空间大地坐标系与平面直角坐标系转换公式
blh转xyz 公式

blh转xyz 公式BLH转XYZ公式是地理坐标系之间的转换公式,用于将大地坐标系(BLH)转换为空间直角坐标系(XYZ)。
BLH指的是地球上某一点的大地经度、纬度和大地高,而XYZ则指的是该点在空间直角坐标系下的坐标。
这个公式在地理测量、导航定位等领域有着广泛的应用。
BLH转XYZ的公式可以通过矩阵相乘的方式进行计算。
下面我将详细介绍该公式的推导和使用方法。
我们需要了解一些基本概念。
大地坐标系是以地球椭球体为参照物建立的坐标系,其中经度表示点在赤道投影面上的投影长度,纬度表示点到赤道的弧长,大地高表示点到椭球体表面的垂直距离。
空间直角坐标系是以地球中心为原点建立的坐标系,其中X轴指向经度为0度的子午线,Y轴指向经度为90度的子午线,Z轴指向地球北极。
BLH转XYZ的公式可以表示为以下矩阵形式:```[X] [cosB*cosL cosB*sinL sinB ] [N+H][Y] = [-sinL cosL 0 ] * [N+H][Z] [-sinB*cosL -sinB*sinL cosB ] [N*(1-e^2)+H]```其中,[X Y Z]表示空间直角坐标系下的坐标,[B L H]表示大地坐标系下的坐标,N表示椭球体的半径,e^2表示椭球体的第一偏心率的平方。
这个公式的推导过程比较复杂,涉及到大量的数学和物理知识,这里就不再详述。
有兴趣的读者可以参考相关的地理测量学和大地测量学的教材。
在实际应用中,我们可以通过输入一个点的经纬度和大地高,就可以得到该点在空间直角坐标系下的坐标。
这对于地理测量、导航定位等应用非常有用。
例如,在航空航天领域,我们可以利用BLH转XYZ公式来计算卫星的轨道位置和航天器的定位。
BLH转XYZ公式是地理坐标系之间的转换公式,可以将大地坐标系下的坐标转换为空间直角坐标系下的坐标。
这个公式在地理测量、导航定位等领域有着广泛的应用。
通过掌握该公式的推导和使用方法,我们可以更好地理解和应用地理坐标系。
大地坐标与直角空间坐标转换计算公式

⼤地坐标与直⾓空间坐标转换计算公式⼤地坐标与直⾓空间坐标转换计算公式⼀、参⼼⼤地坐标与参⼼空间直⾓坐标转换1名词解释:A :参⼼空间直⾓坐标系:a) 以参⼼0为坐标原点;b) Z轴与参考椭球的短轴(旋转轴)相重合;c) X轴与起始⼦午⾯和⾚道的交线重合;d) Y轴在⾚道⾯上与 X轴垂直,构成右⼿直⾓坐标系O-XYZ ;e) 地⾯点P的点位⽤(X,Y,Z)表⽰;B :参⼼⼤地坐标系:a) 以参考椭球的中⼼为坐标原点,椭球的短轴与参考椭球旋转轴重合;b) ⼤地纬度B :以过地⾯点的椭球法线与椭球⾚道⾯的夹⾓为⼤地纬度 B ;c) ⼤地经度L:以过地⾯点的椭球⼦午⾯与起始⼦午⾯之间的夹⾓为⼤地经度L;d) ⼤地⾼H:地⾯点沿椭球法线⾄椭球⾯的距离为⼤地⾼H ;e) 地⾯点的点位⽤(B,L,H)表⽰。
2参⼼⼤地坐标转换为参⼼空间直⾓坐标:X =(N +H )* cosB* cosLY =(N +H )* cosB* sin L ?Z =[N * (I _e2) +H]* sin B”公式中,N为椭球⾯卯⾣圈的曲率半径,e为椭球的第⼀偏⼼率,a、b椭球的长短半径,f椭球扁率,W为第⼀辅助系数a2 -b22* f -1e 或e =a fW = . (1 -g*sin2BN aW西安80椭球参数:长半轴 a=6378140⼟ 5( m)短半轴 b=6356755.2882m扁率a =1/298.2573参⼼空间直⾓坐标转换参⼼⼤地坐标Z* (N + H) (X2 Y2)* N* (1 -e2) HX2 Y2cosB⼆⾼斯投影及⾼斯直⾓坐标系1、⾼斯投影概述⾼斯-克吕格投影的条件:1.是正形投影;2.中央⼦午线不变形⾼斯投影的性质: 1.投影后⾓度不变; 2.长度⽐与点位有关,与⽅向⽆关;3.离中央⼦午线越远变形越⼤为控制投影后的长度变形,采⽤分带投影的⽅法。
常⽤3度带或6度带分带,城市或⼯程控制⽹坐标可采⽤不按 3度带中央⼦午线的任意带。
坐标转换中的大地坐标系与空间直角坐标系转换公式

坐标转换中的大地坐标系与空间直角坐标系转换公式在测量与地理信息领域,坐标转换是一个非常重要的概念。
它涉及将不同坐标系下的位置互相转换,使得地理空间信息能够得到准确而一致地表达。
而在坐标转换的过程中,大地坐标系与空间直角坐标系的相互转换公式则是至关重要的工具。
大地坐标系是一种常用的坐标系,在地理测量和导航等领域广泛应用。
它采用了经纬度和大地高作为坐标参数,可以精确地描述地球上任意一点的位置。
经度表示东西方向上的位置,纬度表示南北方向上的位置,而大地高则表示相对于海平面的高度。
在大地坐标系下,地球被近似看作一个椭球体,因此大地坐标系也被称为椭球坐标系。
然而,由于大地坐标系的曲线性质,它并不适合直接参与复杂三维计算,尤其是在工程测量中需要使用的情况。
因此,我们需要将大地坐标系转换为空间直角坐标系,以便进行进一步的计算和分析。
空间直角坐标系采用了直角坐标的表示方式,其坐标参数分别为X、Y、Z,可以方便地进行几何运算。
在进行坐标转换时,我们需要采用适当的公式来实现大地坐标系到空间直角坐标系的转换。
下面将介绍两种常用的转换公式。
1. 大地坐标系到空间直角坐标系的转换公式大地坐标系到空间直角坐标系的转换公式可以通过三个连续的旋转和平移变换来实现。
具体而言,我们首先将大地坐标系的原点O与空间直角坐标系原点重合,然后进行三次坐标轴的旋转,使得大地坐标系的纬度线与空间直角坐标系的Z轴重合。
接着,我们对大地坐标系进行一个小角度的旋转,使得大地纬线与空间直角坐标系的Y轴重合。
最后,再进行一个小角度的旋转,将大地经线与空间直角坐标系的X轴重合。
通过以上步骤,即可完成大地坐标系到空间直角坐标系的转换。
2. 空间直角坐标系到大地坐标系的转换公式与大地坐标系到空间直角坐标系的转换相反,空间直角坐标系到大地坐标系的转换需要进行三次逆变换。
即首先将空间直角坐标系的原点与大地坐标系原点重合,然后进行三次逆变换,回到大地坐标系。
为了实现空间直角坐标系到大地坐标系的转换,我们需要利用解析几何的知识。
空间大地坐标系与平面直角坐标系转换公式

空间大地坐标系与平面直角坐标系转换公式空间大地坐标系和平面直角坐标系是两种不同的坐标系统,用于描述地球上的点的位置。
在进行空间大地坐标系与平面直角坐标系之间的转换时,需要考虑到地球的椭球体形状和投影方式。
下面将详细介绍空间大地坐标系与平面直角坐标系的转换方法。
1.空间大地坐标系经度:经度是指地球上特定点与本初子午线之间的角度差,用度、分、秒的形式表示。
纬度:纬度是指地球上特定点距离赤道的角度,用度、分、秒的形式表示。
大地高:大地高是指地球表面特定点到参考椭球体上其中一参考面的高度差,可分为正高和负高。
2.平面直角坐标系平面直角坐标系是以地球上一些基准点为原点建立的二维坐标系。
在平面直角坐标系下,点的位置通常用东方向坐标值X和北方向坐标值Y来表示。
3.空间大地坐标系到平面直角坐标系的转换公式3.1平面直角投影平面直角投影是将地球表面上的点投影到一个水平的平面上。
其转换公式为:X = k₀ + R * cosL * sin(λ - λ₀)Y = k₀ + R * (cosφ₀ * sinL - sinφ₀ * cosL * cos(λ - λ₀))其中,X和Y为平面直角坐标系下的坐标值,L为参考点与待转换点的经度差,λ为待转换点的经度,φ₀为参考点的纬度,λ₀为参考点的经度,k₀为常数,R为参考点到地心的距离。
3.2高斯投影高斯投影是将地球上的点投影到一个平面上,使得该平面上的距离尽可能与大地距离一致。
其转换公式为:X = X₀ + N * cosB * (λ - L₀)Y = Y₀ + N * (tanB * cos(λ - L₀) - sinB * (B - B₀))其中,X和Y为平面直角坐标系下的坐标值,X₀和Y₀为参考点的平面坐标,N为法向子午线长度,B为待转换点的纬度,λ为待转换点的经度,L₀为参考点的经度,B₀为参考点的纬度。
4.平面直角坐标系到空间大地坐标系的转换公式平面直角坐标系到空间大地坐标系的转换公式为空间大地坐标系到平面直角坐标系的逆运算,可以通过解方程组或迭代法来进行计算。
直角坐标系和大地坐标系转换

直角坐标系和大地坐标系的转换
在地理信息系统和测量领域中,直角坐标系和大地坐标系是两种常用的坐标系统。
直角坐标系是平面直角坐标系,由水平的x轴和垂直的y轴构成,可以用来表示平面上的点的位置,通常以米为单位。
而大地坐标系则是一种用来描述地球上点的位置的坐标系统,通常是经度(Longitude)和纬度(Latitude)的组合。
直角坐标系到大地坐标系的转换
直角坐标系到大地坐标系的转换涉及到高等数学的知识,主要是利用球面三角学的相关技巧。
在进行转换之前,需要知道点在直角坐标系中的坐标值,以及直角坐标系的原点。
然后,可以通过一系列的数学运算,将点的直角坐标值转换为大地坐标系中的经度和纬度。
大地坐标系到直角坐标系的转换
大地坐标系到直角坐标系的转换相对直接一些。
给定一个点的经度和纬度,我们可以利用地球的半径及球面三角学的相关公式,将该点的经度和纬度转换为直角坐标系中的坐标值。
这种转换可以帮助我们将地球表面上的点的位置转换为平面直角坐标系中的表示,便于进行地理信息系统中的测量和计算。
应用
直角坐标系和大地坐标系的转换在地理信息系统、地图制作、导航系统等领域都有着重要的应用。
通过这种转换,我们可以方便地将地球上的点的位置在不同坐标系统之间进行转换,从而实现不同系统之间的数据交换和信息共享。
总的来说,直角坐标系和大地坐标系的转换是地理信息系统和测量领域中的重要技术,对于地球表面上点的位置的表示和计算具有重要意义,能够为人类的地理信息分析和决策提供便利。
空间直角坐标系与大地坐标系转换程序doc

空间直角坐标系与大地坐标系转换程序.doc本文将介绍一种实现空间直角坐标系与大地坐标系转换的程序实现方法。
在编写程序时,需要使用一些数学库和函数,比如C++标准库中的cmath和iostream 等。
首先,我们需要了解空间直角坐标系和大明坐标系之间的转换公式。
假设空间直角坐标系为(x, y, z),大地坐标系为(L, B, H),则它们之间的转换公式为:x = cosLcosBsinHy = cosLsinBsinHz = sinLsinH其中,L为经度,B为纬度,H为高程。
根据上述公式,我们可以编写一个C++程序来实现空间直角坐标系与大地坐标系之间的转换。
程序实现如下:#include <iostream>#include <cmath>using namespace std;void transform() {double x, y, z;double L, B, H;cout << "Enter x, y, and z coordinates: ";cin >> x >> y >> z;cout << "Enter L and B coordinates: ";cin >> L >> B;H = acos(z / sqrt(x * x + y * y + z * z));cout << "The converted coordinates are: " << x << " " << y << " " << H << endl;}int main() {transform();return 0;}在上述程序中,我们首先定义了变量x、y、z、L、B和H,分别代表空间直角坐标系和大明坐标系的坐标值。
空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类之相礼和热创作正如后面所提及的,所谓坐标系指的是描绘空间地位的表达方式,即采取什么方法来暗示空间地位.人们为了描绘空间地位,采取了多种方法,从而也发生了分歧的坐标系,如直角坐标系、极坐标系等.在丈量中经常运用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角.某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来暗示.空间直角坐标系可用图2-3来暗示:图2-3 空间直角坐标系二、空间大地坐标系空间大地坐标系是采取大地经、纬度和大地高来描绘空间地位的.纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离.空间大地坐标系可用图2-4来暗示:图2-4空间大地坐标系三、立体直角坐标系立体直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标经过某种数学变换映射到立体上,这种变换又称为投影变换.投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等.在我国采取的是高斯-克吕格投影也称为高斯投影.UTM投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数分歧而已.高斯投影是一种横轴、椭圆柱面、等角投影.从几何意义上讲,是一种横轴椭圆柱正切投影.如图左侧所示,想象有一个椭圆柱面横套在椭球里面,并与某一子午线相切(此子午线称为地方子午线或轴子午线),椭球轴的中心轴CC’经过椭球中心而与地轴垂直.高斯投影满足以下两个条件:1、它是正形投影;2、地方子午线投影后应为x轴,且长度坚持不变.将地方子午线东西各肯定经差(一样平常为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯立体直角坐标系,如下图2-5右侧所示.图2-5 高斯投影x 方向指北,y 方向指东.可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔肯定的地区,另立地方子午线,采纳分带投影的法子.我国国家丈量规定采取六度带和三度带两种分带方法.六度带和三度带与地方子午线存在如下关系:366-N L =中; n L 33=中其中,N 、n 分别为6度带和3度带的带号.另外,为了防止y 出现负号,规定y 值以为地加上500000m ;又为了区别分歧投影带,后面还要冠以带号,如第20号六度带中,y=-200.25m ,则成果表中写为y 假定=20499799.75m.x 值在北半球总显正值,就无需改变其观测值了.1、空间直角坐标系与空间大地坐标系间的转换图2-6暗示了空间直角坐标系与空间大地坐标系之间的关系.图2-6 地球空间直角坐标系与大地坐标系在相反的基准下空间大地坐标系向空间直角坐标系的转换公式为:⎪⎭⎪⎬⎫+-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2 (2-1)式中,W aN =,a 为椭球的长半轴,N 为椭球的卯酉圈曲率半径 a =6378.137km2222a b a e -=,e 为椭球的第一偏爱率,b 为椭球的短半轴 在相反的基准下空间直角坐标系向空间大地坐标系的转换公式为⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫-Φ=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+Φ=N B R H X Y arctg L W B Z ae tg arctg B cos cos sin 12(2-2) 式中2、空间坐标系与立体直角坐标系间的转换空间坐标系与立体直角坐标系间的转换采取的是投影变换的方法.在我国一样平常采取的是高斯投影.由于高斯投影和UTM 投影都是横轴墨卡托的特例,因此,高斯投影和UTM 投影都可以套用横轴墨卡托投影的投影公式.横轴墨卡托投影的投影的正反算公式可拜见有关材料,它们的区别在于轴子午线投影到立体上后,其长度的系数,对于高斯投影,系数为1,对于UTM 投影,其系数为.3、变动高程回化面的影响用户在建立地方独立坐标系时,偶然变动高程回化面,这将发生一个新椭球,这就必须计算新常数,新椭球常数按下列方法和步调进行:1) 新椭球是在国家坐标系的参考椭球上扩大构成的,它的扁率应与国家坐标系参考椭球的扁率相称,即a a ='. 2) 计算该坐标系地方地区的新椭球均匀曲率半径和新椭球长半轴.新椭球均匀曲率半径为:m mm m m m H B e e a H W a W e a H MN H R R +--=+-=+=+=22232sin 11)1('(2.10) 式中m H ───该地区均匀大地高;m B ───该地区的均匀纬度.新椭球的长半轴按下式计算:2221sin 1''e B e R a m--=(2.11)将新的椭球参数代入,就可以进行投影的正反计算了.二、坐标零碎的转换方法分歧坐标零碎的转换本质上是分歧基准间的转换,分歧基准间的转换方法有很多,其中最为经常运用的有布尔沙模型,又称为七参数转换法.七参数转换法是:设两空间直角坐标系间有七个转换参数:3 个平移参数()z y x ∆∆∆、3 个旋转参数()z y x εεε和 1 个尺度参数k .比方,由空间直角坐标系A 转换到空间直角坐标系B 可采取上面的公式:§2.3.4 GPS 丈量中经常运用的坐标零碎一、世界大地坐标系WGS-84WGS-84 坐标系是如今GPS 所采取的坐标零碎,GPS 所发布的星历参数和历书参数等都是基于此坐标零碎的.WGS-84 坐标零碎的全称是World Geodical System-84 (世界大地坐标系-84), 它是一个地心肠固坐标零碎.WGS-84 坐标零碎由美国国防部制图局建立,于1987 年取代了当时GPS 所采取的坐标零碎WGS-72 坐标零碎而成为如今GPS 所运用的坐标零碎.WGS-84 坐标系的坐标原点位于地球的质心,Z 轴指向BIH1984.0 定义的协议地球极方向,X 轴指向BIH1984.0 的启始子午面和赤道的交点,Y 轴与X 轴和Z 轴构成右手系.WGS-84 系所采取椭球参数为见表2.1.二、1954 年北京坐标系1954 年北京坐标系是我国如今广泛采取的大地丈量坐标系.该坐标系源自于原苏联采取过的1942 年普尔科夫坐标系.该坐标系采取的参考椭球是克拉索夫斯基椭球.该椭球的参数见表2.1.遗憾的是该椭球并未根据当时我国的地理观测材料进行重新定位,而是由前苏联西伯利亚地区的一等锁经我国的东北地区传算过来的,该坐标系的高程异常是从前苏联1955 年大地水准面重新平差的结果为起算值,按我国地理水准路线推算出来的,而高程又是以1956 年青岛验潮站的黄海均匀海水面为基准.由于当时条件的限定1954 年北京坐标系存在着很多缺陷次要表示在以下几个方面:1. 克拉索夫斯基椭球参数同当代精确的椭球参数的差别较大,而且不包含暗示地球物理特性的参数,因此给理论和实践工作带来了许多方便.2. 椭球定向不非常明白,椭球的短半轴既不指向国际通用的CIO 极,也不指向如今我国运用的JYD极.参考椭球面与我国大地水准面呈西高东低的零碎性倾斜,东部高程异常达60余米,最大达67 米.3. 该坐标零碎的大地点坐标是经过局部分区平差得到的.因此天下的地理大地操纵点实践上不克不及构成一个团体,区与区之间有较大的隙距,如在有的接合部中同一点在分歧区的坐标值相差1-2 米,分歧分区的尺度差别也很大,而且坐标传递是从东北到东南和东北,后一区是从前一区的最弱部作为坐标起算点,因此一等锁具有分明的坐标积存偏差.三、1980 年西安大地坐标系1978 年我国决定重新对天下地理大地网实施团体平差,而且建立新的国家大地坐标零碎.团体平差在新大地坐标零碎中进行,这个坐标零碎就是1980 年西安大地坐标零碎.1980 年西安大地坐标零碎所采取的地球椭球参数的四个几何和物理参数采取了IAG 1975 年的引荐值,见表2.1中的西安80.椭球的短轴平行于地球的自转轴(由地球质心指向1968.0 JYD 地极原点方向),起始子午面平行于格林尼治均匀地理子午面,椭球面同似大地水准面在我国境内符合最好,高程零碎以1956 年黄海均匀海水面为高程起算基准.四、几种经常运用的坐标零碎的几何和物理参数下表列出了几种经常运用的坐标零碎的几何和物理参数,用户必要时可以查阅:表 2.1 GPS 丈量中经常运用的坐标零碎的几何和物理参数§2.4 GPS高程零碎在丈量中经常运用的高程零碎有大地高零碎、正高零碎和正常高零碎.§2.4.1 大地高零碎大地高零碎是以参考椭球面为基准面的高程零碎,某点的大地高是该点到经过该点的参考椭球的法线与参考椭球面的交点间的距离.大地高也称为椭球高.大地高一样平常用符号H 暗示.大地高是一个纯几何量,不具有物理意义,同一个点在分歧的基准下具有分歧的大地高.通常,GPS接收机单点定位得到的高程为WGS-84下的大地高.§2.4.2 正高零碎正高零碎是以大地水准面为基准面的高程零碎,某点的正高是该点到经过该点的铅垂线与大地水准面的交点之间的距离.正高用符号 H g暗示.§2.4.3 正常高正常高零碎是以似大地水准面为基准的高程零碎,某点的正常高是该点到经过该点的铅垂线与似大地水准面的交点之间的距离,正常高用 H γ 暗示.§2.4.4高程零碎之间的转换关系大地水准面到参考椭球面的距离称为大地水准面差距,记为 h g ,大地高与正高之间的关系可以暗示为:正 高:g g h H H -=似大地水准面到参考椭球面的距离,称为高程异常,记为ζ.大地高与正常高之间的关系可以暗示为:正常高:ζγ-=H H高程之间的互相关系可以用下图2-7来暗示:图2-7 高程零碎间的互相关系。
不同空间直角坐标系的转换

不同空间直角坐标系的转换
欧勒角
不同空间直角坐标系的转换,包括三个坐标轴的平移和坐标轴的旋转,以及两个坐标系的尺度比参数,坐标轴之间的三个旋转角叫欧勒角。
三参数法
三参数坐标转换公式是在假设两坐标系间各坐标轴相互平行,轴系间不存在欧勒角的条件下得出的。
实际应用中,因为欧勒角不大,可以用三参数公式近似地进行空间直角坐标系统的转换。
公共点只有一个时,采用三参数公式进行转换。
七参数法
用七参数进行空间直角坐标转换有布尔莎公式,莫洛琴斯基公式和范氏公式等。
下面给出布尔莎七参数公式:
坐标转换多项式回归模型
坐标转换七参数公式属于相似变换模型。
大地控制网中的系统误差一般呈区域性,当区域较小时,区域性的系统误差被相似变换参数拟合,故局部区域的坐标转换采用七参数公式模型是比较适宜的。
但对全国或一个省区范围内的坐标转换,可以采用多项式回归模型,将各区域的系统偏差拟合到回归参数中,从而提高坐标转换精度。
两种不同空间直角坐标系转换时,坐标转换的精度取决于坐标转换的数学模型和求解转换系数的公共点坐标精度,此外,还与公共点的分布有关。
鉴于地面控制网系统误差在⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000111222Z Y X Z Y X Z Y X ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000111111222000)1(Z Y X Z Y X Z Y X m Z Y X X Y X Z Y Z εεεεεε
不同区域并非是一个常数,所以采用分区进行坐标转换能更好地反映实际情况,提高坐标转换的精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.3.1 坐标系的分类正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。
人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。
在测量中常用的坐标系有以下几种:一、空间直角坐标系空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。
某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用图2-3来表示:图2-3 空间直角坐标系二、空间坐标系空间坐标系是采用经、纬度和高来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;高是空间点沿参考椭球的法线方向到参考椭球面的距离。
空间坐标系可用图2-4来表示:图2-4空间坐标系三、平面直角坐标系平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。
投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。
在我用的是高斯-克吕格投影也称为高斯投影。
UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。
高斯投影是一种横轴、椭圆柱面、等角投影。
从几何意义上讲,是一种横轴椭圆柱正切投影。
如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。
高斯投影满足以下两个条件:1、 它是正形投影;2、 中央子午线投影后应为x 轴,且长度保持不变。
将中央子午线东西各一定经差(一般为6度或3度)围的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。
图2-5 高斯投影x 方向指北,y 方向指东。
可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。
我国国家测量规定采用六度带和三度带两种分带方法。
六度带和三度带与中央子午线存在如下关系:366 N L =中; n L 33=中其中,N 、n 分别为6度带和3度带的带号。
另外,为了避免y 出现负号,规定y 值认为地加上500000m ;又为了区别不同投影带,前面还要冠以带号,如第20号六度带中,y=-200.25m ,则成果表中写为y 假定=20499799.75m 。
x 值在北半球总显正值,就无需改变其观测值了。
1、空间直角坐标系与空间坐标系间的转换图2-6表示了空间直角坐标系与空间坐标系之间的关系。
图2-6 地球空间直角坐标系与坐标系在相同的基准下空间坐标系向空间直角坐标系的转换公式为:⎪⎭⎪⎬⎫+-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2 (2-1)式中, W aN =,a 为椭球的长半轴,N 为椭球的卯酉圈曲率半径a =6378.137kmB e W 22sin 1-=2222a b a e -=,e 为椭球的第一偏心率,b 为椭球的短半轴b =6356.7523141km在相同的基准下空间直角坐标系向空间坐标系的转换公式为⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫-Φ=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+Φ=N B R H X Y arctg L W B Z ae tg arctg B cos cos sin 12 (2-2) 式中⎥⎦⎤⎢⎣⎡+=Φ22YX Z arctg 222Z Y X R ++=2、空间坐标系与平面直角坐标系间的转换空间坐标系与平面直角坐标系间的转换采用的是投影变换的方法。
在我国一般采用的是高斯投影。
因为高斯投影和UTM 投影都是横轴墨卡托的特例,因此,高斯投影和UTM 投影都可以套用横轴墨卡托投影的投影公式。
横轴墨卡托投影的投影的正反算公式可参见有关资料,它们的区别在于轴子午线投影到平面上后,其长度的系数,对于高斯投影,系数为1,对于UTM 投影,其系数为0.9996。
3、变动高程归化面的影响用户在建立地方独立坐标系时,有时变动高程归化面,这将产生一个新椭球,这就必须计算新常数,新椭球常数按下列方法和步骤进行:1) 新椭球是在国家坐标系的参考椭球上扩大形成的,它的扁率应与国家坐标系参考椭球的扁率相等,即a a ='。
2) 计算该坐标系中央地区的新椭球平均曲率半径和新椭球长半轴。
新椭球平均曲率半径为:m mm m m m H B e e a H W a W e a H MN H R R +--=+-=+=+=22232sin 11)1(' (2.10) 式中m H ───该地区平均高;m B ───该地区的平均纬度。
新椭球的长半轴按下式计算:2221sin 1''e B e R a m--= (2.11)将新的椭球参数代入,就可以进行投影的正反计算了。
二、坐标系统的转换方法不同坐标系统的转换本质上是不同基准间的转换,不同基准间的转换方法有很多,其中最为常用的有布尔沙模型,又称为七参数转换法。
七参数转换法是:设两空间直角坐标系间有七个转换参数:3 个平移参数()z y x ∆∆∆、3 个旋转参数()z y x εεε和1 个尺度参数k 。
比如,由空间直角坐标系A 转换到空间直角坐标系B 可采用下面的公式: Ax y x z y z A B Z Y X Z Y X k z y x Z Y X ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛++⎪⎪⎪⎭⎫ ⎝⎛∆∆∆=⎪⎪⎪⎭⎫ ⎝⎛000)1(εεεεεε §2.3.4 GPS 测量中常用的坐标系统一、世界坐标系WGS-84WGS-84 坐标系是目前GPS 所采用的坐标系统,GPS 所发布的星历参数和历书参数等都是基于此坐标系统的。
WGS-84 坐标系统的全称是World Geodical System-84 (世界坐标系-84), 它是一个地心地固坐标系统。
WGS-84 坐标系统由美国国防部制图局建立,于1987 年取代了当时GPS 所采用的坐标系统WGS-72 坐标系统而成为现在GPS 所使用的坐标系统。
WGS-84 坐标系的坐标原点位于地球的质心,Z 轴指向BIH 1984.0 定义的协议地球极方向,X 轴指向BIH 1984.0 的启始子午面和赤道的交点,Y 轴与X 轴和Z 轴构成右手系。
WGS-84 系所采用椭球参数为见表2.1。
二、1954 年坐标系1954 年坐标系是我国目前广泛采用的测量坐标系。
该坐标系源自于原联采用过的1942 年普尔科夫坐标系。
该坐标系采用的参考椭球是克拉索夫斯基椭球。
该椭球的参数见表2.1。
遗憾的是该椭球并未依据当时我国的天文观测资料进行重新定位,而是由前联西伯利亚地区的一等锁经我国的东北地区传算过来的,该坐标系的高程异常是以前联1955 年水准面重新平差的结果为起算值,按我国天文水准路线推算出来的,而高程又是以1956 年验潮站的黄海平均海水面为基准。
由于当时条件的限制1954 年坐标系存在着很多缺点主要表现在以下几个方面:1. 克拉索夫斯基椭球参数同现代精确的椭球参数的差异较大,并且不包含表示地球物理特性的参数,因而给理论和实际工作带来了许多不便。
2. 椭球定向不十分明确,椭球的短半轴既不指向国际通用的CIO 极,也不指向目前我国使用的JYD极。
参考椭球面与我国水准面呈西高东低的系统性倾斜,东部高程异常达60余米,最大达67 米。
3. 该坐标系统的点坐标是经过局部分区平差得到的。
因此全国的天文控制点实际上不能形成一个整体,区与区之间有较大的隙距,如在有的接合部中同一点在不同区的坐标值相差1-2 米,不同分区的尺度差异也很大,而且坐标传递是从东北到西北和西南,后一区是以前一区的最弱部作为坐标起算点,因而一等锁具有明显的坐标积累误差。
三、1980 年坐标系1978 年我国决定重新对全国天文网施行整体平差,并且建立新的国家坐标系统。
整体平差在新坐标系统中进行,这个坐标系统就是1980 年坐标系统。
1980 年坐标系统所采用的地球椭球参数的四个几何和物理参数采用了IAG 1975 年的推荐值,见表2.1中的80。
椭球的短轴平行于地球的自转轴(由地球质心指向1968.0 JYD 地极原点方向),起始子午面平行于格林尼治平均天文子午面,椭球面同似水准面在我国境符合最好,高程系统以1956 年黄海平均海水面为高程起算基准。
四、几种常用的坐标系统的几何和物理参数下表列出了几种常用的坐标系统的几何和物理参数,用户需要时可以查阅:表 2.1 GPS 测量中常用的坐标系统的几何和物理参数§2.4 GPS高程系统在测量中常用的高程系统有高系统、正高系统和正常高系统。
§2.4.1 高系统高系统是以参考椭球面为基准面的高程系统,某点的高是该点到通过该点的参考椭球的法线与参考椭球面的交点间的距离。
高也称为椭球高。
高一般用符号H 表示。
高是一个纯几何量,不具有物理意义,同一个点在不同的基准下具有不同的高。
通常,GPS 接收机单点定位得到的高程为WGS-84下的高。
§2.4.2 正高系统正高系统是以水准面为基准面的高程系统,某点的正高是该点到通过该点的铅垂线与水准面的交点之间的距离。
正高用符号 H g 表示。
§2.4.3 正常高正常高系统是以似水准面为基准的高程系统,某点的正常高是该点到通过该点的铅垂线与似水准面的交点之间的距离,正常高用 H γ 表示。
§2.4.4 高程系统之间的转换关系水准面到参考椭球面的距离称为水准面差距,记为 h g ,高与正高之间的关系可以表示为:正 高:g g h H H -=似水准面到参考椭球面的距离,称为高程异常,记为ζ。
高与正常高之间的关系可以表示为:正常高:ζγ-=H H高程之间的相互关系可以用下图2-7来表示:图2-7 高程系统间的相互关系。