高二数学基本算法语句1

合集下载

新课标高二数学《算法初步》教学中常见问题分析

新课标高二数学《算法初步》教学中常见问题分析

2 输入 输 出语 句
输入 、 出语句是任何一个程序必不可少 的. 输 对于输人语句“ eda ” R a ,b 表示输入 的数 据依次送给 a b 这句话对没有上机 ,, 操作过的学生来说不易理解 , 在电脑 中输人“ eda b , R a , ” 执行该程序时 , 自动弹出一个对话框“ 会 请输人 ab的值” 此时就可 以 r , 人工地输入需要的数据 , 因此输入语句也是赋 值语句 , 只不过输入语句可 以处理批量数据的赋值问题.
水, 要把杯中的水互换 , 我们 可以借助一个空杯 T, 先把 A中的水倒入 T 然后把 B中的水倒 入 A, 把 T中的水倒人 B中 , , 再 这样
学生容易 明白实现两个变量的值互换的三个基本操作 :
T+ 一A
A B
B 一 T
但可能导致一些学生认为 : 要互换两个变量 的值 , 必须借 助第三个变量才能完成 , 以上例 子是为了增强语句 的直观性 , 举 帮 助学生理解各个语句 , 但交换变量的值毕 竟不 同于倒水 , 际上 , 实 不借助第三个 变量仍 可完 成两个 变量 的值的交换. 以下 程 如
Ele s
Pit Y是 平 年 ” r “ n
E d Ⅱ. n
评析 : 在此条题 目中, 的学生会在第 一个“ l 有 Es 之后 写“ d Y4 0A dMo ( ,0 ) ” 在第二个 “ l ” eⅡ” Mo ( ,)= n d Y 10 ≠0 , Es I 之后写 ef “ d Y4 Mo ( ,)=0A dMo ( ,0 )=0A dMo ( ,0 )= ” n d Y 10 n d y4 0 0 这样书写 的问题在于对 “ l ” Es eⅡ 的理解上不准确 , 一个 “ l ” 第 Es I 蕴 ef

人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图

人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图

人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图算法框图是一种图形化的表示方法,用于描述算法的步骤和流程。

它由特定的符号和连接线构成,可以清晰地展示算法的逻辑结构和执行流程。

在人教版高二数学上册中,学生将学习算法框图的基本结构和设计知识点。

以下是相关的基本知识点和注意事项:1.算法框图的基本结构(1) 开始(Start)和结束(End):算法的执行通常从一个开始符号开始,以一个结束符号结束。

(2)输入和输出:算法通常需要获取输入数据并输出结果,在框图中用特殊符号表示。

(3) 过程(Process):算法中的操作步骤可以通过过程符号表示,包括一系列的计算或逻辑操作。

(4) 判断(Decision):算法可能需要进行条件判断,根据不同的条件执行不同的步骤。

判断符号通常有两个或多个出口,分别表示不同的条件结果。

(5) 循环(Loop):算法可能需要进行循环操作,重复执行一些步骤。

循环符号通常有一个判断条件和两个出口。

(6)连接线:算法框图之间通过连接线连接,表示程序的执行流程。

2.算法框图的设计知识点(1)模块化:将算法分解为若干个模块,每个模块完成一个特定的功能。

通过模块化可以提高算法的可读性和可维护性。

(2)层次结构:将算法按照层次结构进行组织,从而使得算法的逻辑结构清晰可见。

(3)合并与分支:合并表示将多个路径上的运行流程合并到一起,分支表示根据不同的条件选择不同的运行路径。

(4)定义变量和赋值操作:算法框图中需要定义和使用变量,通过赋值操作可以对变量进行初始化和修改。

(5)循环操作:循环操作用于重复执行一段程序代码,框图中循环部分需要设置循环条件和循环体。

(6)逻辑判断:算法框图中经常需要进行逻辑判断,根据不同的条件执行不同的代码。

(7)输入和输出:算法框图中需要用特定符号表示输入和输出的部分,以表示算法的输入和输出过程。

3.算法与程序框图的关系算法框图是对算法的图形化描述,用于表示算法的执行流程和逻辑结构。

高二数学算法流程图

高二数学算法流程图

a=2 b=4 h=5
.
2.S=(a+b) *h/2 3.输出S.
S=(a+b)*h/2
输出S.
流程图: 结束
程序实现: main() {int a,b,h,s; a=2,b=4,h=5; s=(a+b)*h/2 printf(“s=%d”,s); } 输出:15 注:txmz.c
(2).条件结构:一个算法的执行过程中会遇到一些条件的 判断,算法的流程根据条件是否成立有不同的流向.
} 注:ljia.c
结束
三种结构的综合应用:
任意给定一个大于1的整数n,试设计一个算法判定n是否 为质数.并用程序实现。
开始
(1) n=5
输入n
Flag=1
n>2


d=2

d整除n?
( 2)

Flag=0
(1)
d=d+1

d<=n-1且 flag=1?

(2)n=4
Flag=1?


8
结束
程序实现: main()
{int flag,n,d; scanf("%d\n",&n); flag=1; if(n>2) for(d=2;d<=n-1&&flag==1;d++) {if(n%d==0) flag=0;} if(flag==1) {printf("%d",n); printf(" shi ge su shu\n");}
i=i+1

i<=100
分析:初值sum=0,i=1
第一次循环sum=0+1=1,i=2 Sum=1 第二次循环sum=1+2=3 ,i=3 Sum=1+2 第三次循sum= 3+3=6

高二数学知识点总结(精选15篇)

高二数学知识点总结(精选15篇)

高二数学知识点总结(精选15篇)高二数学知识点总结1第一章:解三角形。

掌握正弦余弦公式及其变式和推论和三角面积公式即可。

第二章:数列。

考试必考。

等差等比数列的通项公式、前n 项和及一些性质。

这一章属于学起来很容易,但做题却不会做的类型。

考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。

第三章:不等式。

这一章一般用线性规划的形式来考察。

这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。

然后再根据实际问题的限制要求求最值。

选修中的简单逻辑用语、圆锥曲线和导数:逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。

而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。

后面两到三问难打一般会很大,而且较费时间。

所以不建议做。

这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。

一般会考察用导数求最值,会用导数公式就难度不大。

高二数学知识点总结2一、集合、简易逻辑(14课时,8个)1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。

二、函数(30课时,12个)1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数(46课时,17个)1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

人教A版高二数学必修三第一章:1.1算法与程序框图

人教A版高二数学必修三第一章:1.1算法与程序框图

输出Sum


结束
i=i+1 Sum=Sum + i
当型结构
i<100? 是
否ቤተ መጻሕፍቲ ባይዱ
i=i+1
Sum=Sum + i
i=i+1
解决方法就是加上一个判断,判断 是否已经加到了100,如果加到了则
Sum=Sum + i
退出,否则继续加。
否 i>=100?
请填上判断的条件。

直到型结构
P11 练习1
开始
输入a
N
a ≥0
Y
输出 |a|=a
输出 |a|=-a
结束
练习2
开始 X1=1 X2=2
m=(x1+x2)/2 N
m*m -3<>0 y
(x1*x1 -3)*(m*m -3) >0
x1=m
x2=m
N |x1 -x2|<0.005 y
m=(x1+x2)/2
输出所求的近似值m 结束
▲下面是关于城市居民生活用水收费的问题
2、写出解不等式 x2 2x 3 0 的一个算法。
§1.1.2 程序框图
1城区一中学生数学模块学 分认定由模块成绩决定,模 块成绩由模块考试成绩和平 时成绩构成,各占50%,若 模块成绩大于或等于60分, 获得2学分,否则不能获得学 分(为0分),设计一算法, 通过考试成绩和平时成绩计 算学分,并画出程序框图
小结:算法具有以下特性:(1)有穷性 (2)确定性
(3)顺序性 (4)不唯一性 (5)普遍性
1
1.5
1.25
1.37 2
图1.1-1
表1-1

高二数学教学教案人教版上册必修《基本算法语句》

高二数学教学教案人教版上册必修《基本算法语句》

高二数学教学教案人教版上册必修《基本算法语句》种子牢记着雨滴献身的叮嘱,增强了冒尖的勇气。

下面是XX小编为您推荐高二数学教学教案人教版上册必修《基本算法语句》。

一、本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣. 数学建模也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到算法思想转化思想,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.本章教学时间约需12课时,具体分配如下(仅供参考): 1.1.1 算法的概念约1课时1.1.2 程序框图与算法的基本逻辑结构约4课时1.2.1 输入语句、输出语句和赋值语句约1课时1.2.2 条件语句约1课时1.2.3 循环语句约1课时1.3算法案例约3课时本章复习约1课时1.1 算法与程序框图1.1.1 算法的概念整体设计二、教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.课时安排1课时三、教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容算法.思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.推进新课新知探究提出问题(1)解二元一次方程组有几种方法?(2)结合教材实例总结用加减消元法解二元一次方程组的步骤. (3)结合教材实例总结用代入消元法解二元一次方程组的步骤. (4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解.(6)请同学们总结算法的特征.(7)请思考我们学习算法的意义.讨论结果:(1)代入消元法和加减消元法.(2)回顾二元一次方程组的求解过程,我们可以归纳出以下步骤:第一步,①+② 2,得5x=1.③第二步,解③,得x= .第三步,②-① 2,得5y=3.④第四步,解④,得y= .第五步,得到方程组的解为(3)用代入消元法解二元一次方程组我们可以归纳出以下步骤:第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④ 第三步,解④得y= .⑤第四步,把⑤代入③,得x=2 -1= .第五步,得到方程组的解为(4)对于一般的二元一次方程组其中a1b2-a2b1 0,可以写出类似的求解步骤:第一步,① b2-② b1,得(a1b2-a2b1)x=b2c1-b1c2.③第二步,解③,得x= .第三步,② a1-① a2,得(a1b2-a2b1)y=a1c2-a2c1.④第四步,解④,得y= .第五步,得到方程组的解为(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏. 不重是指不是可有可无的,甚至无用的步骤,不漏是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的第一步直到最后一步之间做到环环相扣,分工明确,前一步是后一步的前提,后一步是前一步的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2 6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除 7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出判断35是否为质数的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练请写出判断n(n 2)是否为质数的算法.分析:对于任意的整数n( n 2),若用i表示2 (n-1)中的任意整数,则判断n是否为质数的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断 r=0 是否成立.若是,则n不是质数,结束算法;否则,将i 的值增加1,仍用i表示.第五步,判断 i (n-1)是否成立.若是,则n是质数,结束算法;否则,返回第三步.例2 写出用二分法求方程x2-2=0 (x 0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x 0)的解就是函数f(x)的零点.二分法的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f (a) f(b) 0)一分为二,得到[a,m]和[m,b].根据 f(a) f(m) 0 是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b] 足够小,则[a,b]内的数可以作为方程的近似解.[来源:学科网Z X X K]解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a) f(b) 0.第三步,取区间中点m= .第四步,若f(a) f(m) 0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=0.005时,按照以上算法,可以得到下表.a b |a-b|1 2 11 1.5 0.51.25 1.5 0.251.375 1.5 0.1251.375 1.437 5 0.062 51.406 25 1.437 5 0.031 251.406 25 1.421 875 0.015 6251.414 062 5 1.421 875 0.007 812 51.414 062 5 1.417 968 75 0.003 906 25于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为数学机械化 .数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶.第二步,烧水.第三步,洗刷茶具.第四步,沏茶.算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具.第三步,沏茶.点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段AB一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.解:算法分析:第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.第二步,在射线上任取一个不同于端点A的点C,得到线段AC.第三步,在射线上沿AC的方向截取线段CE=AC.第四步,在射线上沿AC的方向截取线段EF=AC.第五步,在射线上沿AC的方向截取线段FG=AC.第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC.第七步,连结DB.第八步,过C作BD的平行线,交线段AB于M,这样点M就是线段AB的一个5等分点.点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算 =b2-4ac的值.第三步,判断 0是否成立.若 0成立,输出方程有实根;否则输出方程无实根,结束算法.点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.解:算法分析:数学模型实际上为:y关于t的分段函数.关系式如下:y=其中[t-3]表示取不大于t-3的整数部分.算法步骤如下:第一步,输入通话时间t.第二步,如果t 3,那么y=0.22;否则判断t Z 是否成立,若成立执行 y=0.2+0.1 (t-3);否则执行y=0.2+0.1 ([t-3]+1).第三步,输出通话费用c.课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法.作业课本本节练习1、2.设计感想本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.。

高二数学基本算法语句

高二数学基本算法语句

2、条件语句的嵌套
条件1?


条件2?
IF 条件1 THEN 语句体1 ELSE
IF 条件2 THEN

语句体3

语句体1 语句体2
语句体2
ELSE 语句体3 END IF
END IF
【课堂练习】 1.课本P29页T1. 参考答案: INPUT “a,b,c=”; a,b,c IF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSE PRINT “No.” END IF END
4.课本P29页T4. INPUT “Please input a year:”; y b=y MOD 4 c=y MOD 100 d=y MOD 400 IF b=0 AND c<>0 THEN PRINT “Leap year.” ELSE
IF d=0 THEN PRINT “Leap year.” ELSE PRINT “Not leap year.” END IF
输出x1,x2
结束
〖例3〗:编写程序,使得任意输入的3个整 数按从大到小的顺序输出。 算法分析:用a,b,c表示输入的3个整数;为 了节约变量,把它们重新排列后,仍用a,b,c表 示,并使a≥b≥c.具体操作步骤如下。 第一步:输入3个整数a,b,c. 第二步:将a与b比较,并把小者赋给b,大者 赋给a. 第三步:将a与c比较. 并把小者赋给c,大者 赋给a,此时a已是三者中最大的。 第四步:将b与c比较,并把小者赋给c,大者 赋给b,此时a,b,c已按从大到小的顺序排列好。 第五步:按顺序输出a,b,c.
2.课本P29页T2.读程序,说明程序的运行过程. INPUT “x=:”;x

高二数学知识点及公式总结(通用10篇)

高二数学知识点及公式总结(通用10篇)

高二数学知识点及公式总结(通用10篇)高二数学公式总结篇一1、不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2、不等式的证明方法(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法。

用比较法证明不等式的步骤是:作差——变形——判断符号。

(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法。

(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法。

证明不等式除以上三种基本方法外,还有反证法、数学归纳法等。

高二数学知识点及公式总结篇二圆与圆的位置关系1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论。

高二数学公式总结篇三1、辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法。

2、所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数。

若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数。

3、更相减损术是一种求两数公约数的方法。

其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数。

4、秦九韶算法是一种用于计算一元二次多项式的值的方法。

5、常用的排序方法是直接插入排序和冒泡排序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页共3页
第2页 共3页
(4)输出语句可以输出常量、变量或表达式的值以及字符。

3.赋值语句:可以给变量提供初值。

(1)赋值语句的一般格式
(2)赋值语句的作用是将表达式所代表的值赋给变量;
(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。

赋值号的左右两边不
能对换,它将赋值号右边的表达式的值、赋给赋值号左边的变量;
(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;
(5)对于一个变量可以多次赋值。

注意:①赋值号左边只能是变量名字,而不能是表达式。

如:2=X 是错误的。

②赋值号左右不能对换。

如“A=B ”“B=A ”的含义运行结果是不同的。

③不能利用赋值语句进行代数式的演算。

(如化简、因式分解、解方程等)
④赋值号“=”与数学中的等号意义不同。

例2:编写程序,计算一个学生数学、语文、英语三门课的平均成绩。

分析:先写出算法,画出程序框图,再进行编程。

算法:第一步,输入该学生数学、语文、英语三门课的成绩a,b,c.
第二步,计算3
a b c y ++=。

第三步,输出y 。

程序框图:
程序:
变量=表达式
INPUT “Maths=”;a
INPUT “Chinese=”;b
INPUT “English=”;c
PRINT “The average=”;(a +b +c )/3
END 开 输入a,b,c
y=(a+b+c)/3
输出y 结
第3页共3页。

相关文档
最新文档