水池侧墙及抗浮计算EXCLE自动计算公式
常用水力计算Excel程序使用说明解析

目录目录 (1常用水力计算Excel程序使用说明 (1一、引言 (1二、水力计算的理论基础 (11.枝状管网水力计算特点 (12.枝状管网水力计算步骤 (23.摩擦阻力损失,局部阻力损失和附加压头的计算方法 (2 3.1摩擦阻力损失的计算方法 (23.2局部阻力损失的计算方法 (33.3附加压头的计算方法 (4三、水力计算Excel的使用方法 (41.水力计算Excel的主要表示方法 (52.低压民用内管水力计算表格的使用方法 (52.1计算流程: (52.2计算模式: (62.3计算控制: (63.低压民用和食堂外管水力计算表格的使用方法 (73.1计算流程: (73.2计算模式: (73.3计算控制: (74.低压食堂内管水力计算表格的使用方法 (84.1计算流程: (84.2计算模式: (84.3计算控制: (95.中压外管水力计算表格的使用方法 (95.1计算流程: (95.2计算模式: (95.3计算控制: (106.中压锅炉内管水力计算表格的使用方法 (106.1计算流程: (106.2计算模式: (106.3计算控制: (11四、此水力计算的优缺点 (111.此水力计算的优点 (111.1.一个文件可以计算不同气源的水力计算 (111.2.减少了查找同时工作系数,当量长度的繁琐工作 (12 1.3.进行了计算公式的选择 (121.4.对某些小细节进行了简单出错控制 (122.此水力计算的缺点 (122.1不能进行环状管网的计算 (122.2没有采用下拉菜单等可操作性强的方式 (122.3没有将某些已有的管件压损计算公式模块嵌入计算表中 (122.4没有将气源性质计算公式计算表中 (12五、存在问题的改进 (13六、后记 (13常用水力计算Excel程序使用说明一、引言随着我国经济的迅猛发展,人们对居住环境及生活条件改善的需求更加迫切。
燃气以其高热值、低污染、使用方便、快捷等的优点正迅速代替其他燃料,成为城市居民及公共建筑、工业用户的主要燃料。
单层地下室标准柱网抗浮验算表格Excel

梁宽
梁高 柱墩高
h5=
350 mm 800 mm 0.65 m
顶板覆土 高顶板h1厚=
底板面h2层= 厚底板h3厚= h4=
1200
250
100
350 顶板上 基压础重面组层 压抗重浮组重合 要性系
mm mm mm mm
0.9 0.9 1.1
C 水浮力
D 抗浮验 算
∑ Gk/Nw,k=
0.960
Nw,k=rm*H1=
40.500 kN/m2
<Kw,抗浮不
满每足根要柱求下所需 抗拔力242.Fra bibliotek54kN
(计算完成)
单层地下室标准柱网抗浮验算 A200422
1
A 参数输 入
单层
适地用下于
(抗标浮高水
除±注.明00 相抗当浮于水 位:绝
11.35 m 10 m
柱网宽 柱网A宽= 柱墩B长=
A1=
5.55 m 7.7 m 2.7 m
土面标高 抗浮水Ha位= 顶标板高面Hb标= 底高板面Hc标= 顶板高建筑Hd面= 水层头厚度高h度6=
H1=
-0.35 m -1.35 m -1.55 m -5.05 m
g9=
16.2 kN/m2 3.24 kN/m2
0 kN/m2 6.25 kN/m2
0 kN/m2 1.391 kN/m2 0.373 kN/m2 1.98 kN/m2 8.75 kN/m2 0.695 kN/m2
合计:∑Gk=
38.879 kN/m2
室外地坪 设抗计浮标水
位:设计
-0.35 m -1.35 m
0 mm 4.05
柱截面 b= 柱截面 h= 柱墩宽 B1=
(完整版)excel表格计算公式大全、使用技巧

(完整版)excel表格计算公式大全、使用技巧AND “与”运算,返回逻辑值,仅当有参数的结果均为逻辑“真(TRUE)”时返回逻辑“真(TRUE)”,反之返回逻辑“假(FALSE)”。
条件判断AVERAGE 求出所有参数的算术平均值。
数据计算COLUMN 显示所引用单元格的列标号值。
显示位置CONCATENATE 将多个字符文本或单元格中的数据连接在一起,显示在一个单元格中。
字符合并COUNTIF 统计某个单元格区域中符合指定条件的单元格数目。
条件统计DATE 给出指定数值的日期。
显示日期DATEDIF 计算返回两个日期参数的差值。
计算天数DAY 计算参数中指定日期或引用单元格中的日期天数。
计算天数DCOUNT 返回数据库或列表的列中满足指定条件并且包含数字的单元格数目。
条件统计FREQUENCY 以一列垂直数组返回某个区域中数据的频率分布。
概率计算IF 根据对指定条件的逻辑判断的真假结果,返回相对应条件触发的计算结果。
条件计算INDEX 返回列表或数组中的元素值,此元素由行序号和列序号的索引值进行确定。
数据定位INT 将数值向下取整为最接近的整数。
数据计算ISERROR 用于测试函数式返回的数值是否有错。
如果有错,该函数返回TRUE,反之返回FALSE。
逻辑判断LEFT 从一个文本字符串的第一个字符开始,截取指定数目的字符。
截取数据LEN 统计文本字符串中字符数目。
字符统计MATCH 返回在指定方式下与指定数值匹配的数组中元素的相应位置。
匹配位置MAX 求出一组数中的最大值。
数据计算MID 从一个文本字符串的指定位置开始,截取指定数目的字符。
字符截取MIN 求出一组数中的最小值。
数据计算MOD 求出两数相除的余数。
数据计算MONTH 求出指定日期或引用单元格中的日期的月份。
日期计算NOW 给出当前系统日期和时间。
显示日期时间OR 仅当所有参数值均为逻辑“假(FALSE)”时返回结果逻辑“假(FALSE)”,否则都返回逻辑“真(TRUE)”。
水池结构设计指南

工业建筑结构设计混凝土结构设计指南及规定第六册水池结构设计指南(共八册)中冶京诚工程技术有限公司工业建筑院二OO五年七月目录一.材料 (2)二.水、土压力计算 (3)三.侧壁内力计算 (4)四.底板内力计算 (6)五.配筋计算 (9)六.裂缝宽度验算 (9)七.侧壁、底板厚度拟定 (10)八.抗浮验算 (11)九.工况组合 (11)十.构造要求 (11)十^一.按强度及裂缝宽度控制的最大弯矩值(附表三) (14)十二.例题 (26)编制:李绪华审核:孙衍法编程:覃嘉仕钢铁厂的设计中会经常遇到水池,无论是炼铁、炼钢,还是轧钢, 都存在水池。
因没有统一的设计方法,导致设计方法较为离散。
结合《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138:2002),对水池结构的设计方法进行一定的统一。
一.材料1. 砼强度等级不低于C25,严寒和寒冷地区不低于C30。
2. 抗渗等级,根据最大作用水头与砼厚度的比值确定一般情况下采用S6即可满足要求。
3. 抗冻等级最冷月平均气温低于一3C的地区,外露的钢筋砼构筑物的砼应具有良好的抗冻性能,按下表采用:砼抗冻等级Fi系指龄期为28d的砼试件,在进行相应要求冻融循环总次数i次作用,其强度降低不大于25%,重量损失不超过5% 最冷月平均气温在《民用建筑热工设计规范》GB 50176-93中查取。
如:北京—45C 天津—4.0C通化—16.1C 石家庄—29C承德—94C 西安—09C太原—65C 本溪—122C兰州—67C 银川—89C 基本上除东北、西北和华北的大部分地区外,其他地区均不需要考虑砼抗冻要求。
二.水、土压力计算1 .水压力按季节最高水位计算水压力,勘察报告中一般提出勘察期间地下水位,可根据勘察的季节及水位变化幅度确定计算水位,准永久值系数为1.0。
2. 土压力主动土压力系数K a可按1/3,地下水位以上土的重度取18kN/m3, 地下水位以下取土的有效重度,可按10 kN/m3,准永久值系数为1.0。
excel表格_水池侧壁及底板配筋计算程序

板厚h (mm) 板长l (mm) 混凝土强度2) 钢筋弹性模量ES (N/mm2) 构件受力特征系数α cr 纵向受拉钢筋表面特征系数ν 300 2.0E+05 2.1 0.7
二、常规数据
混凝土轴心抗压设计值fc (N/mm2) 系数α 1 混凝土抗拉标准值ftk (N/mm2) 14.3 1.00 2.01 混凝土弹性模量EC (N/mm2) 板有效高度h0=h-40 (mm) 3.0E+04 460
三、裂缝验算
短期弯矩MS (KN· m) ρ te=AS/0.5bh 71.00 0.0084 长期弯矩Ml (KN· m) ρ te实际取值(ρ te≥0.01) 36.00 0.0100 2 受拉区纵筋等效直径deq=d/ν (mm) 28.6 84.71 σ sk=MS/η h0AS (N/mm ) ψ =1.1-0.65ftk/ρ teσ sk -0.442 应变不均匀系数ψ 实际取值(0.2≤ψ ≤1.0) 0.200 最外层受拉钢筋外边缘至受拉底边距离c (20≤c≤65) (mm) 20 最大裂缝宽度ω max=α crψ σ sk/ES(1.9c+0.08deq/ρ te) (mm) 0.05 最大裂缝宽度限值ω lim (mm) 验算ω max ≤ ω lim 0.20 满足
三、截面配筋
设计弯距M (KN· m) 截面抵抗矩系数α S=M/α 1fcbh02 γ S=(1+(1-2α S)1/2)/2 钢筋面积AS=M/γ Sfyh0 (mm2) 99.00 0.0327 0.9834 729.5 钢筋直径d (mm) 钢筋间距s (mm) 钢筋实际配筋面积AS (mm2) 是否满足 20 150 2094.4 满足
四、挠度验算
圆形蓄水池工程量及配筋Excel计算

工程名称 单位工程
水池个 蓄水池 数 直径D
个
m
1
8.00
池深
m 3.00
C25砼 浆砌砖 土方开 底板夯 底板厚 池壁厚 挖量 实量
m
m
m³ ㎡
0.20 0.24 81.69 60.51
砌砖量
砂浆抹 平面
砂浆抹 立面
底板砼 量
盖板砼 量
碎石垫 底板钢
层
筋
盖板钢 筋
爬梯钢 筋
排污阀
m³ ㎡
2
L1=2atgθ
圆心角(θ)=2arccos(2ia/D)
ia(m):弦心距 0≤ia
i:钢筋序号
a(m):钢筋设计间距
3
L2(m)=6.25d钢/1000(转半圆180°弯钩)
d钢(mm):钢筋直径
钢筋重量(t)=0.00617d钢2L总k
L总:钢筋总长
k:损耗系数,一般取1.03
或者 L1=2*(r^2-h^2)^0.5 r:圆半径 i:钢筋序列号 a(m):钢筋设计间距 h(m):弦至圆心的距离=i*a
㎡
m³ m³ m³ t
t
t
个
18.63 1.49 125.60 11.29 5.64 12.10 0.496 0.496 0.054 1.00
1
单根钢筋长度(L)=L1+2L2-b(钢筋制作时下料长度)
L1(m):弦长 L1≤D
D(m):圆直径
L2(m):弯钩长度
b(m):砼保护层厚度,一般选b=30mm
型号 单根长 根数
爬梯 m
根
ф20 0.95 23
总长
m 21.85
单位 长度 重量 kg/m2.45Leabharlann 总重kg 53.52
Excel水力计算展示——棱柱体渠道水面线计算 设计

Excel 水力计算展示之 专题4. 棱柱体渠道水面线计算在工程中,仅对明渠恒定非均匀渐变流的水面曲线进行定性分析是不能满足要求的,还需要知道沿程各断面水力要素的改变情况,即要对水面曲线进行定量的计算和绘制。
水面曲线的计算结果可以预测水位的变化对两岸的影响,确定淹没范围,估算淹没损失等。
在工程中,最常用的方法是分段求和法。
基本公式如下:21s s s E E E l i J i J∆-∆==-- (4-1) 式中:1s E 、2s E 分别表示流段上、下游断面的断面比能;J 表示流段内的平均水力坡度;i 表示渠道的底坡;l ∆为流段长度。
流段的平均水力坡度J 一般采用以下方法计算:121()2J J J =+ (4-2)22Q J K=(4-3)流量模数平均值K 或2K 可用以下三种方法之一计算:(1) K = (4-4)式中:121()2A A A =+,121()2C C C =+,121()2R R R =+(2) 222121()2K K K =+ (4-5)(3)22212111()2K K K=+ (4-6) 用分段求和法计算水面曲线的基本方法,是先把渠道按水深划分为几个流段,然后计算每个流段的长度,逐段推算。
具体步骤如下:(1)分析判别水面曲线的类型;(2)确定控制断面,以控制断面的水深作为流段的第一已知水深1h ; (3)假设流段另一断面水深为21h h h =±∆,进行分段; (4)根据水深1h 和2h ,应用公式(4-1)求出第一流段长1l ∆;(5)将2h 作为下一流段的控制水深,重复以上计算,求出第二流段长2l ∆;依次类推,可求出3l ∆、4l ∆……,最后求得水面曲线全长1ni i l l ==∆∑ (4-7)(6)根据计算结果,按比例绘出水面曲线。
需要注意的是,分段越多,计算量越大,精度也越高。
【工程任务】有一长直的梯形断面棱柱体渠道,底宽20b =m ,边坡系数 2.5m =,糙率0.0225n =,底坡0.0001i =。
溢洪道excel计算表

流量 Q(m3/s)
3.10
g (m/s2)
9.81
渐扩式矩形断面消力池
收缩断面弗 自由水跃跃
劳德数 后共轭水深
Fr1
h2(m)
3.34
1.86
水跃长度 L(m)
7.62
下挖式消力池
水跃淹没度 σ
水流自消力 池出流的流
速系数φ
消力池宽度 b(m)
下游水深 (m)
ht
消力池长 Lk(m)
1.05
0.95
2.87 3.21 3.63 4.19 4.94 6.02 6.87 7.99 9.55 11.66 14.89 20.59 33.34 87.63 -139.51 -38.84 -22.56 -15.90 -12.27 -9.99 -8.43 -7.29 -6.43 -5.75 -5.20
侧墙高度计算
Δs (m)
0.16 0.46 0.95 1.85 3.70 3.76 6.30 11.97 27.03 223.32 -65.53 -39.61 -34.82 -34.05 -35.38 -32.58 -25.74 -17.95 -11.91 -7.93 -5.41 -3.85 -2.85 -2.18 -1.72
修正系数 安全超高 掺气水深
ζ 1.20
Δh (m) 0.50
hb (m) 0.87
1.20
0.50
0.78
1.20
0.50
0.69
1.20
0.50
0.61
1.20
0.50
0.52
1.20
0.50
0.43
1.20
0.70
0.38
1.20
0.70
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.0033 0.55
203.5 mm 15.46861595 mm 砼受压区高度符合要求
737.3373603 mm2
2.2.2 选钢筋
第一排钢筋的直径 第一排钢筋的根数 第一排钢筋间的净距 第一排钢筋的总面积 第二排钢筋的直径 第二排钢筋的根数 第二排钢筋间的净距 第二排钢筋的总面积 实配钢筋的总面积 实配钢筋/计算钢筋 受弯构件纵向受拉钢筋的实际配筋率 受弯构件纵向受拉钢筋允许的最小配筋率
14 mm
10
86 mm 1539.3791 mm2
0 mm
0
无第二排钢筋
mm 0 mm2 1539.3791.384844775 %
0.2145 %
结论
满足最小配筋率的要求
2.2.3 裂缝计算
受拉区纵向钢筋的等效直径 有效受拉砼截面面积 按有效受拉砼截面面积计算的纵向受拉钢筋配筋率 裂缝间纵向受拉钢筋应变不均匀系数 构件受力特征系数 设计值/标准值 按何载效应的标准组合计算的弯矩值 按何载效应的标准组合计算的钢筋砼构件纵向受拉钢筋的应 力 钢筋的弹性模量 按何载效应的标准组合计算的最大裂缝宽度 最大裂缝宽度限值
受拉区纵向钢筋的等效直径 有效受拉砼截面面积
h0=
fc= ft= ftk= α 1=
fy= ES= β 1= ε cu= ζ b= xb=
x=
As=
370 mm 30
14.3 N/mm2 1.43 N/mm2 2.01 N/mm2
1 HRB335
300 N/mm2 200000 N/mm2
0.8 0.0033
水池: 单向板侧墙(顶部简支,三面固结)
1 内力计算
水池侧壁的计算长度 水池侧壁的计算高度 水池地下最高水位距设计地面的距离 水池的侧壁厚度 地下水位以上土的重度 据地质报告填土的内摩察角 水池侧壁配筋计算时取用的土的有效浮容重度 水池侧壁配筋计算时侧压力设计值的荷载分项系数 水池附近的地面荷载 水池上附土荷载 水池侧壁高宽比
结论
2.2 水池侧壁内侧竖向钢筋配筋设计(以C点为控制点) 2.2.1 强度计算
弯矩设计值 计算截面宽度 计算截面高度 纵向受拉钢筋的砼保护层厚度 纵向受拉钢筋合力点至截面近边距离 量截面有效高度 砼强度等级(20,25,30,35,40) 砼轴心抗压强度设计值 砼轴心抗拉强度设计值 砼轴心抗拉强度标准值 受压区砼矩形应力图与砼轴心抗压强度设计值的比值 纵向受拉钢筋类别(HRB235,HRB335,HRB400) 纵向受拉钢筋抗拉强度设计值 钢筋的弹性模量 砼矩形应力图受压区高度与中和轴高度(中和轴到受压区边缘 的距离)的比值 正截面的砼极限压应变 相对界限受压区高度 界限受压区高度 砼受压区高度 砼受压区高度判定 计算纵向受拉钢筋面积
2 配筋设计
k= pa= pb= MB= Mc= M角隅=
2.1 水池侧壁外侧竖向钢筋配筋设计(以B点为控制点)
2.1.1 强度计算
弯矩设计值
M=
计算截面宽度
b=
计算截面高度
h=
纵向受拉钢筋的砼保护层厚度
as=
纵向受拉钢筋合力点至截面近边距离
a=
0.405858517 14.05858517 kN/m2 67.04191284 kN/m2 137.5810652 kN.m 66.77800727 kN.m 76.02382117 kN.m
deq = Ate =
18 mm 200000 mm2
按有效受拉砼截面面积计算的纵向受拉钢筋配筋率 裂缝间纵向受拉钢筋应变不均匀系数 构件受力特征系数 设计值/标准值 按荷载效应的标准组合计算的弯矩值 按荷载效应的标准组合计算的钢筋砼构件纵向受拉钢筋的应 力 钢筋的弹性模量 按何载效应的标准组合计算的最大裂缝宽度 最大裂缝宽度限值
fc= ft= ftk= α 1=
fy= ES= β 1= ε cu= ζ b= xb=
x=
As=
80.13360872 kN.m 1000 mm 400 mm 20 mm 30 mm 370 mm 30 14.3 N/mm2 1.43 N/mm2 2.01 N/mm2 1
HRB335 300 N/mm2
2.1.2 选钢筋
第一排钢筋的直径 第一排钢筋的根数 第一排钢筋间的净距 第一排钢筋的总面积 第二排钢筋的直径 第二排钢筋的根数 第二排钢筋间的净距 第二排钢筋的总面积 实配钢筋的总面积 实配钢筋/计算钢筋 受弯构件纵向受拉钢筋的实际配筋率 受弯构件纵向受拉钢筋允许的最小配筋率
结论
2.1.3 裂缝计算
0.55 203.5 mm 32.64340592 mm 砼受压区高度符合要求
1556.002349 mm2
18 mm
10
86 mm 2544.6879 mm2
0 mm
0
无第二排钢筋
mm 0 mm2 2544.6879 mm2
1.635401066
0.636171975 %
0.2145 %
满足最小配筋率的要求
165.0972783 kN.m 1000 mm 400 mm 20 mm 30 mm
量截面有效高度 砼强度等级(20,25,30,35,40) 砼轴心抗压强度设计值 砼轴心抗拉强度设计值 砼轴心抗拉强度标准值 受压区砼矩形应力图与砼轴心抗压强度设计值的比值 纵向受拉钢筋类别(HRB235,HRB335,HRB400) 纵向受拉钢筋抗拉强度设计值 钢筋的弹性模量 砼矩形应力图受压区高度与中和轴高度(中和轴到受压区边缘 的距离)的比值 正截面的砼极限压应变 相对界限受压区高度 界限受压区高度 砼受压区高度 砼受压区高度判定 计算纵向受拉钢筋面积
ρ te = ψ=
α cr =
Ms=
0.01272344 0.590527822
2.1 1
165.0972783 kN.m
σ sk = Es=
wmax = wlim =
201.5507471 N/mm2 200000 N/mm2
0.18892944 mm 0.2 mm
满足裂缝宽度的要求
M= b= h= as= a= h0=
计算模式判定
计算简图(荷载图和内力图)
lx= ly= a= h= γ 1= α= γ 2=
p地面荷载=
8.5 m 5.1 m 3.15 m 0.4 m
20 kN/m3 25 度 10 kN/m3 1.2 10 kN/m2 10 kN/m2
0.6
按一边简支(顶边),其余三边固 结的双向板计算
土的主动侧压力系数 A点的侧压力 B点的侧压力 B点的1米宽度范围内的负弯矩标准值 C点(最大正弯矩)1米宽度范围内的正弯矩标准值 角隅处水平向1米宽度范围内的最大负弯矩标准值