广东省2020年中考数学押题卷及答案

合集下载

精品解析:2020年广东省深圳市中考数学仿真模拟押题试题(原卷+解析)

精品解析:2020年广东省深圳市中考数学仿真模拟押题试题(原卷+解析)

2020年深圳市中考数学仿真模拟押题卷一.选择题(共12小题,满分36分,每小题3分)1.下列各数,最小的数是()A. -2020B. 0C.12020D. 320202.如图,大正方体上面正中间放置小正方体,小正方体6个表面写了数字1到6,且所相对面两个数字之和都是7,则这个几何体的左视图为()A. B. C. D.3.截至北京时间2020年7月17日7时17分,全球新冠肺炎累计确诊病例达到13920405例,累计死亡病例达到591640例.美国新冠肺炎累计确诊病例全球最多,达到3682463例,累计死亡病例达到140977例.下面是受疫情影响较大的四个国家国旗,其中既是轴对称图形,又是中心对称图形的是()A. 韩国国旗 B. 澳大利亚国旗C. 美国国旗D. 瑞士国旗4.如图是一个正方形的平面展开图,把展开图折叠成正方体后,“深”字一面相对面的字是()A. 中B. 考C. 数D. 学5.我国高铁发展迅速,截止2019年底,全国高铁总里程突破3.5万千米,稳居世界第一,将3.5万千米用科学记数法表示正确的是( ) A. 3.5×103米 B. 3.5×104米 C. 3.5×106米 D. 3.5×107 6.下列计算正确的是( ) A. b 6÷b 3=b 2B. b 3•b 3=b 9C. a 2+a 2=2a 2D. (a 3)3=a 67.抢微信红包已成为中国传统节日人们最喜爱的祝福方式,今年深圳中考前2天,小明在自己的微信群中发祝福红包,一共有10名好友抢到红包,抢到红包的金额情况如下: 金额(元)4.50 4.60 4.65 4.70 4.75 4.80人数(人) 132121则10名好友抢到金额的众数、中位数分别是( ) A. 4.60 4.65B. 4.60 4.675C. 4.60 4.70D. 4.70 4.6758.如图,AD ∥BC ,BD 为∠ABC 的角平分线,DE 、DF 分别是∠ADB 和∠ADC 的角平分线,且∠BDF =α,则以下∠A 与∠C 的关系正确的是( )A. ∠A =∠C +αB. ∠A =∠C +2αC. ∠A =2∠C +αD. ∠A =2∠C +2α9.如图,在ABC 中,90,28ACB B ∠=︒∠=︒.分别以点,A B 为圆心,大于12AB 的长为半径画弧,两弧交于点D 和E ,直线DE 交AB 于点F ,连结CF ,则AFC ∠的度数为( )A. 62B. 60︒C. 58D. 56︒10.一次函数y =ax +b 和反比例函数y cx=在同一平面直角坐标系中的图象如图所示,则二次函数y =ax 2-bx +c 的图象可能是( )A. B. C. D.11.下列命题中真命题是()A. 若a2=b2,则a=bB. 4的平方根是2C. 两个锐角之和一定是钝角D. 相等的两个角是对顶角12.如图,在矩形ABCD中,E,F分别是AD,BC的中点,AF与BE相交于点M,CE与DF相交于点N,QM⊥BE,QN⊥EC相交于点Q,PM⊥AF,PN⊥DF相交于点P,若2BC=3AB,记△ABM和△CDN的面积和为S,则四边形MQNP的面积为()A. 12S B.58S C.916S D.34S二.填空题(共4小题,满分12分,每小题3分)13.因式分解:9x2-81=____________________.14.端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其他均相同),其中有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他好朋友小悦,小悦拿到的两个粽子都是肉馅的概率是_____.15.定义一种新运算:1!=1,2!=1×2,3!=1×2×3,4!=1×2×3×4,……计算:100!98!=_______.16.如图,将反比例函数y=kx(k>0)的图象向左平移2个单位长度后记为图象c,c与y轴相交于点A,点P 为x 轴上一点,点A 关于点P 的对称点B 在图象c 上,以线段AB 为边作等边△ABC ,顶点C 恰好在反比例函数y =﹣kx(x >0)的图象上,则k =_____.三.解答题(共7小题,满分52分)17.计算:-12020+(2019-π)0-(12-)-3+|13-|-2sin 260°. 18.先化简:(1+211a -)÷1aa -,请在﹣1,0,1,2,3当中选一个合适的数a 代入求值. 19.绿色出行是对环境影响最小的出行方式,“共享单车”已成为深圳市的一道亮丽的风景线.某社会实践活动小组为了了解“共享单车”的使用情况,对本校师生在7月6日至7月10日使用单车的情况进行了问卷调查.以下是根据调查结果绘制的统计图的一部分:请根据以上信息解答下列问题: (1)7月7日使用“共享单车”的师生有 人,喜欢ofo 的扇形圆心角为 度;(2)不同品牌的“共享单车”各具特色,社会实践活动小组针对有过使用“共享单车”经历的师生做了进一步调查,每个人都按要求选择了一种自己喜欢的“共享单车”,统计结果如图,其中喜欢mobike 的师生有36人.求喜欢ofo 的师生人数.20.如图,左图是一辆小型踏板电动车,右图为其示意图,点A 为座垫,AB ⊥BC ,AB 高度可调节,其初始高度为34cm ,CD 为车前柱,CD =120cm ,∠C =70°,根据该款车提供信息表明,当骑行者手臂DE 与车前柱DC 夹角为80°时,骑行者最舒适,若某人手臂长60cm ,肩膀到座垫的高度AE =42cm ,则座垫应调高多少厘米才能使得骑行最舒适?(参考数据sin 70°=0.94,cos 70°≈0.34,tan 70°≈2.75,精确到lcm )21.2020年6月开始,国家大力鼓励摆地摊,大学生小张摆摊销售一批充电小风扇,进价40元,经市场考察知,销售进价为52元时,可售出180个,且定价x(元)与销售减少量y(个)满足关系式:y=10(x -52).(1)若他打算获利2000元,且投资尽量少,则应进货多少个?定价是多少;(2)若他想获得最大利润,则定价及进货各是多少?22.如图,抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.(1)求抛物线的解析式;(2)x轴上是否存在点P,使PC+12PB最小?若存在,请求出点P 的坐标及PC+12PB的最小值;若不存在,请说明理由;(3)连接BC,设E为线段BC中点.若M是抛物线上一动点,将点M绕点E旋转180°得到点N,当以B、C、M、N为顶点的四边形是矩形时,直接写出点N的坐标.23.已知四边形ABCD是菱形,AC、BD交于点E,点F在CB的延长线上,连结EF交AB于H,以EF为直径作⊙O,交直线AD于A、G两点,交BC于K点.(1)如图1,连结AF,求证:四边形AFBD是平行四边形;(2)如图2,当∠ABC=90°时,求tan∠EFC的值;(3)如图3,在(2)的条件下,连结OG,点P在弧FG上,过点P作PT∥OF交OG于T,PR∥OG交OF于R点,连结TR,若AG=2,在点P运动过程中,探究线段TR的长是否为定值,如果是,则求出这个定值;如果不是,请说明理由.2020年深圳市中考数学仿真模拟押题卷一.选择题(共12小题,满分36分,每小题3分)1.下列各数,最小的数是( ) A. -2020 B. 0 C.12020D.32020【答案】A 【解析】 【分析】根据实数的大小比较法则即可得.【详解】实数的大小比较法则:正数大于0,0大于负数,负数绝对值大的反而小, 则320202020120200-<-<<, 因此,最小的数是2020-, 故选:A .【点睛】本题考查了实数的大小比较法则,掌握理解实数的大小比较法则是解题关键.2.如图,大正方体上面正中间放置小正方体,小正方体6个表面写了数字1到6,且所相对面两个数字之和都是7,则这个几何体的左视图为( )A. B. C. D.【答案】D 【解析】 【分析】根据三视图的判断方法判断即可,根据数字之和等于7可得到结果; 【详解】由图可知,左视图是线面一个大正方形,上面一个小正方形,再根据相对面的数字之和等于7可得,小正方形上面的数字是4,故选:D.【点睛】本题主要考查了简单组合图形的三视图,准确判断出数字是解题的关键.3.截至北京时间2020年7月17日7时17分,全球新冠肺炎累计确诊病例达到13920405例,累计死亡病例达到591640例.美国新冠肺炎累计确诊病例全球最多,达到3682463例,累计死亡病例达到140977例.下面是受疫情影响较大的四个国家国旗,其中既是轴对称图形,又是中心对称图形的是()A. 韩国国旗B. 澳大利亚国旗C. 美国国旗D. 瑞士国旗【答案】D【解析】【分析】根据轴对称图形和中心对称图形的概念求解.【详解】解:A、外围三条短线要注意,不是轴对称图形,故此选项不符合题意;B、“米”字形不对称,不是轴对称图形,故此选项不合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、既是轴对称图形,又是中心对称图形,故此选项合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.4.如图是一个正方形的平面展开图,把展开图折叠成正方体后,“深”字一面相对面的字是()A. 中B. 考C. 数D. 学【答案】D【解析】【分析】正方体的平面展开图中,相对面的特点是必须相隔一个正方形,相邻不可能相对,据此作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,,相邻不可能相对.“深”与“学”是相对面,“圳”与“考”是相对面,“中”与“数”是相对面.故选:D.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.我国高铁发展迅速,截止2019年底,全国高铁总里程突破3.5万千米,稳居世界第一,将3.5万千米用科学记数法表示正确的是()A. 3.5×103米B. 3.5×104米C. 3.5×106米D. 3.5×107【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:3.5万千米=35000千米=35000000米=3.5×107米,故选:D.【点睛】此题考察科学记数法,注意n的值的确定方法,当原数大于10时,n等于原数的整数数位减1,按此方法即可正确求解.6.下列计算正确的是()A. b6÷b3=b2B. b3•b3=b9C. a2+a2=2a2D. (a3)3=a6【答案】C【解析】【分析】根据同底数幂的除法运算法则、同底数幂的乘法运算法则、合并同类项法则以及幂的乘方运算法则分别化简得出答案.【详解】A.b6÷b3=b3,故此选项错误;B.b3•b3=b6,故此选项错误;C.a2+a2=2a2,正确;D.(a3)3=a9,故此选项错误.故选:C.【点睛】本题考查了同底数幂的除法运算法则、同底数幂的乘法运算法则、合并同类项法则以及幂的乘方运算法则。

2020广东中考最后押题一卷(数学)试卷

2020广东中考最后押题一卷(数学)试卷

第 24 题图
25.如图,抛物线 y ax2 2ax 2 3 与 x 轴相交于点 A, B 两点,与 y 轴相交于点 C ,连接 BC ,已
知 tan CBO 3 ,抛物线的对称轴交 x 轴于点 D . 2
(1)求该抛物线的解析式;
(2)连接 CD ,能否在抛物线上找到一点 M ,使得 MCD 30 ,若有求 M 点的坐标,若没有说
(2)求∠CAD 的度数.
20.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计.统计
发现班上贫困家庭学生人数分别有 2 名,3 名,4 名,5 名,6 名,共五种情况.并将其制成了如
下两幅不完整的统计图,请回答下列问题:
(1)求该校一共有班级________个;在扇形统计图中,贫困家庭学生人数有 5 名的班级所对应扇
11.分式 2x 有意义,则 x 的取值范围是

1 x
12.分解因式 3x2 12 =

13.从 1 , 2 ,π,0, -3 这五个数中随机抽取一个数,恰好是无理数的概率是
3
14.关于 x 的一元二次方程(a﹣2)x2﹣2x﹣4+a2=0 有一个根是 0,则 a 的值为
. .
15.如图,矩形 ABCD 中,AC、BD 交于点 O,M、N 分别为 BC、OC 的中点.若 MN=4,则 AC 的长


16. 中国清代数学著作《御制数理精蕴》中有这样一道题:“马四匹、牛六头,共价四十八两
(“两”是我国古代货币单位);马三匹、牛五头,共价三十八两.则马每匹价
两.
17.如图,在⊙O 中,半径 OA⊥OB,过点 OA 的中点 C 作 FD∥OB 交⊙O 于 D、F 两点,且 CD=

2020年广东省中考数学押题测试卷及答案

2020年广东省中考数学押题测试卷及答案
第 17 题图
三、解答题(一)(本大题共 3 小题,每小题 6 分,共 18 分) 18.计算:-21+(-1)2020+2sin 30°-( 3- 2)0. 解:原式=12+1+2×12-1=12+1+1-1=32.
19.先化简,再求值:x+1 1-x-1 1÷1-2 x,其中 x=-2. 解:原式=x- x+11-xx-+11 ·1-2 x =xx-+11-xx--11·1-2 x=x+12x-1·x-2 1 =x+1 1, 当 x=-2 时,原式=-21+1=-1.
2020年广东省初中学业水平考试
押题测试卷
(本卷满分120分,考试时长90分钟)
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)在每小
题列出的四个选项中,只有一个是正确的.
1.在 0,2,-3,-21这四个数中,最小的数是( C )
A.0
B.2
C.-3
D.-12
2.天文单位是天文学中计量天体之间距离的一种单位,其数
解:(1)设小本作业本每本 x 元,则大本作业本每本(x+0.3)元, 依题意,得x+80.3=5x,解得 x=0.5, 经检验,x=0.5 是原方程的解,且符合题意, ∴x+0.3=0.8. 答:大本作业本每本 0.8 元,小本作业本每本 0.5 元.
(2)设大本作业本购买 m 本,则小本作业本购买 2m 本, 依题意,得 0.8m+0.5×2m≤15,解得 m≤235. ∵m 为正整数,∴m 的最大值为 8. 答:大本作业本最多能购买 8 本.
第 15 题图
16.如图,在扇形 OAB 中,∠AOB=90°,D,E 分别是半径 OA,OB 上的点,以 OD,OE 为邻边的▱ODCE 的顶点 C 在 上.若 OD=8,OE=6,则阴影部分图形的面积是 25π-48 (结果保留 π).

2020广东中考数学押题密卷

2020广东中考数学押题密卷

2020广东中考数学押题密卷说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-16的相反数是()A.6B.-6C.16D.-162.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55 000米.数字55 000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1063.已知∠α=60°32',则∠α的余角是()A.29°28'B.29°68'C.119°28'D.119°68'4.一元二次方程x2+px-2=0的一个根为x=2,则p的值为()A.1B.2C.-1D.-25.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁)13 14 15 16人数(人)1 2 5 4则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,146.下列图形既是中心对称图形又是轴对称图形的是()A B C D7.若正比例函数y=-2x与反比例函数y=kx图象的一个交点坐标为(-1,2),则另一个交点的坐标为()A.(2,-1)B.(1,-2)C.(-2,-1)D.(-2,1)8.下列运算中,正确的是()A.2x·3x2=5x3B.x4+x2=x6C.(x 2y )3=x 6y 3D.(x+1)2=x 2+19.如图,AB 是☉O 的弦,OC ⊥AB 交☉O 于点C ,点D 是☉O 上一点,∠ADC=30°,则∠BOC 的度数为( )A.30°B.40°C.50°D.60°10.如图1,在矩形ABCD 中,E 是AD 上一点,点P 从点B 沿折线BE-ED-DC 运动到点C 时停止;点Q 从点B 沿BC 运动到点C 时停止,速度均为每秒1个单位长度.如果点P ,Q 同时开始运动,设运动时间为t ,△BPQ 的面积为y ,已知y 与t 的函数图象如图2所示,有以下结论:①BC=10; ②cos ∠ABE=35; ③当0≤t ≤10时,y=25t 2;④当t=12时,△BPQ 是等腰三角形; ⑤当14≤t ≤20时,y=110-5t. 其中正确的有( )A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共28分) 11.因式分解:ab-7a= .12.若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .13.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷得点数大于4的概率是 .14.若a-b=2,则代数式5+2a-2b 的值是 .15.如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 .16.观察以下一列数:3,54,79,916,1125,…,则第20个数是 .17.将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下一个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去……若在第n 次操作后,剩下的长方形恰为正方形,则操作终止,当n=3时,a 的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:(3-π)0-2cos 30°+|1-√3|+(12)-1.19.先化简,再求值:x 2-1x 2-2x+1·1x+1-1x ,其中x=2.20.小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(1)如图1,已知EK垂直平分线段BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?22.某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人)频率优秀15 0.3 良好及格不及格5(1)被测试男生中,成绩等级为“优秀”的男生人数为 人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为 %;(2)被测试男生的总人数是多少?成绩等级为“不及格”的男生人数占被测试男生总人数的百分比是多少?(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.23.如图,抛物线y=12x 2-32x-2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1)求点A ,B ,C 的坐标; (2)求直线BD 的解析式;(3)在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标;若不存在,请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,点O 是线段AH 上一点,AH=3,以点O 为圆心,OA 的长为半径作☉O ,过点H 作AH 的垂线交☉O 于C ,N 两点,点B 在线段CN 的延长线上,连接AB 交☉O 于点M ,以AB ,BC 为边作▱ABCD.(1)求证:AD 是☉O 的切线;(2)若OH=13AH ,求四边形AHCD 与☉O 重叠部分的面积; (3)若NH=13AH ,BN=54,连接MN ,求OH 和MN 的长.25.如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F.(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE 的值是多少?(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2,试探究线段AG 与BE 之间的数量关系,并说明理由; (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图3,延长CG 交AD 于点H ,若AG=6,GH=2 √2,求BC 的长.参考答案1.C2.A3.A4.C5.C6.C7.B8.C9.D 10.B 11.a (b-7) 12.4 13.13 14.9 15.-116.41400 17.65或3218.解:原式=1-2×√32+√3-1+2=2. 19.解:原式=(x+1)(x-1)(x-1)2·1x+1-1x=1x-1-1x =x x(x-1)-x-1x(x-1)=1x(x-1), 当x=2时,原式=12×1=12. 20.解:设中性笔和笔记本的单价分别是x 元、y 元, 根据题意,得{12y +20x =11212x +20y =144,解得{x =2y =6.答:中性笔和笔记本的单价分别是2元、6元. 21.(1)证明:∵EK 垂直平分线段BC , ∴FC=FB ,CD=BD ,∴∠CFD=∠BFD , ∵∠BFD=∠AFE ,∴∠AFE=∠CFD.(2)①解:如图,作点P 关于GN 的对称点P',连接P'M 交GN 于Q ,连接PQ ,点Q 即为所求.②解:结论:Q 是GN 的中点.理由如下: 设PP'交GN 于K.∵∠G=60°,∠GMN=90°,∴∠N=30°, ∵PK ⊥KN ,∴PK=KP'=12PN , ∴PP'=PN=PM ,∴∠P'=∠PMP',∵∠NPK=∠P'+∠PMP'=60°,∴∠PMP'=30°, ∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN ,QM=QG ,∴QG=QN ,∴Q 是GN 的中点. 22.解:(1)15 20(2)被测试男生的总人数为15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为550×100%=10%.(3)由(1)(2)可知,优秀占30%,及格占20%,不及格占10%,则良好占40%, 故该校八年级男生成绩等级为“良好”的学生人数为180×40%=72(人).23.解:(1)解方程12x 2-32x-2=0,得x 1=-1,x 2=4,∴A 点坐标为(-1,0),B 点坐标为(4,0). 当x=0时,y=-2,∴C 点坐标为(0,-2).(2)∵点D 与点C 关于x 轴对称,∴D 点坐标为(0,2). 设直线BD 的解析式为y=kx+b ,则{0=4k +b 2=b ,解得{k =-12b =2, ∴直线BD 的解析式为y=-12x+2. (3)如图,作PE ∥y 轴交BD 于E ,设P (m,12m 2-32m-2),则E (m,-12m +2),∴PE=-12m+2-(12m 2-32m-2)=-12m 2+m+4, ∴S △PBD =12·PE ·(x B -x D ) =12×(-12m 2+m +4)×4 =-m 2+2m+8=-(m-1)2+9, ∵-1<0,∴当m=1时,△PBD 的面积最大,面积的最大值为9, 此时,P 的坐标为(1,-3).24.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC=90°,∴∠HAD=90°,即OA ⊥AD , 又∵OA 是☉O 的半径,∴AD 是☉O 的切线. (2)解:如图,连接OC ,∵OH=12OA ,AH=3,∴OH=1,OA=2, ∵在Rt △OHC 中,∠OHC=90°,OH=12OC , ∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°,∴S 扇形OAC =120×π×22360=4π3, ∵CH=√22-12=√3,∴S △OHC =12×1×√3=√32,∴四边形AHCD 与☉O 重叠部分的面积=S 扇形OAC +S △OHC =4π3+√32. (3)解:∵AH ⊥NC ,NH=13AH ,AH=3,∴CH=NH=1.设☉O 的半径OA=OC=r ,OH=3-r , 在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3-r )2+12=r 2,∴r=53,∴OH=43, 在Rt △ABH 中,AH=3,BH=54+1=94,∴AB=154, 在Rt △ACH 中,AH=3,CH=1,得AC=√10,∵∠BMN+∠AMN=180°,∠NCA+∠AMN=180°, ∴∠BMN=∠NCA.在△BMN 和△BCA 中,∠B=∠B ,∠BMN=∠BCA ,∴△BMN ∽△BCA ,∴MN AC =BN AB ,即√10=54154, ∴MN=√103,∴OH=43,MN=√103.25.(1)①证明:∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°, ∵GE ⊥BC ,GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形. ②解:由①知四边形CEGF 是正方形, ∴∠CEG=∠B=90°,∠ECG=45°,∴GE ∥AB ,CG CE =√2,∴AG BE =CGCE=√2. (2)解:如图,连接CG ,由旋转性质知∠BCE=∠ACG=α, 在Rt △CEG 和Rt △CBA 中,CE CG =cos 45°=√22,CB CA =cos 45°=√22, ∴CG CE =CA CB=√2, ∴△ACG ∽△BCE ,∴AG BE =CA CB=√2,∴线段AG 与BE 之间的数量关系为AG=√2BE.(3)解:∵∠CEF=45°,点B ,E ,F 三点共线,∴∠BEC=135°, ∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=45°=∠CAH , ∵∠CHA=∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH =AHCH, 设BC=CD=AD=a ,则AC=√2a ,由AG AC =GH AH ,得62a =2√2AH ,∴AH=23a ,∴DH=AD -AH=13a ,∴CH=√CD 2+DH 2=√103a , 由AG AC =AH CH ,得√2a =23a 103a, 解得a=3 √5,即BC=3 √5.。

2020年广东省东莞市中考数学押题考试卷及答案解析

2020年广东省东莞市中考数学押题考试卷及答案解析
A.2B.3C.4D.6
9.不等式组 中,不等式①和②的解集在数轴上表示正确的是( )
A. B.
C. D.
10.如图,已知直线y x与双曲线y (k>0)交于A、B两点,A点的横坐标为3,则下列结论:①k=6;②A点与B点关于原点O中心对称;③关于x的不等式 0的解集为x<﹣3或0<x<3;④若双曲线y (k>0)上有一点C的纵坐标为6,则△AOC的面积为8,其中正确结论的个数( )
C.(a+b)3=a3+b3D.(﹣a3)4=a12
7.为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:
每天用零花钱(单位:元)
1
2
3
4Hale Waihona Puke 5人数24
5
3
1
则这15名同学每天使用零花钱的众数和中位数分别是( )
A.3,3B.5,2C.3,2D.3,5
8.如图,在Rt△ABC中,∠ACB=90°,BC=4,cosB ,点M是AB的中点,则CM的长为( )
19.(6分)先化简,再求值: ,其中x=3.
20.(6分)如图,在△ABC中
(1)作图,作BC边的垂直平分线分别交于AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法)
(2)在(1)条件下,连接BD,若BD=9,BC=12,求∠C的余弦值.
四.解答题(共3小题,满分24分,每小题8分)
A.2020B.﹣2020C. D.
【解答】解:2020的相反数是:﹣2020.
故选:B.
2.根据国家气象局统计,全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示为( )
A.1.6×108B.1.6×107C.16×106D.1.6×106

押题卷01-赢在中考之2020中考数学押题卷(广东深圳卷)(解析版)

押题卷01-赢在中考之2020中考数学押题卷(广东深圳卷)(解析版)

BGD 90 ,且 BD AD2 AB2 13a ,
BG DG 26 a , 2
SBDG
1 2
BG 2
13 a2 4
6
3SBDG
39 a2 , 4
过 G 作 GM CF 于 M ,
CE CF BC BE BC AB a ,
GM 1 CF 1 a ,
2
2
SDGF
DG , CG . 以 下 结 论 : ① BE CD ; ② ABG ADG 180 ; ③ BG DG ; ④ 若 AB : AD 2 : 3 , 则
3SBGD 13SDGF ,其中正确结论的个数是 (
)
A.1
B.2
【解答】解: AE 平分 BAD ,
BAE 45 ,
ABE 是等腰直角三角形,
众数是 4.
故选: B .
6. 下列计算正确的是 ( )
A. 2 3 5 B. a 2a 2a2
C. x(1 y) x xy D. (mn2 )3 mn6
【解答】解: A 、 2 3 无法计算,故此选项错误; B 、 a 2a 3a ,故此选项错误; C 、 x(1 y) x xy ,正确;
x(x 2)
(x 1)2
2(x 1)2 (x 2)(x 2) x(x 2) (x 1)2
2(x 2) , x
x 2
4 x 1
0① 0②

解①得: x 4 ,
解②得: x 1 , 2
BD DE 5
BD ED 5
EF 3 ED 18 , DF 4 ED 24
5
5
5
5
OF OD DF 5 24 1 55
在 RtEFO 中:
OE2 OF 2 EF 2 (1)2 (18)2 325 13 , 5 5 25

2020年广州中考数学押题卷01(解析版)

2020年广州中考数学押题卷01(解析版)

2020年中考数学押题卷01一、选择题(本大题共10小题,每小题3分,共30分)1.实数-2020的相反数是 ( )A. -2020B. 2020C. -20201D. 20201 【答案】B【解析】根据相反数的定义,只有符号不同的两个数是互为相反数进行详解【详解】解:-2020的相反数是2020.故选:B .2. 如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A. 主视图B. 左视图C. 俯视图D. 主视图和左视图【答案】C【解析】本题根据几何体的三视图和中心对称图形的概念求解【详解】主视图和左视图都是一个“倒T”字型,不是中心对称图形;而俯视图是一个“田”字型,是中心对称图形,故选:C .3.某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56, 58,56,这组数据的众数、中位数分别是 ( )A. 53,53B. 53,56C. 56,53D. 56,56【答案】D【解析】根据众数的定义,求出出现次数最多的数即是众数,根据中位数的定义,把一组数据按从小到大(也可以从大到小)的顺序排列,处在最中间位置上的一个数据,就是这组数据的中位数【详解】将数据重新排列51,53,53,56,56,56,58.位于最中间的数是56,出现次数最多的是56.故选:D .4.下列运算正确的是 ( )A. 632a a a =⋅B. 532a a a =+C. ()222b a b a +=+D. ()623a a =【答案】D 【解析】结合各选项利用同底数幂的乘法、合并同类项法则、幂的乘方,整式的运算法则进行运算即可【详解】A.532a a a =⋅, B.2a 和3a 不是同类项, C.()2222b ab a b a ++=+ ,D.()623a a =故选:D .5. 如图,OC 是∠AOB 的平分线,l ∥OB.若∠1=52°,则∠2的度数为 ( )A. 52°B. 54°C. 64°D. 69°【答案】C【解析】根据平行线的性质以及角平分线的定义,即可得到∠BOC=64°,再根据平行线的性质,即可得∠2的度数【详解】解:∵l ∥OB ∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC 是∠AOB 的平分线,∴∠BOC=64°又∵l ∥OB 且∠2与∠BOC 为同位角,∴∠2=64°,故选:C.6.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC 的度数为()A.30°B. 40°C. 50°D. 60°【答案】D【解析】由圆周角定理得到∠AOC=2∠ADC=60°,再由垂径定理和圆心角、弧、弦的关系求得∠BOC 的度数【详解】解:如图∵∠ADC=30°,∴∠AOC=2∠ADC=60°,又∵AB是⊙O的弦,OC⊥AB交⊙O于点C,∴⌒AB =⌒BC ,∴∠AOC=∠BOC=60°故选:D.7.中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE. 的周长为28,则△ABE的周长为( )A. 28B. 24C. 21D. 14【答案】D【解析】根据线段垂直平分线的性质,平行四边形的性质【详解】因为平行四边形的对角线互相平分,OE⊥BD,所以OE垂直平分BD,从而BE=DE,即△ABE的周长等于AB+AD,即的周长的一半,所以△ABE的周长为14.故选:D.8.若关于x 的一元二次方程022=-+k x x 有两个不相等的实数根,则k 的取值范围是 ( )A. k <-1B. k >-1C. k <1D. k >1 【答案】B【解析】一元二次方程根的判别式及应用【详解】∵关于x 的一元二次方程022=-+k x x 有两个不相等的实数根∴△=()>0441422k k +=-⨯⨯-,∴k >-1故选:B .9.如图,一次函数)0(1≠+=k b kx y 的图象与反比例函数x m y =2(m 为常数且m≠0)的图象都经过A(-1,2),B(2,-1).结合图象,则不等式 xm b kx >+ 的解集是( ) A. x<-1 B. -1<x<0C. x<-1或0<x<2D. -1<x<0或x>2【答案】C【解析】函数图象与不等式的关系【详解】解:由函数图象可知,当一次函数)0(1≠+=k b kx y 的图象与反比例函数xm y =2(m 为常数且m≠0)的图象上方时,x 的取值范围是:-1<x 或2<<0x ,所以,不等式xm b kx >+的解集是-1<x 或2<<0x 。

2024年中考押题预测卷(广东卷)数学试题及答案

2024年中考押题预测卷(广东卷)数学试题及答案

绝★启2024年中考押题预测卷数学(考试时间:120分钟试卷满分:120分)注意事项1.答卷前2.回答第Ⅰ卷时2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动干净后3.回答第Ⅱ卷时4.考试结束后一10小题3分30分的.1.下列实数中()A.πB.3C.-3D.02.中国信息通信研究院测算2020-2025年5G商用带动的信息消费规模将超过8万亿元经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×1083.如图是我国几家银行的标志()A. B.C. D.4.如图c与直线a、b都相交.若a∥b,∠1=35°,∠2=()A.145°B.65°C.55°D.35°5.下列计算正确的是()A.-3ab22=6a2b4 B.-6a3b÷3ab=-2a2bC.a 2 3--a 3 2=0D.(a +1)2=a 2+16.不等式组x -1<0x +3≥2x 的解集是()A.无解B.x <1C.x ≥3D.1<x ≤37.若关于x 的方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是()A.k >-1且k ≠0B.k >-1C.k <-1D.k <1且k ≠08.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.349.如图,A 、D 是⊙O 上的两点,BC 是直径,若∠D =35°,则∠OCA 的度数是()A.35°B.55°C.65°D.70°10.如图,在平面直角坐标系xOy 中,菱形ABDC 的边AB 在x 轴上,顶点C 在y 轴上,A -3,0 ,C 0,4 ,抛物线y =ax 2-8ax +c 经过点C ,且顶点M 在直线BC 上,则a 的值为()A.25B.12C.34D.23二、填空题:本大题共6小题,每小题3分,共18分.11.因式分解:x 2-x =.12.已知点A (-2,b )与点B (a ,3)关于原点对称,则a -b =.13.设5-7的整数部分为a ,小数部分为b ,则32a +7b =.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两;马三匹、牛五头,共价三十八两.问马、牛各价几何?”根据题意可得每匹马两.15.如图,已知△ABC在边长为1的小正方形的格点上,△ABC的外接圆的一部分和△ABC的边AB、BC组成的两个弓形(阴影部分)的面积和为.16.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=42,则△CEF的面积是.三、解答题(一):本大题共4小题,第17、18题各4分,第19、20题各6分,共20分.17.(1)计算:16+|2-2|+3-64-2(1+2)0.(2)已知y与x-1成正比例,当x=-1时,y=4,当x=-8时,求y的函数值.18.如图,A、B两地被建筑物阻隔,为测量A、B两地的距离,连接CA、CB,分别取CA、CB的中点D、E.若DE的长为36m,求A、B两地的距离.19.某社区积极响应正在开展的“创文活动”,安排甲、乙两个工程队对社区进行绿化改造.已知甲工程队每天能完成的绿化改造面积是乙工程队每天能完成的绿化改造面积的2倍,且甲工程队完成400m2的绿化改造比乙工程队完成400m2的绿化改造少用4天.分别求甲、乙两工程队每天能完成绿化改造的面积.20.已知:如图在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sin B=45.求:(1)线段DC的长;(2)tan∠EDC的值.四、解答题(二):本大题共3小题,第21题8分,第22、23题各10分,共28分.21.如图,在矩形ABCD中,对角线BD=8.(1)实践与操作:作对角线BD的垂直平分线EF,与AB、CD分别交于点E、F(用尺规作图法,保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,连结BF,若∠BDC=30°,求△BFC的周长.22.为了使二十大精神深入人心,某地区举行了学习宣传贯彻党的二十大精神答题竞赛,试卷题目共10题,每题10分.现分别从三个小区中各随机取10名群众的成绩(单位:分),收集数据如下:锦绣城:90,70,80,70,80,80,80,90,80,100;万和城:70,70,80,80,60,90,90,90,100,90;龙泽湾:90,60,70,80,70,80,80,90,100,100.整理数据:分数人数小区60708090100锦绣城02a21万和城122141龙泽湾12322分析数据:平均数中位数众数锦绣城828080万和城82b90龙泽湾8280c根据以上信息回答下列问题:(1)请直接写出表格中a,b,c的值;(2)比较这三组样本数据的平均数,中位数和众数,你认为哪个小区的成绩比较好?请说明理由;(3)为了更好地学习宣传贯彻党的二十大精神,该地区将给竞赛成绩满分的群众颁发奖品,统计该地区参赛的选手数为3000人,试估计需要准备多少份奖品?23.如图,一次函数y=kx+2k≠0的图象与反比例函数y=mx(m≠0,x>0)的图象交于点A2,n,与y轴交于点B,与x轴交于点C-4,0.(1)求k与m的值;(2)P a,0为x轴上的一动点,当△APB的面积为72时,求a的值.(3)请直接写出不等式kx+2>mx的解集.五、解答题(三):本大题共2小题,每小题12分,共24分.24.如图,ABCD是正方形,BC是⊙O的直径,点E是⊙O上的一动点(点E不与点B,C重合),连接DE,BE,CE.(1)若∠EBC=60°,求∠ECB的度数;(2)若DE为⊙O的切线,连接DO,DO交CE于点F,求证:DF=CE;(3)若AB=2,过点A作DE的垂线交射线CE于点M,求AM的最小值.25.综合运用:在平面直角坐标系中,点C的坐标为5,0,以OC长构建菱形OABC,cos∠BOC=45,点D是射线OB上的动点,连接AD,CD.(1)如图1,当CD⊥OC时,求线段BD的长度;(2)如图2,将点A绕着点D顺时针旋转90°,得到对应点A ,连接DA ,并延长DA 交BC边于点E,若点E 恰好为BC的中点,求BD的长度;(3)将点A绕着点D逆时针旋转一个固定角α,∠α=∠OCB,点A落在点A 处,射线DA 交x轴正半轴于点F,若△ODF是等腰三角形,请直接写出点F的横坐标.绝★启2024年中考押题预测卷数学(考试时间:120分钟试卷满分:120分)注意事项1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∵共有 9 种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有
3
种,
∴同时选择去同一个景点的概率 = = .
22. 解:( 1)设甲种电动自行车每辆的进价是 x 元,则乙种电动车的进价为 1.5 x 元,由题意得:

解得: x= 1500, 经检验, x= 1500 是原方程的解, 答:甲电动车的进价为每辆 1500 元.
如图,在△ ABC中,∠ BAC= 45°, AD⊥ BC于 D,将△ ACD沿 AC折叠为△ ACF,将△ ABD沿 AB 折叠为△ ABG,延长 FC和 GB相交于点 H.
( 1)求证:四边形 AFHG为正方形; ( 2)若 BD=6, CD= 4,求 AB 的长.
4
21. (本题 10 分 )
∠ BAG=∠ BAD,∠ CAF=∠ CAD,
∴∠ BAG+∠ CAF=∠ BAD+∠ CAD=∠ BAC= 45°;
∴∠ GAF=∠ BAG+∠ CAF+∠ BAC= 90°;
∴四边形 AFHG是正方形,
( 2)∵四边形 AFHG是正方形,
∴∠ BHC= 90°,
又 GH= HF= AD, GB= BD= 6, CF= CD= 4;
8
( 2)①设新购进甲种车 m辆,则乙电动车为( 50﹣ m)辆,
y=( 2000﹣ 1500) m+( 2800﹣ 1500 ×1.5 )( 50﹣ m)=﹣ 50m+27500
②∵ y=﹣ 50m+27500, y 随 x 的增大而减小, 20≤m≤ 30,
∴当 x= 20 时, y 最大=﹣ 50× 20+27500= 26500 元, 答: y 与 x 的函数关系式为 y=﹣ 50x+27500,当 x= 20 时,利润最大,最大利润为
26500 元.
23. 解:( 1)①∵∠ A=30°,∠ ACB= 90°,
∴∠ B= 60°,
∵ AD=DB,
∴ CD=AD= DB,
∴△ CDB是等边三角形,
∴∠ DCB= 60°.
故答案为 60
②如图 1,结论: CP= BF.理由如下:
∵∠ ACB= 90°, D 是 AB的中点, DE⊥ BC,∠ A= α,

A.对长江水质情况的调查
B.对端午节期间市场上粽子质量情况的调查
C.对某班 40 名同学体重情况的调查
D.对某类烟花爆竹燃放安全情况的调查
5.已知∠ α =35°,那么∠ α 的余角等于(

A.35°
B
.55°
C
.65°
D
.145°
6.不等式组
的解集为(

A. x>
B
. x<﹣ 1
C
.﹣ 1< x<
﹣ 2=0 有两个相等的实数根.其中正确的结论有
(填序号).
三、解答题 (本大题共 6 小题,共 66 分 . 解答应写出文字说明、演算步骤或推理过程 . ) 19.( 本题 10 分 )
已知 x,y 满足方程组
,求代数式( x﹣ y )2﹣( x+2y)( x﹣ 2y)的值.
20.( 本题 10 分 )
0.097
0.102
0.098
0.099
0.101
留小数点后三位)
3
估计这批苹果损坏的概率为
(结果保留小数点后一位) ,损坏的苹果约有
kg.
17.如图, AB是⊙ O 的直径, PA,PC 分别与⊙ O相切于点 A,点 C,若∠ P=60°, PA= ,则 AB 的
长为

2
18.抛物线 y=ax +bx+c 的顶点为 D(﹣ 1,2),与 x 轴的一个交点 A 在点(﹣ 3, 0)和(﹣ 2, 0)之 间,其部分图象如图,则以下结论:① b2﹣4ac < 0;② a+b+c< 0;③ c﹣ a=2;④方程 ax 2+bx+c
B, C不重合) ( 1)如果∠ A= 30° ①如图 1,∠ DCB= 60 ° ②如图 2,点 P 在线段 CB上,连结 DP,将线段 DP绕点 D逆时针旋转 60°,得到线段 DF,
连结 BF,补全图 2 猜想 CP、 BF之间的数量关系,并证明你的结论; ( 2)如图 3,若点 P 在线段 CB 的延长线上,且∠ A= α ( 0°< α < 90°),连结 DP,将线段
随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有
A、B、C、D、 E 等著名景点,
该市旅游部门统计绘制出 2017 年“五 ?一”长假期间旅游情况统计图, 根据以下信息解答下列问题:
( 1) 2017 年“五 ?一”期间,该市周边景点共接待游客
万人,扇形统计图中 A 景点所
对应的圆心角的度数是
①求 y 与 m之间的函数关系式;
②商店怎样安排进货方案,才能使销售完这批电动自行车获得的利润最大?最大利润是多少?
型号


售价(元 / 辆)
2000
2800
5
23.( 本题 12 分 ) 在 Rt △ ABC中, ∠ ACB= 90°,CD是 AB边的中线, DE⊥ BC于 E,连结 CD,点 P 在射线 CB上(与
甲种车进价的 1.5 倍,且购进的甲种车比乙种车少 5 辆.
( 1)甲种电动自行车每辆的进价是多少元?
( 2)这批电动自行车上市后很快销售一空.该商店计划按原进价再次购进这两种电动自行车共
50 辆,将新购进的电动自行车按照表格中的售价销售.设新购进甲种车
m辆( 20≤m≤ 30),两种车
全部售出的总利润为 GH﹣ GB= x﹣ 6, CH= HF﹣ CF= x﹣4.
在 Rt△ BCH中, BH2+CH=2 BC2,
∴( x﹣ 6) 2+(x﹣ 4) 2= 102,
7
解得 x1= 12, x2=﹣ 2( 不合题意,舍去) , ∴ AD=12,
∴ AB=

=6 .
21. 解:( 1)该市周边景点共接待游客数为: 15÷ 30%=50(万人),
D
. x>﹣
1
7.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向
2 的概率为(

A.
B

C

D

8. 如图,学校环保社成员想测量斜坡 CD旁一棵树 AB 的高度,他们先在点 C处测得树顶 B 的仰角
为 60°,然后在坡顶 D 测得树顶 B 的仰角为 30°,已知斜坡 CD的长度为 20m, DE的长为 10m,
在△ DCP和△ DBF中
, ∴△ DCP≌△ DBF, ∴ CP=BF, CP= BF. ( 2)结论: BF﹣ BP= 2DE?tan α. 理由:∵∠ ACB= 90°, D 是 AB的中点, DE⊥ BC,∠ A= α ,
DP绕点逆时针旋转 2 α 得到线段 DF,连结 BF,请直接写出 DE.BF、BP 三者的数量关系(不需证明)
24.( 本题 12 分) 已知二次函数 y= ax2﹣ 2ax+3 的最大值为 4,且该抛物线与 y 轴的交点为 C,顶点为 D.
( 1)求该二次函数的解析式及点 C,D的坐标; ( 2)点 P( t , 0)是 x 轴上的动点,
22.( 本题 12 分 )
根据《太原市电动自行车管理条例》的规定, 2019 年 5 月 1 日起,未上牌的电动自行车将禁止上
路行驶,而电动自行车上牌登记必须满足国家标准.某商店购进了甲.乙两种符合国家标准的新款
电动自行车.其中甲种车总进价为 22500 元,乙种车总进价为 45000 元,已知乙种车每辆的进价是
,并补全条形统计图.
( 2)根据近几年到该市旅游人数增长趋势,预计
2018 年“五 ?一”节将有 80 万游客选择该市
旅游,请估计有多少万人会选择去 E 景点旅游?
( 3)甲、乙两个旅行团在 A、B、D 三个景点中,同时选择去同一景点的概率是多少?请用画树
状图或列表法加以说明,并列举所有等可能的结果.

A.
B.
C.
D.
10.不等式组
的解集在数轴上表示正确的是(

A.
B.
C.
D.
11. 二次函数 y= ax2+bx+c( a≠ 0)的图象如图所示,对称轴是直线 x=1,下列结论:
① ab< 0;
② b2>4ac; ③ a+b+c< 0; ④ 3a+c< 0.其中正确的是(

2
A.①④
B.②④
C.①②③
D.①②③④
12. 如图,在 Rt△ ABC中,∠ B= 90°, AB= 6, BC=8,点 D在 BC上,以 AC为对角线的所有平行四
边形 ADCE中, DE的最小值是(

A. 4
B. 6
C. 8
D. 10
第Ⅱ卷
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
13.分解因式: x2﹣ 4x=
1. 6 的相反数是 ( )
1
1
A.
B. 6
C. -6
D. -
6
6
2. 下面四个几何体中,左视图是四边形的几何体共有
()
A. 1 个
B. 2 个
3.计算(﹣ ab2) 3 的结果是(

A.﹣ a3b5
B.﹣ a3b6
C. 3 个 C.﹣ ab6
D. 4 个 D.﹣ 3ab2
4.下列调查中,适合采用全面调查(普查)方式的是(

14. 下列各式是按新定义的已知“△”运算得到的,观察下列等式:
相关文档
最新文档