华中科技大学数学分析试题集锦(2000-2012年)

华中科技大学数学分析试题集锦(2000-2012年)
华中科技大学数学分析试题集锦(2000-2012年)

华中科技大学2000数学分析考研试题

(华中理工大学)

数值分析-华中科技大学研究生招生信息网

华中科技大学博士研究生入学考试《数值分析》考试大纲 第一部分考试说明 一、考试性质 数值分析考试科目是为招收我校动力机械及工程专业博士研究生而设置的。它的评价标准是高等学校动力机械及工程专业或相近专业优秀硕士毕业生能达到的水平,以保证被录取者具有较好的数值分析理论与应用基础。 二、考试形式与试卷结构 (一) 答卷方式:闭卷,笔试; (二) 答题时间:180分钟; (三) 各部分内容的考查比例(满分为100分) 误差分析约10% 插值法, 函数逼近与计算约30% 数值积分与数值微分约20% 常微分方程数值解法, 方程求根约20% 解线性方程组的直接方法, 解线性方程组的迭代法约20% (四) 题型比例 概念题约10% 证明题约10% 计算题约80% 第二部分考查要点 一、误差分析 1.误差来源 2.误差的基本概念 3.误差分析的若干原则 二、插值法 1. 拉格朗日插值 2. 均差与牛顿插值公式 3. 差分及其性质 4.分段线性插值公式 5.分段三次埃米尔特插值 6.三次样条插值 三、函数逼近与计算 1. 最佳一致逼近多项式 2. 切比雪夫多项式 3. 最佳平方逼近

4. 正交多项式 5. 曲线拟合的最小二乘法 6. 离散富氏变换及其快速算法 四、数值积分与数值微分 1. 牛顿-柯特斯求积公式 2. 龙贝格求积算法 3. 高斯求积公式 4. 数值微分 五、常微分方程数值解法 1. 尤拉方法 2. 龙格-库塔方法 3. 单步法的收敛性和稳步性 4. 线性多步法 5. 方程组与高阶方程的情形 6. 边值问题的数值解法 六、方程求根 1. 牛顿法 2. 弦截法与抛物线法 3. 代数方程求根 七、解线性方程组的直接方法 1. 高斯消去法 2.高斯主元素 3.追赶法 4.向量和矩阵的范数 5.误差分析 八、解线性方程组的迭代法 1. 雅可比迭代法与高斯-塞德尔迭代法 2. 迭代法的收敛性 3. 解线性方程组的松弛迭代法 第三部分考试样题(略)

数学分析试题

(六)一年级《数学分析》考试题 一 判断题:(满分10分,每小题2分) 1、设数列{}n a 递增且a a n n =∞ →lim (有限),则有{}n a a sup =; ( ) 2、设数列)(x f 在点0x 的某领域)(0x U 内有定义,若对)(00x U x n ∈?,当0x x n →时, 数列{})(n x f 都收敛于同一极限,则函数)(x f 在带点0x 连续;( ) 3、设数列)(x f y =在点0x 的某领域内有定义,若存在实数A ,使0→?x 时,)()()(00x o x A x f x x f ?=?--?+,则)(0'x f 存在且A x f =)(0';( ) 4、若0)()(2'1'==x f x f ,)(0)(2''1''x f x f ,则有)()(21x f x f ;( ) 5、设?+=c x F dx x f )()(,?+=c x G dx x g )()(,则当)()(x G x F ≠时,有)()(x g x f ≠; ( ) 二 填空题:(满分15分,每小题3分) 1、∑+=+=1 61291n k n k n a , =∞ →n n a lim ; 2、函数3 ln 3)(--=x x x f 全部间断点是 ; 3、)1ln()(2x x f +=,已知56)2()(lim 000=--→h h x f x f h ,=0x ; 4、函数193)(23+--=x x x x f 的既递减又下凸的区间是 ; 5、?+=c x dx x f 2sin )(,?=dx x xf )(' ; 三 计算题:(满分36分,每小题6分) 1、111 1lim 30-+-+→x x x ; 2、求函数54 )15(4)(+-=x x x f 的极值; 3、?+12x x dx ; 4、?++dx x x )1ln(2 ;

数学分析大二第一学期试卷(A)

一、填 空 题 1.将函数展开为麦克劳林级数,则=-+x x 11ln ______________________ 。 2.x x x f sin )(= 在( - π,π )上展开的傅里叶级数为________ ______ 。 3.已知方程 z e z y x =++可以确定隐函数,那么 =???y x z 2________________________ __。 二、单项选择题 1、幂级数∑∞ =-112n n x n 的收敛域与和函数分别是___________ 。 A 、 [ - 1 , 1 ] ,2)1(1x x -+; B 、( - 1, 1 ) ,3 )1(1x x -+; C 、(- 1 , 1 ) ,)1(1x x -+; D 、[ - 1 , 1 ] ,4) 1(1x x -+。 2、 22)(y x x f +=在( 0 , 0 )满足 ________ 。 A 、连续且偏导数存在; B 、不连续但偏导数存在; C 、连续但偏导数不存在; D 、不连续且偏导数不存在。 4、函数222z y x u -+=在点A(b,0,0)及B(0,b,0)两点的梯度方向夹 角 。 A 、2π; B 、3 π; C 、4 π; D 、6π。 三、计算题 1、设),(y x z z =是由隐函数0),(=++ x z y y z x F 确定,求表达式y z y x z x ??+??,并要求简化之

3、设函数),(v u x x =满足方程组???==0 )),(,(0)),(,(v x g y G u y f x F ,其中g f G F ,,,均为连续可微函 数,且x y g f G F G F 2211≠,记1F 为F 对第一个变量的偏导数,其他类推,求v x u x ????,。

数值分析

华中科技大学 数值分析 姓名祝于高 学号T201389927 班级研究生院(717所) 2014年4月25日

实验4.1 实验目的:复化求积公式计算定积分 试验题目:数值计算下列各式右端定积分的近似值。 (1)3 22 1 ln 2ln 321 dx x -=--?; (2)12 1 41 dx x π=+?; (3) 10 2 3ln 3x dx =?; (4)2 21 x e xe dx =?; 实验要求: (1)若用复化梯形公式、复化Simpson 公式和复化Gauss-Legendre I 型公 式做计算,要求绝对误差限为71 102 ε-=?,分别利用他们的余项对每种算法做出 步长的事前估计。 (2)分别用复化梯形公式、复化Simpson 公式和复化Gauss-Legendre I 型公式做计算。 (3)将计算结果与精确解做比较,并比较各种算法的计算量。

实验内容: 1.公式介绍 (1)复化梯形公式: []110(x )(x )2n n k k k h T f f -+==+∑=1 1(a)2(x )(b)2n k k h f f f -=??++???? ∑; 余项:2'' (f)()12 n b a R h f η-=- ; (2)复化Simpson 公式: 1 1210 (x )4(x )(x )6n n k k k k h S f f f -++=??=++??∑ =11 1201(a)4(x )2(x )(b)6n n k k k k h f f f f --+==??+++???? ∑∑; 余项:4(4) (f)()()1802 n b a h R f η-=- ; (3)复化Gauss-Legendre I 型公式: 112120(x)(x (x 2n b k k a k h f dx f f -++=?? ≈++???? ∑? ; 余项:4 )4(4320 )())(h f b a f R n η-= (; 该余项是这样分析的: 由Gauss 求积公式)()()(0 k b a n k k x f A dx x f x ?∑=≈ρ得: 余项dx x x n f x f A dx x f x f b a n n b a n k k k )()()!22()()()()()(R 12)22(0 G ?? ∑++=+=-=ωρηρ 由于复化G-L 求积公式在每个子区间],[1+k k x x 上用2点G-L 求积公式: )]3 1 22()3122([2)(111111 k k k k k k k k x x k k x x x x f x x x x f x x dx x f k k -+++--+-≈ +++++? + 其余项为:dx x x x x f f R k k x x G 2 1 20)4()()(!4)()(1--=?+η,其中kh a x k +=,h k a x k )1(1++=+。

数学分析试卷及答案6套

数学分析-1样题(一) 一. (8分)用数列极限的N ε-定义证明1n n n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使2 lim (1)0x x x ax b →+∞ -+-=. 八. (14分)求函数32()2912f x x x x =-+在15[,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --. 数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a a =, 1()n n a a a n N +=+ ∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷) 一. 填空题(每小题2分, 共10分) 1. 设?????<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________. 2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________. 3. 已知),(cos 4422x o bx ax e x x ++=- 则_,__________=a .______________=b 4. 微分方程1cos 2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________. 二. (9分) 求极限 21 0)sin (cos lim x x x x x +→. 三. (9分) 求不定积分?+dx e x x x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值. 五. (8分) 判断2 12arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dx y d dx dy . 七. (10分) 求下列反常积分. (1);)1(1 22?--∞+x x dx (2) .1)2(1 0?--x x dx 八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受 到的水压力. (要求画出带有坐标系的图形) 九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解. 十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f x a +=+?)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线 )(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,6 7π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(1 21 =?xdx x f 证明在)2,0(内存在ξ 使 .1)(='ξf

华中科技大学2011数学分析考研真题

2011年华中科技大学 硕士研究生招生考试 考试科目:数学分析 适用范围:基础数学,应用数学,计算数学,概率论与数理统计 一. )112(lim 2 3 --+-+∞ →x x x x x 二.设f(x)一阶连续可微,f(0)=0,且D:tx y x 222≤+求极限 4 2 2)(0 lim t dxdy y x yf D t ?? ++→ 三.设曲面S 是椭球面)1(222y x z --=的上半部分,设ρ是原点到椭球面上任一点的切平面的距离,求dS z S ?? ρ . 四.计算积分 ?+ ++= L xdz zdy ydx I , 其中+L 为圆周,0,0,1222=++>=++z y x a z y x 从Z 轴+∞看为逆时针方向. 五.已知1 1+∑ +∞ =n a n n 收敛,试证明等式

∑ ?∑ +∞ =+∞=+=1 1 1 1 n n n n n n a dx x a , 并利用之求........ 5 14 13 1211+- + -. 六.求无穷积分dx x ax ax e e ? ∞ +- - - 2 2 . 七.设0>n a (n=1,2,3,4.....)级数 ∑ +∞=0 n n a 收敛,∑ ∞ == n k k n a r ,证 明:∑ ∞ =1 n n n r a 发散. 八.设函数f(x)在区间[0,2π]上可积, 证明 ? ∑ ∞ == -π ππ 20 1 ))((21n n n b dx x x f , 其中 ? = π π 20 sin )(1 nxdx x f b n (n=1,2,3,4......) 九.设f(x)在[0,1]上二阶连续可微,证明: dx x f dx x f f )()(9)0(1 ' '1 ' ? ?+ ≤

数学分析试题集锦

June21,2006 2002 1.(10) lim x→0( sin x1?cos x . 2.(10)a≥0x1=√2+x n n=1,2,... lim n→∞ x n 3.(10)f(x)[a,a+α]x∈[a,a+α]f(x+α)?f(x)= 1 1?x2+arcsin x f′(x). 5.(10)u(x,y)u ?2u ?x?y + ?2u x2+y2dx dy dz,?z=

x2+y2+z2=az(a>0) 8.(10) ∞ n=1ln cos1 ln(1+x2) 2 √ (2).{n . ?x (4). L(e y+x)dx+(xe y?2y)dy.L O(0,0),A(0,1),B(1,2) O B OAB. √ 2.(15)f(x)=3

4. 15 f (x )[0,1] sup 01 | n ?1 i =0 f (i n ? 1 f (x )dx |≤ M a n 6.(15 ) θ θ(x )= +∞ n =?∞ e n 2 x x >0 7.(15 ) F (α)= +∞ 1 arctan αx x 2?1 dx ?∞<α>+∞ 8.(21 ) R r r 2004 1.( 6 30 ) (1).lim n →?∞ ( 1 n +2 +...+ 1 f (x ) ) 1 3 sin(y 1+n

(5).e x=1+x+x2 n1 4≤e x+y?2. 5.(12)F(x)= Γf(xyz)dxdydy,f V={(x,y,z)|0≤x≤t,0≤y≤t,0≤z≤t}(t>0), F′(t)=3 a+n √ 2 n(a>0,b>0) (2).lim n→∞ 10x n√ 2 0dx 3 . (5).F(t)= x2+y2+z2=t2f(x,y,z)dS, f(x,y,z)= x2+y2,z≥ x2+y2

华中科技大学2018年数学分析试题解答

1. 解 由1n n n a x x -=-(1n ≥),得 2. 证明 将(1)f 、(0)f 在x 点(01x <<)用Taylor 公式展开并相减,则得 2211 (1)(0)'()''()(1)''()(0)22 f f f x f x f x ξη-=+ ---(0,1ξη<<) ,由于(0)(1)f f =,因此得 此不等式可以改进为:'()1f x <(01x <<),因为01x <<时,上式22(1)1x x -+<. 3. 证明 1 221112220 (1)[(,)2(,)(,)]t x f tx ty xyf tx ty y f tx ty dt -++? 4. 证明 (反证法),假设00(,)f x y 不是(,)f x y 在,0x y ≥上的最大值。由于 22 lim (,)0x y f x y +→∞ =,存在0r >,当22 ,0,0x y r x y +≥≥≥时,00(,)(,)f x y f x y <。 考察闭区域22{(,):0,0,}D x y x y x y r =≥≥+≤,显然00(,)x y D ∈,由已知(,)f x y 在D 上连续,从而(,)f x y 在D 上取得最大值,设为11(,)f x y 。显然在D ?上,总有 00(,)(,)f x y f x y <,因而必有:1111'(,)'(,)0x y f x y f x y ==。当22,0,0x y r x y +≥≥≥时,0011(,)(,)(,)f x y f x y f x y <≤,因此 11(,)f x y 是(,)f x y 在,0x y ≥上的最大值。由假设,1100(,)(,)x y x y ≠。 这与已知矛盾,可知假设不真。 5.设处处有''()0f x >.证明:曲线()y f x =位于任一切线之上方,且与切线有唯一公共点. 证明 设00(,)x y 为曲线()y f x =上任一点,在该点处曲线的切线方程为 对曲线()y f x =上任意点,按Taylor 公式展开,得 由''()0f x >知,当0x x ≠时,000()'()()f x f x x x +-()f x <,而00(,)x y 为唯一公共点.得证.

华中科技大学《数值计算方法》考试试卷

华中科技大学《数值计算方法》考试试卷 2006~2007学年 第一学期 《计算方法》课程考试试卷(A 卷) (开卷) 院(系)__________专业班级______________学号______________ 姓名__________________ 考试日期: 2007年1月30日 考试时间: 下午 2:30~5:00 一. 填空题 (每小题 4分,共 28份) 1.已知矩阵 ? ?????-=1011A ,则=∞A 。 2. 若用正n 边形的面积作为其外接圆面积的近似值,则该近似值的相对误差是 。 3.三次方程012 3 =+--x x x 的牛顿迭代格式是 。 4.若求解某线性方程组有迭代公式 F BX X n n +=+)()1(,其中 ?? ??????--=33a a a B ,则该迭代公式收敛的充要条件是 。 5.设x xe x f =)(,则满足条件) 2,1,0(22=? ?? ??=?? ? ??i i f i p 的二次插值公式 =)(x p 。 6.已知求积公式) 1()1()2/1()0()1()(10 f f f dx x f ααα+++-≈? 至少具0次 代数精度,则=α 。 7.改进的Euler 方法 )],(),([2 11n n n n n n n f h y t f y t f h y y +++ =++ 应用于初值问题1)0(),()('==y t y t y 的数值解=n y 。 二. (10分) 为数值求得方程022 =--x x 的正根,可建立如下 迭代格式 ,2,1,0, 21=+=-n x x n n , 试利用迭代法的收敛理论证明该迭代序列收敛,且满足 2 lim =∞ →n n x . 解答内容不得超过装订线

专升本数学分析精选三试卷及答案

《数学分析》――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = =, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-='++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 目标函数: 222S rh r ππ=+表, ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析(1)期末试题A

山东师范大学2007-2008学年第一学期期末考试试题 (时间:120分钟 共100分) 课程编号: 4081101 课程名称:数学分析 适用年级: 2007 学制: 四 适用专业:数学与信息试题类别: A (A/B/C) 2分,共20分) 1. 数列{}n a 收敛的充要条件是数列{}n a 有界. ( ) 2. 若0N ?>, 当n N >时有n n n a b c ≤≤, 且lim lim n n n n a c →∞ →∞ ≠, 则lim n n b →∞ 不存在. ( ) 3. 若0 lim ()lim ()x x x x f x g x →→>, 则存在 00(;)U x δ使当00(;)x U x δ∈时,有()()f x g x >. ( ) 4. ()f x 为0x x →时的无穷大量的充分必要条件是当00(;)x U x δ∈时,()f x 为无界函数. ( ) 5. 0x =为函数 sin x x 的第一类间断点. ( ) 6. 函数()f x 在[,]a b 上的最值点必为极值点. ( ) 7. 函数21,0,()0, 0x e x f x x -?? ≠=??=?在0x =处可导. ( ) 8. 若|()|f x 在[,]a b 上连续, 则()f x 在[,]a b 上连续. ( ) 9. 设f 为区间I 上严格凸函数. 若0x I ∈为f 的极小值点,则0x 为f 在I 上唯一的极小值点. ( ) 10. 任一实系数奇次方程至少有两个实根. ( )

二、 填空题(本题共8小题,每空2分,共20分) 1. 0 lim x x x + →=_________________. 2. 设2 ,sin 2x u e v x ==,则v d u ?? = ??? __________________. 3. 设f 为可导函数,(())x y f f e =, 则 y '=_______________. 4. 已知3(1)f x x +=, 则 ()f x ''=_______________. 5. 设 ()sin ln f x x x =, 则()f π'=_______________ . 6. 设21,0, (),0; x x f x ax b x ?+≥=?+

华中科技大学数值分析2016年试卷

华中科技大学研究生课程考试试卷 课程名称: 课程类别 考核形式 学生类别______________考试日期______________学号__________________姓名__________________任课教师___________________ 一、填空 (每题3分,共24分) 1.设0.0013a =, 3.1400b =, 1.001c =都是经过四舍五入得到的近似值,则它们分别有 , , 位有效数字。 2.设(0,1,2,3,4)i x i = 为互异节点,()i l x 为对应的4次Lagrange 插值基函数,则 4 40 (21)()i i i i x x l x =++=∑___________________,4 40 (21)(1)i i i i x x l =++=∑________。 3. 已知3()421f x x x =++, 则[]0,1,2,3f = ,[]0,1,2,3,5f = 。 4.当常数a = , ()1 2 3 1 x ax dx -+?达到极小。 5. 三次Chebyshev 多项式3()T x 在[-1, 1]上3个不同实零点为1x = , 2x = ,3x = ;()()()12311 max x x x x x x x -≤≤---= 。 6.已知一组数据()()() 01,12,25, y y y ===利用最小二乘法得到其拟合直线y ax b =+,则a =_____ ,b =_____。 7. 当0A = ,1A = 时,求积公式 ()()()1011 1 ()1013 f x dx f A f A f -≈ -++? 的代数精度能达到最高,此时求积公式的代数精度为 。 8.已知矩阵1 222A ?? = ?-?? ,则A ∞= ,2A ,()2cond A = 。 二、(10分) 设函数()y f x =, 已知()()()0'01,14f f f ===, (1) 试求过这两点的二次Hermite 插值多项式()2H x ; 研究生 2016-6-1 数值分析

数学分析习题

《数学分析Ⅱ》期中考试题 一、选择题(每小题3分,共30分) 1、曲线2x 2 +3y 2 + z 2 =9, z 2 =3x 2 + y 2 在点 ( 1, -1, 2 )的法平面方程是( 1 ) A 、8x+10y+7z-12=0; B 、8x+10y+7z+12=0; C 、8x -10y+7z-12=0; D 、8x+10y+7z+12=0 2、L 为单位圆周,则 L y ds =? ( 4 ) A 、1 B 、2 C 、3 D 、4 3、L 为从( 1, 1, 1 )到( 2, 3, 4 )的直线段,则 L zdx xdz +? = ( 3 ) A 、3 B 、5 C 、7 D 、9 4、 ()1 3x y x y dxdy +≤+?? =( 2 ) A 、2 B 、4 C 、6 D 、8 5、 02 11(,)y dy f x y dx --? ? ,改变积分顺序得( 1 ) A 、2 110 (,)x dx f x y dy -?? B 、2 111(,)x dx f x y dy --?? C 、 2 11 (,)x dx f x y dy +? ? D 、2 11 1 (,)x dx f x y dy +-?? 6、V=[-2, 5]?[-3, 3]?[0,1],则 2()V xy z dv +??? =( 3 ) A 、1 B 、7 C 、14 D 、21 7、密度为1的均匀单位圆盘对于它的直径的转动惯量为( 4 ) A 、π B 、 π/2 C 、π/3 D 、π/4 8、曲面S 为上半单位球面z =S yzdxdz ?? =( 2 ) A 、π/2 B 、 π/4 C 、π/6 D 、π/8 9、函数2 3 u x y xz =++的梯度场在(1,1,1)的旋度为( 2 ) A 、(1,1,1) B 、(0,0,0) C 、(1,0,1) D 、(0,1,1) 10、下面反常积分收敛的有( 3 )个。 0cos x e xdx -∞ ? ,10 ? ,3cos ln x dx x +∞?,20?,1+∞? A 、2 B 、3 C 、4 D 、5 二、填空题(28分,每空4分) 1、区域Ω由1z =与22 z x y =+围成的有界闭区域,则 (,,)f x y z dv Ω ??? 在直角坐标下的三 次积分为 柱坐标下三次积分

(完整word版)华南农业大学2009数学分析1(A卷)期末考试试卷

华南农业大学期末考试试卷( A 卷 ) 2009学年第1学期 考试科目:数学分析I 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、 填空题 (每题4分,共24分) 1. 用N ε-语言叙述数列极限的柯西准则: . 2. 用εδ-语言叙述()0lim x x f x A →=: . 3. (归结原则)设()f x 在00(U x ;)δ内有定义,()0lim x x f x →存在的充要条件是: . 4. 设0x →时,函数1(1)1x x --+与x α是同阶无穷小量,则α= . 5. 曲线221x t y t t ?=-??=-??在1t =处的切线方程为: . 6. 设函数,0sin ()3,02(1),0x ax be x x f x x a b x x ?+?? 在0x =处连续,则a =_____,b =____.

二、 计算题. (共52分) 1. 求下列极限(每题6分,共24分) (1) 7020 90(36)(85)lim (51) x x x x →+∞+--. (2) 01lim []x x x →. (3) 30tan sin lim ln(1)x x x x →-+. (4) 2132lim ()31x x x x -→+∞+- .

2. 求下列导数(每小题6分,共18分) (1)32(arctan )y x =. (2)设cos x y e x =, 求(4)y . (3)求由参数方程()()()x f t y tf t f t '=??'=-? (设()f t ''存在且不为零)所确定的函数()y f x =的二阶导数22d y dx .

华中科技大学2004年《数学分析》试题及解答

华中科技大学2004年《数学分析》试题及解答 以下每题15分 1.设00x =,1 n n k k x a == ∑(1n ≥),n x b →(n →∞).求级数 11 ()n n n n a x x ∞ -=+∑之和. 解 由1n n n a x x -=-(1n ≥),得 2 211 1 1 ()()n n n n n n n a x x x x ∞ ∞ --==+=-∑∑22 11 lim ()n k k n k x x -→∞ ==-∑22lim n n x b →∞ ==. 2.设(0)(1)f f =,''()2f x ≤(01x ≤≤).证明'()1f x ≤(01x <<).此估计式能否改进? 证明 将(1)f 、(0)f 在x 点(01x <<)用Taylor 公式展开并相减,则得 2211 (1)(0)'()''()(1)''()(0)22 f f f x f x f x ξη-=+ ---(0,1ξη<<),由于(0)(1)f f =,因此得 222211 '()(1)''()''()(1)122 f x x f x f x x ξη≤-+≤-+≤. 此不等式可以改进为:'()1f x <(01x <<),因为01x <<时,上式22(1)1x x -+<. 3.设(,)f x y 有处处连续的二阶偏导数,'(0,0)'(0,0)(0,0)0x y f f f ===.证明 (,)f x y 1 221112220 (1)[(,)2(,)(,)]t x f tx ty xyf tx ty y f tx ty dt =-++?. 证明 1 221112220 (1)[(,)2(,)(,)]t x f tx ty xyf tx ty y f tx ty dt -++? 21 20(,)(1)d f tx ty t dt dt =-?1 100 (,)(,)(1)df tx ty df tx ty t dt dt dt =-+? 1 00 (,)(,)t df tx ty f tx ty dt ==- + ''12((0,0)(0,0))(,)(0,0)(,)xf yf f x y f f x y =-++-= 4.设(,)f x y 在,0x y ≥上连续,在,0x y >内可微,存在唯一点00(,)x y ,使得00,0x y >, 0000'(,)'(,)0x y f x y f x y ==.设00(,)0f x y >,(,0)(0,)0f x f y ==(,0x y ≥) , 22lim (,)0x y f x y +→∞ =,证明00(,)f x y 是(,)f x y 在,0x y ≥上的最大值. 证明 (反证法),假设00(,)f x y 不是(,)f x y 在,0x y ≥上的最大值。由于22 lim (,)0x y f x y +→∞ =,

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 .计算题(共8题,每题9分,共72分)。 因为 lim 3 xsin — 3 ysin —与 lim 3 xsin — 3 ysin -均不存在, x 0 y x y 0 y x 故二次极限均不存在。 4.要做一个容积为1m 3的有盖圆桶,什么样的尺寸才能使用料最省? 解:设圆桶底面半径为r ,高为h,则原问题即为:求目标函数在约束条件下的 最小值,其中 目标函数:S 表2 rh 2 r 2, 1. 解: 1 1 求函数f (x, y) V^sin — 济sin-在点(0,0)处的二次极限与二重极限. y x f (x, y) Vxs in 丄 羽 si n 丄 y x |3X |3y|,因此二重极限为0.……(4分) (9分) 2. 解: 设y y(x),是由方程组z xf(x z z(x) F(x, y,z) 具有连续的导数和偏导数,求空. dx 对两方程分别关于x 求偏导: y 0'所确定的隐函数’其中f 和F 分别 dz 丁 f (x dx F F 矽 x y dx y) xf (x y)(dX 1 ), 解此方程组并整理得竺 dx F z dz 0 dx F y f(x y) xf (x y)(F y F x ) (4分) 3. 取,为新自变量及 2 z x y x y 2 解: 2 z 2 x x y J 2 z 看成是 w z y F y xf (x y)F z w( ,v)为新函数,变换方程 ze y (假设出现的导数皆连续) x, y 的复合函数如下: / 、 x y w w(,), , 2 代人原方程,并将x, y, z 变换为,,w 2 2 w W c 2 2w 。 x y 。 2 整理得: (9分) (4分) (9分)

上海财经大学 数学分析 测试题 (大一)

《数学分析》考试题 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c , ( ) A. {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C. {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ????>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、''f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?)()(lim 02020 ; B. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; C. '000)()(lim ???? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则 ( ) A. ∈?ξ(b a ,),使0)('=ξf ; B. ∈?ξ(b a ,),使0)('≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)('x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有 ( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ; C. ?+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;

2012华中科技大学考研数学分析

2012年华中科技大学数学分析考研真题 一,(1) 求极限 lim x →+∞1(1?1)。 (2) 设x 1=√2,x n +1=√n 。证明{x n }收敛且求极限。 二,求下列曲线围成的在第一象限的面积, y =x 2,2y =x 2,xy =1,xy =2。三,求下列圆环的质量,x 2+y 2+z 2=1 x +y +z =0?,其中 ρ(x ,y ,z )=(x ?1)2+(y ?1)2+(z ?1)2。 四,展开f (x )=∣cos x ∣ 为[?π,π]上的傅立叶级数。五,求幂级数 ∑n =0∞(n +1)x n n !的收敛域与和函数。 六,已知∑1∞a n 为发散的正项级数, S n 为其部分和,用Cauchy 收敛原理证明∑1∞a n s n 发散。七,已知 f (x )在[0,+∞]上连续,lim x →+∞f (x )存在且有限,证明f (x )在[0,+∞]上有界。 八,已知反常积分∫1+∞f (x )dx 收敛,证明含参变量反常积分 I (y )=∫1+∞x y f (x )dx 在[0,1]上一致收敛。 九,已知Ω为三维空间中的有界区域,Ω的边界为分片光滑的曲面,n →为外法向量,u (x ,y ,z )在Ω上二阶连续可偏导。求证: ?Ω(?2u ?x 2+?2u ?y 2+?2u ?z 2)dx =??Ω?u ?n ds 十,f (x )在[0,1]上二阶连续可导,证明: max x ∈[0,1] ∣f '(x )∣?∣f (1)?f (0)∣+∫01∣f ''(x )∣dx

2012华中科技大学高等代数 一,已知D=∣11?11?1??1∣,求D的所有代数余子式之和。 二,已知A为实矩阵,证明rank A'A=rank A=rank AA'. 三,已知P=(A I I I),证明P可逆的充要条件是I?A可逆。并在已知(I?A)?1已知的情况下求P(?1). 四,已知A,B,C,D为V上的线性变换,且两两可交换,并有AC+BD=E证明:kerAB=kerA+kerB,且和为直和。 五,已知A为全1阵, (1)求A的特征多项式与最小多项式。 (2)证明A可对角化,并求P,使得P?1AP为对角阵。 六,求正交变换化xy+yz+zx=1为标准方程,并指出曲面类型。 七,已知A,B对实对称矩阵 (1)若A,B正定,AB=BA,证明AB也正定。 (2)若A,B半正定,证明A+B也半正定,若还有A正定,证明A+B也正定。 八,V为实数域上的2n+1维空间,f,g为V上的线性变换,且fg=gf,证明存在λ,μ∈R,v∈V使得 f(v)=λv,g(v)=μv。

相关文档
最新文档