的关键.(1)证明90ABF ∠=︒,根据切线的判定定理即可得到得到结论; (2)①由(1)得:BE BF =,由AB 为O 的直径得到BC EF ⊥,则162CF CE EF ===,证明F ABC ∠=∠,利用cos CFF BF ∠=即可得到答案; ②在Rt BCF 中,由勾股定理求出8BC =,由cos 35ABC BC AB ∠==即可得到403AB =,即可得到答案.【详解】(1)证明:∵BC DC =, ∴D CBD ∠=∠, 又∵BC BC = ∴A D ∠=∠, ∴A CBD ∠=∠ ∵BE BF =, ∴BEC F ∠=∠.∵AB 为O 的直径, ∴90ACB ∠=︒, ∴90BEC CBE ∠+∠=︒, ∴90F A ∠+∠=︒. ∴90ABF ∠=︒, ∴OB BF ⊥, ∵OB 是圆的半径, ∴BF 是O 的切线;(2)解:①由(1)得:BE BF =, ∵AB 为O 的直径, ∴BC EF ⊥, ∴162CF CE EF ===,∵90,90ABC CBF CBF F ∠+∠=︒∠+∠=︒, ∴F ABC ∠=∠, 在Rt BCF 中,∵cos CF F BF ∠=, ∴3610cos 5CF BF F ==÷=∠;②在Rt BCF 中,8BC =,在Rt ABC △中,cos 35ABC BC AB ∠==, ∴3408cos 53BC AB ABC ==÷=∠. ∴O 的半径为203.23.(10分)党的二十大报告提出:“加快建设高质量教育体系,发展素质教育”.为扎实做好育人工作,某校深入开展“阳光体育”活动.该校计划购买乒乓球拍和羽毛球拍用于“阳光体育大课间”和学生社团活动.已知一副羽毛球拍比一副乒乓球拍多30元,且用1000元购买乒乓球拍的数量和用2000元购买羽毛球拍的数量相等.(1)求每副乒乓球拍和每副羽毛球拍的价格;(2)学校计划采购乒乓球拍和羽毛球拍共100副,且乒乓球拍的数量不超过羽毛球拍数量的2倍,要想花费的资金总额最少,则最多购买乒乓球拍多少副?资金总额最少为多少元? 【答案】(1)每副乒乓球拍的价格是30元,每副羽毛球拍的价格是60元(2)要想花费的资金总额最少,则最多购买乒乓球拍66副,资金总额最少为4020元【分析】本题考查一次函数和分式方程的应用.(1)设每副乒乓球拍的价格是x 元,则每副羽毛球拍的价格是()30x +元,根据题意列方程并求解即可;(2)设购买乒乓球拍a 副,则购买羽毛球拍()100a −副,根据题意列关于a 的一元一次不等式并求解;设花费的资金总额为W 元,写出W 关于a 的函数,根据该函数的增减性,确定当a 取何值时W 取最小值,求出最小值即可.【详解】(1)解:设每副乒乓球拍的价格是x 元,则每副羽毛球拍的价格是()30x +元.根据题意,得1000200030x x =+, 解得30x =,经检验,30x = 303060+=(元),∴每副乒乓球拍的价格是30元,每副羽毛球拍的价格是60元. (2)解:设购买乒乓球拍a 副,则购买羽毛球拍()100a −副.根据题意,得:()2100a a ≤−,解得2003a ≤,设花费的资金总额为W 元,则()3060100306000W a a a =+−=−+,∵300−<,∴W 随a 的增大而减小, ∵2003a ≤且x 为整数,∴当66a =时,W 取最小值,306660004020W =−⨯+=最小,∴要想花费的资金总额最少,则最多购买乒乓球拍66副,资金总额最少为4020元.24.(10分)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线ky x=经过C 、D 两点.(1)求k 的值; (2)点P 在双曲线ky x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MNHT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明. 【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MNHT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可; (2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论. 【详解】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点,1D x ∴=,设(1,)D t , 又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x−+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=,解得=1x −,此时2(1,4)P −−,2(0,6)Q −; ②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥;∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ; (3)解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==,NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠, 所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒, 所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=,∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.25.(12分)如图1所示,抛物线()21:0F y ax c a =+≠与直线34y x =相交于A 、B 两点(点B 在y 轴右侧),与y 轴相交于点C .已知点A 的横坐标为4−,点C 的纵坐标为325−.(1)求抛物线1F 的解析式;(2)如图2,将抛物线1F 以每秒b 个单位(259b <)沿射线AB 方向平移,5秒后得到新的抛物线2F ,抛物线2F 与x 轴相交于D 、E 两点(点D 在点E 左侧),与y 轴相交于点F .求DE 的长度(用含b 的式子表示); (3)在(2)的条件下,令214W DE CF =+,求W 的最小值. 【答案】(1)212533y x =−(2)(3)37316【分析】(1)先求出点A 的坐标,再用待定系数法求二次函数的解析式,即得答案; (2)将抛物线1F 沿射线AB 方向平移5b 个单位,即抛物线2F 是由抛物线1F 向右平移4b 个单位,再向上平移3b 个单位得到,所以抛物线2F 的解析式为()21254333y x b b =−+−,令0y =,求得抛物线2F 与x 轴的交点的横坐标,即得答案;(3)先求出点C ,点F 的坐标,得到21633b CF b=+,求得2166253W b b =−+,由此即可求出W 的最小值.【详解】(1)解:当4x =−时,()3434y =⨯−=− ,∴点()4,3A −−,将()4,3A −−,250,3C ⎛⎫− ⎪⎝⎭代入2y ax c =+中,得163253a c c +=−⎧⎪⎨=−⎪⎩,解得13253a c ⎧=⎪⎪⎨⎪=−⎪⎩, ∴抛物线1F 的解析式为212533y x =−;(2)将抛物线1F 沿射线AB 方向平移5b 个单位,∴抛物线2F 是由抛物线1F 向右平移4b 个单位,再向上平移3b 个单位得到, ∴抛物线2F 的解析式为()21254333y x b b =−+−,令()212543033y x b b =−+−=,即()21254333x b b−=−,解得:14x b =,24x b =21DE x x ∴=−=(3)令0x =,则()22125162504333333b y b b b =−+−=+−, 216250,333b F b ⎛⎫∴+− ⎪⎝⎭, 250,3C ⎛⎫− ⎪⎝⎭, 2216252516333333b b CF b b⎛⎫∴=+−−−=+ ⎪⎝⎭,由(2)知,DE = (22211163443W DE CF b b ∴=+=++2166253b b =−+,∴当69161623b −=−=⨯时,W 最小,最小值为37316.【点睛】本题考查了二次函数的图象与性质,用待定系数法求二次函数的解析式,二次函数与一次函数的交点问题,二次函数的平移,正确表示抛物线平移后的表达式是解题的关键.26.(12分)(1)如图1,在矩形ABCD 中,点E ,F 分别在边,DC BC 上,AE DF ⊥,垂足为点G .求证:ADE DCF △∽△. 【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边,DC BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADF H ∠=∠. 【类比迁移】(3)如图3,在菱形ABCD 中,点E ,F 分别在边,DC BC 上,11,8AE DF DE ===,60AED ∠=︒,求CF 的长.【答案】(1)见解析;(2)见解析;(3)3【分析】(1)矩形的性质,得到90C ADE ∠=∠=︒,由同角的余角相等,得到AED DFC ∠=∠,即可得证; (2)先证明()Rt Rt HL ADE DCF ≌,得到DE CF =,再证明()SAS DCF DCH ≌,得到DFC H ∠=∠,平行得到ADF DFC ∠=∠,即可得证;(3)延长BC 至点G ,使8CG DE ==,连接DG ,证明()SAS ADE DCG ≌,推出DFG 是等边三角形,得到11FG DF ==,再根据CF CG FG +=,求解即可. 【详解】(1)证明:∵四边形ABCD 是矩形, ∴90C ADE ∠=∠=︒, ∴90CDF DFC ∠+∠=︒, ∵AE DF ⊥, ∴90DGE ∠=︒, ∴90CDF AED ∠+∠=︒, ∴AED DFC ∠=∠, ∴ADE DCF △∽△;(2)证明:∵四边形ABCD 是正方形,∴,,90AD DC AD BC ADE DCF =∠=∠=︒∥, ∵AE DF =, ∴()Rt Rt HL ADE DCF ≌,∴DE CF =, ∵CH DE =, ∴CF CH =,∵点H 在BC 的延长线上, ∴90DCH DCF ∠=∠=︒, 又∵DC DC =, ∴()SAS DCF DCH ≌,∴DFC H ∠=∠, ∵AD BC ∥, ∴ADF DFC ∠=∠, ∴ADF H ∠=∠;(3)解:如图3,延长BC 至点G ,使8CG DE ==,连接DG ,∵四边形ABCD 是菱形, ∴,AD DC AD BC =∥, ∴ADE DCG ∠=∠, ∴()SAS ADE DCG ≌,∴60,DGC AED AE DG ∠=∠=︒=, ∵AE DF =,∴DG DF =,∴DFG 是等边三角形, ∴11FG DF ==, ∵CF CG FG +=,∴1183CF FG CG =−=−=, 即CF 的长为3.【点睛】本题考查矩形的性质,正方形的性质,菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定,掌握相关知识点,并灵活运用,是解题的关键.。
2024届山东省济南市市中学区中考数学最后冲刺浓缩精华卷含解析

2024届山东省济南市市中学区中考数学最后冲刺浓缩精华卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是A.B.C.D.2.在下列各平面图形中,是圆锥的表面展开图的是( )A.B.C.D.3.下列说法正确的是()A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是8D.若甲组数据的方差S=" 0.01" ,乙组数据的方差s=0 .1 ,则乙组数据比甲组数据稳定4.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A 5B.35C22D.235.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为( )A .6×105B .6×106C .6×107D .6×1086.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是( )A .两点之间的所有连线中,线段最短B .经过两点有一条直线,并且只有一条直线C .直线外一点与直线上各点连接的所有线段中,垂线段最短D .经过一点有且只有一条直线与已知直线垂直7.若M (2,2)和N (b ,﹣1﹣n 2)是反比例函数y=k x 的图象上的两个点,则一次函数y=kx+b 的图象经过( ) A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x 台机器,根据题意可得方程为( )A .50035030x x =-B .50035030x x =-C .500350+30x x =D .500350+30x x= 9.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >010.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm 宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A .4acmB .4()a b cm -C .2()a b cm +D .4bcm11.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB 绕点O 顺时针旋转90°得到△A ′OB ′,则A 点运动的路径'AA 的长为( )A .πB .2πC .4πD .8π12.如图,四边形ABCD 中,AB=CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,AB=3,则AE 的弧长为( )A .2πB .πC .32π D .3二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.若一个反比例函数的图象经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为______14.如图,在梯形ABCD 中,//,2AD BC BC AD =,E 、F 分别是边AD BC 、的中点,设AD a,AB b ==,那么EF 等于__________(结果用a b 、的线性组合表示).15.用配方法解方程3x 2﹣6x +1=0,则方程可变形为(x ﹣__)2=__.16.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,测得AB =2米,BP =3米,PD =15米,那么该古城墙的高度CD 是_____米.17.如图,线段AB 两端点坐标分别为A (﹣1,5)、B (3,3),线段CD 两端点坐标分别为C (5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额20元15元10元5元获奖人数商家甲超市 5 10 15 20乙超市 2 3 20 25(1)在甲超市摇奖的顾客获得奖金金额的中位数是,在乙超市摇奖的顾客获得奖金金额的众数是;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?20.(6分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,2≈1.41,3≈1.73)21.(6分)如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为G.(1)求证:AE=BF;(2)若BE3,AG=2,求正方形的边长.22.(8分)解下列不等式组:6152(43) {2112323x xxx++-≥->①②23.(8分)在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是3 8;如果往盒中再放进10 颗黑色棋子,则取得黑色棋子的概率变为12.求x 和y 的值.24.(10分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).25.(10分)如图所示,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.求证:△ACE ≌△BCD ;若AD =5,BD =12,求DE 的长.26.(12分)化简求值:212(1)211x x x x -÷-+++,其中31x =-. 27.(12分)如图,四边形 ABCD 中,对角线 AC 、BD 相交于点 O ,若22OA OB OC OD ====AB ,求证:四边形 ABCD 是正方形参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B【解题分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【题目详解】已知给出的三角形的各边AB 、CB 、AC 分别为2、210、只有选项B的各边为1B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.2、C【解题分析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【题目详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选C.【题目点拨】考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.3、C【解题分析】众数,中位数,方差等概念分析即可.【题目详解】A、中奖是偶然现象,买再多也不一定中奖,故是错误的;B、全国中学生人口多,只需抽样调查就行了,故是错误的;C、这组数据的众数和中位数都是8,故是正确的;D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.【题目点拨】考核知识点:众数,中位数,方差.4、B【解题分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【题目详解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF ,设CD=1,CF=x ,则CA=CB=2,∴DF=FA=2-x ,∴在Rt △CDF 中,由勾股定理得,CF 2+CD 2=DF 2,即x 2+1=(2-x )2,解得:x=34, ∴sin ∠BED=sin ∠CDF=35CF DF =. 故选B .【题目点拨】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.5、C【解题分析】将一个数写成10n a ⨯的形式,其中110a ≤<,n 是正数,这种记数的方法叫做科学记数法,根据定义解答即可.【题目详解】解:6000万=6×1. 故选:C .【题目点拨】此题考查科学记数法,当所表示的数的绝对值大于1时,n 为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n 为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n 的值的确定是解题的关键.6、B【解题分析】本题要根据过平面上的两点有且只有一条直线的性质解答.【题目详解】根据两点确定一条直线.故选:B .【题目点拨】本题考查了“两点确定一条直线”的公理,难度适中.7、C【解题分析】把(2,2)代入k y x =得k=4,把(b ,﹣1﹣n 2)代入k y x=得,k=b (﹣1﹣n 2),即 241b n=--根据k 、b 的值确定一次函数y=kx+b 的图象经过的象限. 【题目详解】解:把(2,2)代入k y x =, 得k=4,把(b ,﹣1﹣n 2)代入k y x =得: k=b (﹣1﹣n 2),即241b n =--, ∵k=4>0,241b n=--<0, ∴一次函数y=kx+b 的图象经过第一、三、四象限,故选C .【题目点拨】本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k ,b 的符号是解题关键. 8、A【解题分析】根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间.【题目详解】现在每天生产x 台机器,则原计划每天生产(x ﹣30)台机器. 依题意得:500350x x 30=-, 故选A .【题目点拨】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.9、D【解题分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【题目详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【题目点拨】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系. 10、D【解题分析】根据题意列出关系式,去括号合并即可得到结果.【题目详解】解:设小长方形卡片的长为x ,宽为y ,根据题意得:x+2y=a ,则图②中两块阴影部分周长和是:2a+2(b-2y )+2(b-x )=2a+4b-4y-2x=2a+4b-2(x+2y )=2a+4b-2a=4b .故选择:D.【题目点拨】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.11、B【解题分析】试题分析:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB 绕点O 顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径'AA的长为:904180π⨯=2π.故选B.考点:弧长的计算;旋转的性质.12、B【解题分析】∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=3,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,∴AE的弧长=6023360ππ⨯⨯=.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、4 yx =【解题分析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【题目详解】设反比例函数解析式为y=kx,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=4x,故答案为y=4 x .【题目点拨】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.14、1b a2 +.【解题分析】作AH∥EF交BC于H,首先证明四边形EFHA是平行四边形,再利用三角形法则计算即可.【题目详解】作AH∥EF交BC于H.∵AE∥FH,∴四边形EFHA是平行四边形,∴AE=HF,AH=EF.∵AE=ED=HF,∴12HF a=.∵BC=2AD,∴BC=2a.∵BF=FC,∴BF a=,∴12BH a=.∵12EF AH AB BH b a ==+=+.故答案为:12b a +.【题目点拨】本题考查了平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.15、1 2 3【解题分析】原方程为3x2−6x+1=0,二次项系数化为1,得x2−2x=−13,即x2−2x+1=−13+1,所以(x−1)2=23.故答案为:1,2 3 .16、10【解题分析】首先证明△ABP∽△CDP,可得ABBP=CDPD,再代入相应数据可得答案.【题目详解】如图,由题意可得:∠APE=∠CPE,∴∠APB=∠CPD ,∵AB ⊥BD ,CD ⊥BD ,∴∠ABP=∠CDP=90°,∴△ABP ∽△CDP , ∴AB BP =CD PD , ∵AB=2米,BP=3米,PD=15米, ∴23=15CD , 解得:CD=10米.故答案为10.【题目点拨】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.17、()1,1或()4,4【解题分析】分点A 的对应点为C 或D 两种情况考虑:①当点A 的对应点为点C 时,连接AC 、BD ,分别作线段AC 、BD 的垂直平分线交于点E ,点E 即为旋转中心;②当点A 的对应点为点D 时,连接AD 、BC ,分别作线段AD 、BC 的垂直平分线交于点M ,点M 即为旋转中心.此题得解.【题目详解】①当点A 的对应点为点C 时,连接AC 、BD ,分别作线段AC 、BD 的垂直平分线交于点E ,如图1所示:A 点的坐标为()1,5-,B 点的坐标为()3,3,E ∴点的坐标为()1,1;②当点A 的对应点为点D 时,连接AD 、BC ,分别作线段AD 、BC 的垂直平分线交于点M ,如图2所示:A 点的坐标为()1,5-,B 点的坐标为()3,3,M ∴点的坐标为()4,4.综上所述:这个旋转中心的坐标为()1,1或()4,4.故答案为()1,1或()4,4.【题目点拨】本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.18、(2n ﹣1,2n ﹣1).【解题分析】解:∵y=x-1与x 轴交于点A 1,∴A 1点坐标(1,0),∵四边形A 1B 1C 1O 是正方形,∴B 1坐标(1,1),∵C 1A 2∥x 轴,∴A 2坐标(2,1),∵四边形A 2B 2C 2C 1是正方形,∴B 2坐标(2,3),∵C 2A 3∥x 轴,∴A 3坐标(4,3),∵四边形A 3B 3C 3C 2是正方形,∴B 3(4,7),∵B 1(20,21-1),B 2(21,22-1),B 3(22,23-1),…,∴B n 坐标(2n-1,2n -1).故答案为(2n-1,2n -1).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)10,5元;(2)补图见解析;(3)在甲、乙两超市参加摇奖的50名顾客平均获奖分别为10元、8.2元;(4)310.【解题分析】(1)根据中位数、众数的定义解答即可;(2)根据表格中的数据补全统计图即可;(3)根据计算平均数的公式求解即可;(4)根据扇形统计图,结合概率公式求解即可.【题目详解】(1)在甲超市摇奖的顾客获得奖金金额的中位数是=10元,在乙超市摇奖的顾客获得奖金金额的众数5元,故答案为:10元、5元;(2)补全图形如下:(3)在甲超市平均获奖为=10(元),在乙超市平均获奖为=8.2(元);(4)获得奖金10元的概率是=.【题目点拨】本题考查了中位数及众数的定义、平均数的计算公式及简单概率的求法,熟知这些知识点是解决本题的关键.20、30.3米.【解题分析】试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.试题解析:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=AEDE,∠1=30°,∴AE=DE× tan∠1=40×tan30°=40×3×1.73×13≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=BEDE,∠2=10°,∴BE =DE ×tan ∠2=40×tan10°≈40×0.18=7.2 ∴AB =AE +BE ≈23.1+7.2=30.3米.21、(1)见解析;(26.【解题分析】(1)由正方形的性质得出AB =BC ,∠ABC =∠C =90°,∠BAE+∠AEB =90°,由AE ⊥BF ,得出∠CBF+∠AEB =90°,推出∠BAE =∠CBF ,由ASA 证得△ABE ≌△BCF 即可得出结论;(2)证出∠BGE =∠ABE =90°,∠BEG =∠AEB ,得出△BGE ∽△ABE ,得出BE 2=EG•AE ,设EG =x ,则AE =AG+EG =2+x ,代入求出x ,求得AE =3,由勾股定理即可得出结果.【题目详解】(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =∠C =90°,∴∠BAE+∠AEB =90°,∵AE ⊥BF ,垂足为G ,∴∠CBF+∠AEB =90°,∴∠BAE =∠CBF ,在△ABE 与△BCF 中,BAE CBF AB BCABE C 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△ABE ≌△BCF (ASA ),∴AE =BF ;(2)解:∵四边形ABCD 为正方形,∴∠ABC =90°,∵AE ⊥BF ,∴∠BGE =∠ABE =90°,∵∠BEG =∠AEB ,∴△BGE ∽△ABE , ∴BE AE =EG BE, 即:BE 2=EG•AE ,设EG =x ,则AE =AG+EG =2+x ,)2=x•(2+x ),解得:x 1=1,x 2=﹣3(不合题意舍去),∴AE =3,∴AB.【题目点拨】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质,证明三角形全等与相似是解题的关键.22、﹣2≤x <92. 【解题分析】先分别求出两个不等式的解集,再求其公共解.【题目详解】()6152432112323x x x x ⎧++⎪⎨-≥-⎪⎩①②, 解不等式①得,x <92, 解不等式②得,x≥﹣2, 则不等式组的解集是﹣2≤x <92. 【题目点拨】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).23、x=15,y=1【解题分析】根据概率的求法:在围棋盒中有x 颗黑色棋子和y 颗白色棋子,共x+y 颗棋子,如果它是黑色棋子的概率是38,有38x x y +=成立.化简可得y 与x 的函数关系式; (2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y 颗棋子,则取得黑色棋子的概率变为12,结合(1)的条件,可得38101102x x y x x y ⎧⎪+⎪⎨+⎪⎪++⎩==,解可得x=15,y=1. 【题目详解】依题意得,38101102x x y x x y ⎧=⎪+⎪⎨+⎪=⎪++⎩, 化简得,53010x y x y -=⎧⎨-=-⎩, 解得,1525x y =⎧⎨=⎩., 检验当x=15,y=1时,0x y +≠,100x y ++≠,∴x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【题目点拨】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 24、甲建筑物的高AB 为(-30)m ,乙建筑物的高DC 为【解题分析】如图,过A 作AF ⊥CD 于点F ,在Rt△BCD中,∠DBC=60°,BC=30m,∵CDBC=tan∠DBC,∴3,∴乙建筑物的高度为3;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(3﹣30)m,∴甲建筑物的高度为(330)m.25、(1)证明见解析(2)13【解题分析】(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.【题目详解】(1)∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD 是直角三角形13DE ∴===【题目点拨】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.26 【解题分析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,113x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.27、详见解析.【解题分析】四边形ABCD 是正方形,利用已知条件先证明四边形ABCD 是平行四边形,再证明四边形ABCD 是矩形,再根据对角线垂直的矩形是正方形即可证明四边形ABCD 是正方形.【题目详解】证明:在四边形ABCD 中,OA=OC,OB=OD ,∴四边形ABCD 是平行四边形,∵OA=OB=OC=OD ,又∵AC=AO+OC,BD=OB+DO ,∴AC=BD ,∴平行四边形是矩形,在△AOB 中,AO AB =,BO AB =222221122AO BO AB AB AB +=+= ∴△AOB 是直角三角形,即AC ⊥BD ,∴矩形ABCD 是正方形.【题目点拨】本题考查了平行四边形的判定、矩形的判定、正方形的判定以及勾股定理的运用和勾股定理的逆定理的运用,题目的综合性很强.。
2024山东省济南市中考一模押题预测卷数学试卷及答案

2024年中考第一次模拟考试(山东济南卷)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210⨯B .99.7210⨯C .109.7210⨯D .119.7210⨯3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥,交直线m 于点C .若150∠=︒,则2∠的度数为().B .C .D ..三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张上部图片放入一个布袋,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸取一张,则这两张小图片恰好合成一张完整图片的概率是(16B .C 19D 15.若点()(()1232,1,1,A y B y C y --、、都在反比例函数21k y x+=(k 为常数)的图象上,则23y y 、、的大小关系为()123y y y <<B .31y y <<C 213y y y <<D 312y y y <<中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(21)(32)++-=-的计算过程,则图2.(13)(23)10-++=B .(31)(32)1-++=.(13)(23)36+++=D .(13)(23)10++-=-C.3+(a,b是常数,且abx.下列结论:第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)()2213032-⎛⎫︒--+- ⎪⎝⎭.)10521x x -+><-在数轴上表示出它的解集,并求出它的正整数解.ABCD 中,BCD ∠的平分线交AD ,3EF =,求BC 的长.如图2,求遮阳棚前端B 到墙面AD 的距离;如图3,某一时刻,太阳光线与地面夹角60CFG ∠=︒,求遮阳棚在地面上的遮挡宽度的长(结果精确到1cm ).(参考数据:sin 720.951,cos 720.309,tan 72 3.078,3 1.732︒≈︒≈︒≈≈)分)近年来,网约车给人们的出行带来了便利,林林和数学兴趣小组的同学对“美团网约车司机收入频数分布表:月收入4千元5千元9千元10千元人数(个)3421根据以上信息,分析数据如表:思考问题:1,a a ⎫⎪⎭,1,R b b⎛⎫⎪⎝⎭,求直线OM 的函数解析式(用含a ,b 的代数式表示),并说明OM 上;证明:13MOB AOB ∠=∠.求c 的值及顶点M 的坐标,如图2,将矩形ABCD 沿x 轴正方向平移t 个单位()03t <<得到对应的矩形A B C ''知边C D '',A B ''分别与函数24y x x c =-+的图象交于点P ,Q ,连接PQ ,过点P 作PG 于点G .①当2t =时,求QG 的长;PGQ △1,调整菱形ABCD ,使90A ∠=︒,当点M 在菱形ABCD 外时,在射线BP 上取一点BN DM =,连接CN ,则BMC ∠=,MCMN=操作探究二2024年中考第一次模拟考试(山东济南卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .【答案】A【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【详解】解:从上面看,是一个矩形,矩形的中间有一条纵向的实线,两条纵向的虚线.故选:A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210⨯B .99.7210⨯C .109.7210⨯D .119.7210⨯【答案】C【分析】本题考查了科学记数法:把一个绝对值大于等于10的数表示成10n a ⨯的形式(a 大于或等于1且小于10,n 是正整数);n 的值为小数点向左移动的位数.根据科学记数法的定义,即可求解.【详解】解:972亿10972000000009.7210⨯=,故选:C .3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥,交直线m 于点C .若150∠=︒,则2∠的度数为().B.C..【答案】B【分析】本题考查了轴对称图形和中心对称图形的识别.根据轴对称图形和中心对称图形的定义判断即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、是轴对称图形,不是中心对称图形,本选项不符合题意;、是轴对称图形,也是中心对称图形,本选项符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;.三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)【答案】2或3/3或2【分析】过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,与直线l 相交于点A ,则点E 、F 为点M 在坐标轴上的对称点,过点M 作MD x ⊥轴于点D ,设直线l 的解析式为y x b =-+,由直线l 与直线y x =-平行可得45OPA ∠=︒,即可证明MDE 与OEF 均为等腰直角三角形,进而可求出点E 、F 的坐标,根据中点坐标公式可求出MF 和ME 的中点坐标,代入y x b =-+可求出b 值,即可得点P 坐标,即可求解.【详解】如图,过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,与直线l 相交于点A ,则点E 、F 为点M 在坐标轴上的对称点.直线l 与直线y x =-平行,∴设直线l 解析式为y x b =-+,过点M 作MD x ⊥轴于点D ,则3OD =,2MD =,直线l 的解析式为y x b =-+,45OPD ∴∠=︒,45OFE OEF ∴∠=∠=︒,MDE ∴ 与OEF 均为等腰直角三角形,2DE MD ∴==,1OE OF ==,三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),“滴滴”网约车司机收入频数分布表:月收入4千元5千元9千元人数(个)342根据以上信息,分析数据如表:,当点G 在点Q 的下方时,(22224QG t t t t =-+--+52(在03t <<的范围内).或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.2024年中考第一次模拟考试(山东济南卷)数学·参考答案第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)12345678910A C C CB BC A C B第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),,当点G 在点Q 的下方时,(22224QG t t t t =-+--+52(在03t <<的范围内).或52.(12分)【详解】(1)解: 四边形ABCD 是正方形,CD ,90BCD ∠=︒,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
器,需要将四角各裁掉一个正方形.(厚度不计).在图中画出裁剪示意图,用实
线表示裁剪线,虚线表示折痕;并求长方体底面面
积
为 12dm2 时,裁掉的正方形边长多大?
4
李老师数学
23.如图,△ABC 中,∠ACB=90°,点 E 在 BC 上,以 CE 为直径的⊙O 交 AB 于点 F,AO∥ EF (1)求证:AB 是⊙O 的切线; (2)如图 2,连结 CF 交 AO 于点 G,交 AE 于点 P,若 BE=2,BF=4,求 的值.
,则 x+y 的值为
.
16.如图所示,扇形 AOB 的圆心角为 120°,半径为 2,则图中阴影部分的面积
为
.
第 16 题图
第 17 题图
第 18 题图
17.如图,△ABC 的三个顶点分别为 A(1,2),B(2,5),C(6,1).若函
数 y= 在第一象限内的图象与△ABC 有交点,则 k 的取值范围是
). B. 1
C. -1
D. 任意实数
1
李老师数学
8.随县对城区主干道进行绿化,计划把某一段公路的一侧全部栽上树,要求路的
两端各栽一棵,并且每两棵树的间隔相等.如果每隔 5 米栽 1 棵,则树苗缺 21
棵;如果每隔 6 米栽 1 棵,则树苗正好用完.设原有树苗 x 棵,则根据题意列
出方程正确的是
( ).
③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,
则取走的正方体是( )
A.① B.② C.③ D.④
4.某中学 2016 年秋节运动会九年级男子组共有 13 名同学参加百米短跑,预赛成
绩各不相同,根据运动会规则,要取前 6 名同学参加决赛.小刚已经知道了自己
的成绩,他想知道自己能否进入决赛,还需要知道这 13 名同学成绩的(
10.已知关于 x 的一元二次方程(m﹣1)x2+x+1=0 有实数根,则 m 的取值范围
是( )
A.m
B.m>1 C.m<1 D.m 且 m≠1
11.如图,把矩形纸片 OABC 放入平面直角坐标系中,使 OA、OC 分别落在 x 轴,y 轴上,连 OB,将纸片 OABC 沿 OB 折叠,使点 A 落在 A′的位置,若 OB= , tan∠BOC= ,则点 A′的坐标( )
答:裁掉的正方形的边长为 2dm 时底面积 12dm2..............8 分 23.【考点】ME:切线的判定与性质;S9:相似三角形的判定与性质. 【分析】(1)连接 OF,如图,利用平行线的性质得到∠1=∠3,∠2=∠4,加上∠3=∠4, 则∠1=∠2,再证明△AOC≌△AOF 得到∠ACO=∠AFO=90°,然后根据切线的判定定理可得 到结论;(2)在 Rt△OFB 中,设 OE=OF=r,利用勾股定理得到 r2+42=(r+2)2,解得 r=3, 则 OB=5,再证明△BEF∽△BOA 得到 = = ,然后证明△PEF∽△PAO,利用相似比可
8
李老师数学
参考答案
1. C. 2、A 3. A.4.A. 5.A.6. A. 7.C. 8.A. 9.C. 10.D.11C,12C
二.填空
13.2(a﹣2)2
14.
15.3
16. ﹣ .
17. 2≤k≤
18. 2 ﹣2
17.解:反比例函数和三角形有交点的第一个临界点是交点为 A,
∵过点 A(1,2)的反比例函数解析式为 y= ,
24.(本小题满分 8 分) 为响应“书香校园”号召,重庆一中在九年级学生中随机抽取某班学生对 2016
年全年阅读中外名著的情况进行调查,整理调查结果发现,每名学生阅读中外 名著的本数,最少的有 5 本,最多的有 8 本,并根据调查结果绘制了如图所示 的不完整的折线统计图和扇形统计图.
(1)该班学生共有
11
李老师数学
∴OB=5, ∴OA∥EF, ∴△BEF∽△BOA, ∴ = =, ∵EF∥OA, ∴△PEF∽△PAO, ∴ = =, ∴ =.
∴k≥2. 随着 k 值的增大,反比例函数的图象必须和线段 BC 有交点才能满足题意, 经过 B(2,5),C(6,1)的直线解析式为 y=﹣x+7,
,得 x2﹣7x+k=0
根据△≥0,得 k≤
综上可知 2≤k≤ . 18.解:在正方形 ABCD 中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE, 在 Rt△ADM 和 Rt△BCN 中,
在第一象限内将线段 AB 缩小为原来的 1 后得到线段 CD,A、B 的对应点分别 2
为 C、D,则端点 D 的坐标为(
).
A. (3,1) B. (4,2)
C. (4,1)
D. (3,2)
7.若二次函数 y x2 2mx 1 与 y x2 2x m 的图象关于 x 轴对称,则 m 的值
为( A. 0
∵
∴△ABE≌△DFA,...........5 分 ∴AB=DF..................6 分
10
李老师数学
22.解:设裁掉的正方形的边长为 xdm,...............1 分
由题意可得 10 - 2x6 2x 12 ................5 分
整理得 x 2 8x 12 0 解得 x1 2 , x2 6 (舍去).................7 分
2
李老师数学
A.5 B.4 C.3 D.2
二.填空题(共 6 小题,每小题 4 分,共 24 分)
13.分解因式: 2a 2 8a 8 =
14. 不透明的袋子里装有 2 个红球和 1 个白球,这些球除了颜色外都相同.从中 任意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是
15. 已知方程组
6
李老师数学
26. (12 分)已知:点 P 是平行四边形 ABCD 对角线 AC 所在直线上的一个动 点(点 P 不与点 A、C 重合),分别过点 A、C 向直线 BP 作垂线,垂足分别为 点 E、F,点 O 为 AC 的中点. (1)当点 P 与点 O 重合时如图 1,请明证 OE=OF; (2)直线 BP 绕点 B 逆时针方向旋转,当∠OFE=30°时,如图 2、图 3 的位置, 猜想线段 CF、AE、OE 之间有怎样的数量关系?请写出你对图 2、图 3 的猜想, 并选择一种情况给予证明.
7
李老师数学
27.(12 分)如图,抛物线 y=x2+bx+c 与 x 轴交于 A、B 两点,B 点坐标为(3, 0),与 y 轴交于点 C(0,﹣3) (1)求抛物线的解析式; (2)点 P 在抛物线位于第四象限的部分上运动,当四边形 ABPC 的面积最大时, 求点 P 的坐标和四边形 ABPC 的最大面积. (3)直线 l 经过 A、C 两点,点 Q 在抛物线位于 y 轴左侧的部分上运动,直线 m 经过点 B 和点 Q,是否存在直线 m,使得直线 l、m 与 x 轴围成的三角形和直 线 l、m 与 y 轴围成的三角形相似?若存在,求出直线 m 的解析式,若不存在, 请说明理由.
3
20. (本小题满分 6 分) 先化简,再求值: 3a a a2 1,其中a 2
a 1 a 1 a
21. (本小题满分 6 分) 如图,在矩形 ABCD,AD=AE,DF⊥AE 于点 F,求证:AB=DF
22.(本小题满分 8 分)
工人师傅用一块长为 10dm,宽为 6dm 的矩形铁皮制作一个无盖的长方体容
得到 的值. 【解答】(1)证明:连接 OF,如图, ∵OA∥EF, ∴∠1=∠3,∠2=∠4, ∵OE=OF, ∴∠3=∠4, ∴∠1=∠2, 在△AOC 和△AOF 中
,
∴△AOC≌△AOF, ∴∠ACO=∠AFO=90°, ∴OF⊥AB, ∴AB 是⊙O 的切线;
(2)解:在 Rt△OFB 中,设 OE=OF=r, ∵OF2+BF2=OB2, ∴r2+42=(r+2)2,解得 r=3,来自).A. 众数
B. 中位数
C. 加权平均数
D. 平均数
5.下列说法正确的是(
).
A.一组数据 2,5,3,1,4,3 的中位数是 3.5. B. “菱形的对角线互相平分且垂
直”的逆命题是真命题.
C. 五边形的外角和是 540 度.
D.三角形三条边的垂直平分线
的交点是三角形的内心.
6.线段 AB 两个端点的坐标分别为 A(8,4),B(6,2),以原点 O 为位似中心,
李老师数学
济南中考数学押题卷
一.选择题.(30 分)
1. 1 纳米=0.000000001 米,用科学计数法表示 1 纳米是(
).
A. 1×10-8 米 B. 10×10-9 米 C. 1×10-9 米 D. 0.1×10-8 米
2、下列图形是轴对称图形的是:
A
B
C
D
3. 如图,是由 7 个大小相同的小正方体堆砌而成的几何体,若从标有①、②、
, ∴Rt△ADM≌Rt△BCN(HL), ∴∠1=∠2, 在△DCE 和△BCE 中,
,
∴△DCE≌△BCE(SAS), ∴∠2=∠3, ∴∠1=∠3, ∵∠ADF+∠3=∠ADC=90°, ∴∠1+∠ADF=90°,
9
李老师数学
∴∠AFD=180°﹣90°=90°, 取 AD 的中点 O,连接 OF、OC, 则 OF=DO= AD=2,
在 Rt△ODC 中,OC=
=
=2 ,
根据三角形的三边关系,OF+CF>OC, ∴当 O、F、C 三点共线时,CF 的长度最小, 最小值=OC﹣OF=2 ﹣2. 故答案为:2 ﹣2.
三、解答题 19.解:原式=1﹣3+2 ﹣2+ ...............4 分