基质孔隙度、渗透率-测井资料处理与解释-西安石油大学
西安石油大学测井总结重点!

地球物理测井:简称测井,又可称为钻井地球物理或矿场地球物理,属于地球物理勘探的一个分支,它是应用地球物理方法,研究油气田,煤田等钻井地质剖面,解决某些地下地质,生产及钻井技术问题的一门应用科学地球物理测井的基本原理是:在一个钻井剖面上,存在着不同时代沉积的不同岩石(如砂岩,泥岩等),二不同岩石的各种物理性质(如电学性质--电阻率,弹性性质--速度,放射性性质--伽马和中子射线的吸收和衰减等)都存在一定的差别,这样,我们就可以通过相应的地球物理方法,沿着井筒连续低测定反映岩石某种物理性质的物理参数(如密度,电阻率,声波时差,自然放射性)然后根据这些参数沿井筒的变化规律,来研究钻井的地质铺面,评价尤其储集层以及解决其他一些地质,生产及工程问题测井技术发展的阶段;模拟测井时代,数字测井,数控测井,成像测井,网络信息常规测井系列分类:岩性测井系列(自然点位,自然伽马,井径测井)孔隙度测井系列(时差测井,密度测井,中字测井)电子率测井系列(深,中,浅探测的普通视电阻率测井,侧向测井以及感应测井等。
)、测井技术的作用:1,建立钻井的岩性地质剖面。
2,划分油气储集层,定量,半定量地估计储层的储集性能--孔、渗、饱参数及储层厚度,评价油气储集层的生产能力3,进行地质剖面的对比,研究岩层的岩性,储集性,含油性等在纵,横向上的变化规律,研究地下区域地质构造轮廓,结合地震资料进行油藏描述。
4,在田开发过程中,提供油藏动态资料(注入剖面和产出剖面)5,为井下作业和增产措施,并检查实施效果。
6,研究井的技术状况,如井径,井斜,固井质量及套管状况。
7,研究地层压力,岩石强度和其他一些问题,如井温自然电场产生的原因:(1)地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势(2)地层压力与泥浆柱压力不同而引起的过滤电动势。
扩散电动势:砂岩中的地层水与井内泥浆之间,相当于两种不同浓度的盐溶液接触,当两中不同浓度的溶液被半透膜隔开,离子在渗透压作用下,高浓度溶液的离子将穿过半透膜向较低浓度的溶液中移动,这种现象叫扩散,形成的电位叫扩散电位。
油层物理西安石油大学吐血整理

油层物理学是研究储层岩石、岩石中的流体(油、气、水)以及流体在岩石中渗流机理的一门学科。
油层物理的研究内容①储油(气)岩石的物理性质(包括孔隙度、渗透率、饱和度、储层敏感性等)②油气藏中流体的物理性质(包括油、气、水的高压物理性质及油气相态变化规律)③饱和多相流体的油气层的物理性质及多相渗流机理④提高原油采收率的机理。
储层流体是指储存于地下储层中的石油、天然气和地层水。
石油的元素组成主要元素:C (83%~87%)、H(11%~14%)、次要元素硫(0.06% ~ 0.8%)、氮(0.02% ~ 1.7%)、氧(0.08% ~ 1.82%)微量元素:钒、铁、钴、镁、钙、铝石油的化学组成主要元素:C (83%~87%)、H(11%~14%)、O、N 硫(0.06% ~ 0.8%)、氮(0.02% ~ 1.7%)、氧(0.08% ~ 1.82%)微量元素:金属和其它非金属化合物:烃和非烃化合物烃类:烷烃、环烷烃、芳烃非烃:含O、N、S的化合物,胶质、沥青质天然气主要成分烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般有硫化氢、二氧化碳、氮和水气和少量一氧化碳及微量的稀有气体,如氦和氩等。
在标准状况下,甲烷至丁烷以气体状态存在,戊烷以上为液体。
甲烷是最短和最轻的烃分子。
有机硫化物和硫化氢(H₂S)是常见的杂质石油天然气组成异同点在化学组成的特征上,天然气分子量小(小于20),结构简单,H/C原子比高(4~5),碳同位素的分馏作用显著。
石油的分子量大(75~275),结构也较复杂,H/C 原子比相对低(1.4~2.2),碳同位素的分馏作用比天然气弱.在化学结构上均为烃类。
描述石油的物理性质的指标(颜色、密度与相对密度、凝固点、粘度、荧光性、旋光性、闪点)油气藏分类根据烃类的组成、流体的相对密度①气藏(以CH4为主,占85%以上,C2到C4较少)②凝析气藏(以CH4为主,含有甲烷到辛烷(C8)的烃类,地下原始条件为气态,随压力下降或到地面后凝析油析出,γo=0.72~0.8)③挥发性油藏(临界油气藏)(含比C8重的烃类,构造上部接近于气,下部接近于油,油气无明显分解面,γo=0.7~0.8)④油藏(液态烃为主,油中溶有气)⑤重质油藏(稠油油藏)(粘度高,相对密度大)典型油气藏的汽油比和密度汽油比m3/m3 (天然气>18000,凝析气550~18000,轻质油250~550,黑油<250) 地面液体密度g/cm3(天然气0.70~0.80,凝析气0.72~0.82,轻质油0.76~0.83,黑油0.83~1.0)地层水是指油气层边部、底部、层间和层内的各种边水、底水、层间水及原油同层的束缚水的总称。
测井资料处理解释流程与资料提交规范

一、准备工作尽量收集到较全的区域资料,了解区域构造、沉积等特征;如果有邻井资料最好。
熟悉目的层的深度,地层水矿化度,预计最大井底温度,所在层位,泥浆类型及矿化度等信息,实时跟踪钻井动态。
二、测井质量评价接收到现场的测井数据后,第一时间按照海油的测井质控标准做好质量控制。
常规资料的质量控制主要包括检查图头信息是否正确、曲线数量、曲线数值是否符合地层物理特征、各曲线间的匹配是否一致及测井资料与录井等资料的匹配关系等。
对于不合格的资料应及时提出重测或者补测。
下图是中子、密度和声波三空隙交会图,用来检验三孔隙度曲线是否合格。
密度-声波交会图 中子-密度交会图三、测井资料处理1、常规测井资料处理处理解释软件主要使用油服自主研发的测井解释处理平台EGPS 。
常规资料处理主要选用SAND (砂泥地层)和CRA (两种岩性以上的地层)程序。
下面以CRA 为例说明处理流程。
CRA 程序对于每种储层参数的计算都提供了多种方法供选择,这里只列举最常见的一种或两种。
主要处理流程及参数选取:(1) 泥质含量的计算:一般利用伽马(或者去铀伽玛)计算泥质含量,公式如下:V=111C S C GR --, Vsh=1212--C VC老地层C=2 ,第三纪地层C=3.7,本井取C=3.7C1和S1分别为较纯砂岩和较纯泥岩的GR 值。
在浅层疏松砂岩,GR (或KTH )曲线对岩性的反映敏感性较低,可采用中子-密度交会图方法进行泥质含量的计算,公式如下:Vsh 为地层泥质含量;ΦD 为密度孔隙度;ΦN 为中子孔隙度;ΦDsh 为泥岩密度孔隙度;ΦNsh 为泥岩中子孔隙度;ΦNma 为骨架中子孔隙度;ΦNf 为地层流体中子孔隙度;ρb 为地层视密度;ρf 为地层流体密度;ρsh 为泥岩密度;ρma 为地层骨架密度值。
(2) 孔隙度的计算:中子-密度交会法。
POR=222ND Φ+Φ(3) 含水饱和度的计算:针对较纯砂岩段,采用Archie 公式的计算含水饱和度。
《测井解释与数字处理》渗透层划分及孔隙度、渗透率计算

黑103井岩芯归位图
下沥青砂岩段 孔隙度—密度测井解释模型
30 下沥青砂岩段
20
10
下沥青砂岩段 孔隙度—声波测井解释模型
20
15
10
下沥青砂岩段
5
孔隙度,% 孔隙度,%
0
0
1.85 2.1 2.35 2.6 2.85
40
70
100
密度,g/cm3
声波时差,us/ft
孔隙度解释模型
泉四段 φ=-26.886DEN+76.584 φ=0.2185AC-38.375 φ=0.8853CNL+1.3996 青一段 φ=-40.656DEN+111.33 φ=0.2528AC-45.213 φ=1.1087CNL-0.3939 青二段 φ=-47.877DEN+128.89 φ=0.2189AC-37.486 φ=1.0382CNL-0.182 青三段 φ=0.4225Δt-85.781
4、地区经验公式——岩心刻度测井
①测井资料的环境校正和标准化处理; ②岩心分析资料的深度归位、分辨率匹配(滤波或插值)、
重新采样; ③测井资料和岩心分析资料的相关性分析; ④建立储层参数(y)与测井资料(x)的统计模型; ⑤统计模型的可靠性检验。
例: 1.73 0.662b Vsh 100.0206GR0.03291 K 102.3038 2.1763/ GR0.8528 log( Sw) a0 a1 log( Rw) a2 log() a3 log( Rt )
井 储 层 参 数 处 理 成 果 图
§3.4 含油性评价
一、阿尔奇公式——测井油气识别与评价的理论基础 二、油气层定性识别:电阻率比较法(实例,YT1、
中国石油大学(华东)油田开发地质学考试复习知识总结

中国⽯油⼤学(华东)油⽥开发地质学考试复习知识总结油⽥开发地质学复习重点总结(⽯⼯学院40学时)第⼀章:油⽓⽥地下流体的基本特征1、名词术语(1)⽯油:是储存于地下深处岩⽯孔隙和裂缝中的、天然⽣成的、以液态烃为主的可燃性有机矿产。
(2)油⽥⽔:油、⽓⽥区域内与油⽓藏有密切联系的地下⽔,⼀般指直接与油层连通的地下⽔。
(3)天然⽓:地质条件下⽣成、运移并聚集在地下岩层中、以烃类为主的⽓体。
(4)⽯油的荧光性:⽯油及其衍⽣物(⽆论其本⾝还是溶于有机溶剂中)在紫外线的照射下,产⽣荧光的特性。
(5)⽯油的旋光性:当偏振光通过⽯油时,使偏光⾯发⽣⼀定⾓度旋转的特性。
2、原油的主要元素和化合物、组分组成(1)主要元素:碳、氢、硫、氮、氧碳、氢占绝对优势,主要以烃类形式存在,是组成⽯油的主体;氧、氮、硫主要以化合物形式存在。
(2)化合物:烃类化合物(碳、氢)、⾮烃类化合物(碳、氢、硫、氮、氧)①烃类化合物(按结构分类):烷烃(正构烷烃、异构烷烃)、环烷烃、芳⾹烃②⾮烃类化合物:含硫化合物(元素硫、硫化氢、⼆硫化物、硫醇、硫醚等)、含氮化合物(吡啶、吡咯、喹啉、钒卟啉、镍卟啉等)、含氧化合物(环烷酸、脂肪酸、酚、醛、酮等)。
(3)组分组成:根据⽯油不同化合物对有机溶剂和吸附剂具有选择性溶解和吸附性能划分。
①油质:⽯油的主要组分,淡⾊粘性液体,由烃类化合物组成;溶解性强、可溶解的有机溶剂很多,不被硅胶吸附(评价⽯油质量的标志);②胶质:胶质—粘性玻璃状半固体或固体,淡黄、褐红到⿊⾊,由芳烃和⾮烃化合物组成。
溶于⽯油醚,能被硅胶吸附;③沥青质:沥青质—脆性固体,暗褐⾊到深⿊⾊,由稠环芳烃和⾼分⼦⾮烃化合物组成。
不溶于⽯油醚,能被硅胶吸附。
注意:(1)异构烷烃中类异戊⼆烯型烷烃可能来⾃叶绿素的侧链,卟啉同系物也存在于动物⾎红素和植物叶绿素中,均可作为⽯油有机成因的标志;(2)油质主要指烷烃、环烷烃和芳⾹烃等烃类物质,胶质和沥青质指含有氮、硫、氧的⾮烃物质及不饱和的芳⾹烃。
测井资料处理与解释之绪论

学习内容
绪论
第一节 测井资料处理与解释的内涵和发展 第二节 测井资料处理与解释的任务
学习内容
绪论
第一节 测井资料处理与解释的内涵和发展 第二节 测井资料处理与解释的任务
第一节 测井资料处理与解释的内涵和发展
1.测井资料处理与解释的含义
测井方法原理
相互区别又相互联系 的三个部分
பைடு நூலகம்
测井学
测井仪器与数据采集
第二节 测井资料处理与解释的任务
1.测井资料处理与解释的任务
第二阶段,研究出了一套由视电阻率变换成地层真电阻率的方法(即所谓横向测井方法),同时 对于电阻率和储层储集参数和饱和度参数的关系有了初步认识(Archie,1942),可进行初步定量解释。 但是,从视电阻率求地层真电阻率方法只适于一些简单理想地层和井筒情况,由于还缺少确定孔隙 度和岩性的手段,所以定量解释范围和精度很有限。----半定量解释阶段
第一节 测井资料处理与解释的内涵和发展
3.测井资料处理与解释技术发展阶段
四个阶 段
第三阶段。从20世纪50年代后期开始,陆续产生了一些贴井壁、聚焦和井眼补偿的电测井方 法和仪器,特别是提出并完善了一组孔隙度测井方法,如声波测井、中子测井和密度测井。这样, 在评价储层油气饱和度时可以更好地考虑岩性和孔隙度影响。解释精度得到进一步提高,在多数情 况下可获得较准确的定量解释结果。-------定量解释阶段
第四阶段,到20世纪70年代初,对于各种物理参数和储集参数及饱和参数之间的关系有了进一 步认识,建立了更接近实际储层特征的多种解释模型。在计算机帮助下,综合多种地球物理测井数 据,通过解释可以定量求得岩石矿物成分、储集参数、饱和参数和可采油气数量等,并且以需要的 形式显示出来。-------综合分析阶段
石油大学地球物理测井总复习答案

参考答案一、名词解释1. 水淹层-----在油田开发过程中,含有注入水的储集层。
2. 地层压力---地层孔隙流体压力。
3. 有效渗透率---地层含多相流体时,对其中一种流体测量的渗透率。
4.可动油饱和度---可动油体积占孔隙体积的百分比。
5. 泥浆低侵 ----井壁附近侵入带电阻率低于原始地层电阻率。
6. 热中子寿命—热中子自产生到被俘获所经历的平均时间。
7. 泥质含量---泥质体积占地层体积的百分比。
二、填空1. 孔隙性,含可动油气,岩性,孔隙度,含油气孔隙度,有效厚度2.倾角,走向,倾向3.铀,钍,钾,泥质含量4. 微秒/英尺、微秒/米,欧姆米5. 微梯度与微电位两条电阻率曲线不重合6. 大于,长于7. 底部梯度电极系,2.5米8. Rt/F,水层9. Shr ,Smo,Sh10. 地层水,泥浆滤液,负11. 不同12. 越低13. 盐水泥浆,低侵14. 铀,钍,钾,越高15. 底部梯度电极系,2.5米16. 低,好17. 大于18. 大于19. 划分渗透层,确定地层有效厚度20. 高,低,低,高,高21. 大于,高压异常22. 低于,大于 23. 倾角,倾向,走向 24. 氯,短 三、选择题1-5 ① ③ ② ③ ① 6-10 ② ④ ③ ① ②11-15 ① ② ③ ② ③ 四、判断1-6错误,错误,错误,错误,错误,错误 五、简答1.答:首先测量一条GR 基线。
而后向井下注入含吸附有放射性同位素的材料,测量一条伽马曲线,比较前后两条伽马曲线,在差异比较大的层位,表明地层含有较多的注入材料。
应用下式计算地层的相对吸水量。
1=jmkk S S=∑相对吸水量2. 答:含气砂岩储层的电阻率高,一般为泥浆低侵;含气砂岩储层的声波时差大,当地层声吸收比较高时,在声波时差曲线上可见到周波跳跃现象。
含气砂岩储层的密度低。
由于天然气对快中子的减速能力差,所以含气地层的中子孔隙度低、中子伽马计数率高。
3. 答:1)、根据微电极划分渗透层(渗透层的微梯度与微电位两条电阻率曲线不重合),淡水泥浆剖面,渗透层的SP 曲线出现负异常。
中国石油大学测井总结

第一章一、储集层及其特点:储集层具有储存油气的孔隙、空洞和裂缝等空间场所;孔隙、空洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。
特点:(1)孔隙性:储集层具有由各种孔隙、孔洞、裂缝形成的流体储存空间的性质。
(2)渗透性:在一定压差下允许流体在其中渗透的性质。
二、储集层参数、分类及计算储集层参数:孔隙度;渗透率;饱和度;储集层厚度(1)孔隙度分类:总孔隙度;有效孔隙度;无效孔隙度;缝洞孔隙度孔隙度=(岩石孔隙的体积/岩石总体积)×100%(2)渗透率分类:绝对渗透率;有效渗透率;相对渗透率渗透率标准单位10-3um2(3)饱和度分类:含水饱和度;含油饱和度(4)储集层厚度:储层顶底界面之间厚度三、泥浆侵入的过程、侵入剖面、侵入特征过程:钻井时,由于泥浆柱压力略大于地层压力,此压力驱使泥浆滤液向储集层渗透,在不断渗透的过程中,泥浆中的固体颗粒逐渐在井壁上沉淀下来形成泥饼,由于泥饼的渗透性很差,当泥饼形成以后,可以认为这种渗滤作用基本停止了,在这之前主要是泥浆滤液径向渗透的过程;此后泥浆滤液在纵向的渗透作用将显著表现出来,油、气、水和滤液重新重力分异。
侵入剖面:(1)冲洗带:泥浆侵入后,井壁附近受到泥浆滤液强烈冲刷的部分冲洗带特征:径向厚度约10~50cm,它大致是与井轴同心的环带,孔隙流体主要是泥浆滤液,还有残余水和残余气。
(2)过渡带:储集层受到泥浆侵入由强到弱的过渡部分过滤带特征:原来地层的流体逐渐增多,直到没有泥浆滤液的原状地层,过渡带的径向厚度不定,与钻井条件和储集层性质有关。
(3)未侵入带:即原状地层,是储集层未受泥浆侵入影响的部分。
侵入特性:高侵剖面:泥浆滤液电阻率大于地层水电阻率发生高侵。
低侵剖面:泥浆滤液电阻率小于地层水电阻率发生低侵。
无侵四、研究泥浆侵入的意义(1)由于泥浆侵入,改变的储集层原有特性,使测井测量值不能反映真实地层性质。
(2)储集层侵入特性是进行测井系列选择的基本依据第二章一、岩石电学基础即电阻率与岩性、孔隙度、含油性及地层水的关系(1)岩石电阻率与岩性的关系沉积岩:导电能力强、电阻率低、取决于泥质含量、孔隙度、地层水电阻率、含油饱和度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
了一整套自主知识产权的
火山岩储集层评价(1)
西安石油大学 地球科学与工程学院 赵军龙
1
火山岩储集层评价
学习用参考书
1. 赵军龙.测井资料处理与解释[M].北京:石油工业出版社,2012.1
2. 雍世和,张超谟. 测井数据处理与综合解释[M].东营:中国石油大学出
版社,1996 3.《测井学》编写组. 测井学[M]. 北京:石油工业出版社,1998 4. 李舟波. 地球物理测井数据处理与综合解释[M]. 长春:吉林大学出版 社,2003 5. 洪有密. 测井原理与综合解释[M].东营,中国石油大学出版社,2007
8
1、岩性识别
1.3 成像测井识别火山岩岩性 由于成像测井具有高分辨率、高井眼覆盖率和可视性等特点,在火
山岩岩性识别中得到了广泛应用。由于火山喷发作用形成的环境和堆积
条件的不同,形成了各岩性固有的结构和构造特征。这些结构和构造特 征是测井识别火山碎屑岩与熔岩、火山岩与沉积岩的重要依据。 由于我国火山岩成因结构复杂,即使岩石化学成分相同,但如果成 因、结构不同,其岩石类型和名称也会不同,因此仅用反映成分特征的 常规测井曲线很难将这类岩石区分开。同时由于火山岩地层取心成本高, 取心资料少,利用连续、丰富的测井信息准确识别火山岩岩性就显得尤
2
火山岩储集层评价
本章内容
第一节 火山岩储集层的基本特征
第二节 火山岩储集层的测井响应特征
第三节 火山岩储集层测井解释方法
3
火山岩储集层评价
本章内容
第一节 火山岩储集层的基本特征
第二节 火山岩储集层的测井响应特征
第三节 火山岩储集层测井解释方法
4
第三节 火山岩储集层测井解释方法
火山岩测井解释涵盖储层岩性识别、基质孔隙度、渗透率、饱和度及 裂缝参数定量计算等多个环节。
为重要。以取心资料为基础,结合区域地质资料刻度成像测井资料,同
时采用动、静态加强方法,突出地质特征,建立起我国火山岩常见岩性 的典型结构、构造测井特征模式图,进而以此来识别岩性。
9
1、岩性识别
1.3 成像测井识别火山岩岩性 (1)玄武岩 实例分析
玄武岩一般发育大量溶蚀孔,
气孔和杏仁构造。在FMI图像上显 示为块状模式和暗色斑状模式。
性分类标准,总结出一套以岩石结构成因、化学成分及特征矿物与岩石结
构三级岩性分类标准。 根据火山岩分类原则及标准,用我国大庆油田20口井岩心进行了火山 岩测井分类表如表5-6所示,从表5-6中可见共划分出3大类、9小类和21种 岩性,利用每小类的第一种岩性为同一小类代表岩性。
ห้องสมุดไป่ตู้
6
1、岩性识别
1.1 岩性分类标准
图5-52 沉凝灰岩成像测井图
12
1、岩性识别
1.3 成像测井识别火山岩岩性 (7)凝灰岩 实例分析
凝灰岩的FMI图像模式为暗色块
状模式。
(8)火山角砾岩 火山角砾岩发育大颗粒的火 山角砾,FMI图像模式为亮色斑 点模式。
图5-53 凝灰岩成像测井图
图5-54 火山角砾岩成像测井图
13
1、岩性识别
表5-6 火山岩测井分类表
特征矿物组合 橄榄石、辉石、斜长石 角闪石、黑云母、辉石,斜长石 角闪石、黑云母、辉石、斜长石、 石英、碱性长石 黑云母、角闪石、石英、 碱性长石 橄榄石、辉石、斜长石 角闪石、黑云母、辉石、 斜长石 角闪石、黑云母、辉石, 斜长石、石英、碱性长石 黑云母、角闪石、石英、 碱性长石 基本岩石类型 玄武岩/气孔玄武岩/玄武安山 岩 安山岩/粗安岩 英安岩 流纹岩/变形流纹构造流纹岩/ 气孔流纹岩 玄武质/玄武安山质疑/角砾岩 安山质疑灰/角砾岩 英安质疑灰/角砾岩 流纹质凝灰/角砾岩 凝灰质砾岩/凝灰质砂岩/凝灰 质泥岩
图5-47 英安岩成像测井图
图5-48 花岗斑成像测井图
11
1、岩性识别
1.3 成像测井识别火山岩岩性 (5)流纹岩 实例分析
流纹岩一般发育流纹构造,FMI
图像模式为块状模式与极细的暗色 条纹模式。 (6)沉凝灰岩 沉凝灰岩一般为暗色条带与 亮色条带相间,显示出沉积岩的 成像特征。
图5-50 流纹岩成像测井图
1、岩性识别
岩性复杂是火山岩评价的难点之一。岩性不能准确识别,直接导致
解释结果会遗漏油气层。火山岩岩性复杂,矿物成分多变。岩性对测井 的影响往往超过储层流体的影响,同时不同岩性储层其物性和产能也有 较大差别。因此,准确识别火山岩岩性是开展火山岩储层测井评价的基 础和关键。
5
1、岩性识别
1.1 岩性分类标准 我国火山岩具有喷发期次多、岩浆源性质变化大等特点。为了使岩性 测井解释有规范、适用的标准,我国大庆、新疆等油田建立了本岩性划分 的标准。经过对国内火山岩地层大量岩心取心资料的分析,结合国内外岩
结构大类 成分大类 基 性 SiO245%~52% 火山熔岩类 (熔岩基质中分布的火山 碎屑少于10%,冷凝固结 )熔岩结构或熔结结构 中 性 SiO252%~63% 中酸性 SiO263%~69% 酸 性 SiO2>69% 基 性 SiO245%~52% 火山碎屑岩类 (火山碎屑 超过90%,压实固结) 火山碎屑结构 中 性 SiO252%~63% 中酸性 SiO263%~69% 酸 性 SiO2>69% 沉火山碎屑岩类 (火山碎屑50~90%,压 实固结)沉火山碎屑结构
7
1、岩性识别
1.2 常规交会图法识别火山岩岩性 测井数据交会图法是识别火山岩岩性的简单而有效的方法。它是把 两种测井数据在平面图上交会,根据交会点的坐标定出所求参数的数值 和范围的一种方法。在交会图上能直观地看出各种岩性的分界和分布的 区域,能比较直观地识别火山岩(图5-44)。
图5-44 火山岩GR—Th交会图(据李宁等,2009)
图5-45 玄武岩成像测井图
(2)安山岩 安山岩一般裂缝发育,在 FMI图像上为块状模式与暗色线 状模式结合。
图5-46 安山岩成像测井图
10
1、岩性识别
1.3 成像测井识别火山岩岩性 (3) 英安岩 实例分析
英安岩一般发育流纹构造,FMI
图像模式为块状模式与极细的暗色 条纹模式。 (4)花岗斑岩 花岗斑岩受到风化或构造作 用时,形成较发育的裂缝和孔隙。 为块状模式与暗色线状模式相间。