新人教版八年级上《整式的乘法》
人教版八年级上册数学整式的乘除全章课件

3个10
通过观察可以发现1014、 103这两个因数是同底数 幂的形式,所以我们把 像1014×103的运算叫做
同底数幂的乘法 .
请同学们先根据自己的理解,解答下列各题. 103 ×102 =(10×10×10)×(10×10) = 10( 5 ) 23 ×22 =(2×2×2)×(2×2)=2×2×2×2×2 =2( 5 )
2.计算:(1)23×24×25
(2)y · y2 · y3
【解析】(1)23×24×25=23+4+5=212 (2)y · y2 · y3 = y1+2+3=y6
3.计算:(-a)2×a4
【解析】原式 = a2×a4 =a6
(-2)3×22 原式 = -23 ×22
= -25
当底数互为相反数时, 先化为同底数形式.
(an)3·(bm)3·b3=a9b15 a3n ·b3m·b3=a9b15 a3n ·b3m+3=a9b15 3n=9,3m+3=15
n=3,m=4.
通过本课时的学习,需要我们掌握:
积的乘方法则 (ab)n =anbn (n为正整数) 积的乘方等于把积的每个因式分别乘方,再把 所得的幂相乘.
通过本课时的学习,需要我们掌握: 1.am·an =am+n(m、n都是正整数) 2.am·an·ap = am+n+p (m、n、p都是正整数)
14.1.2 幂的乘方
1.经历探索幂的乘方运算性质的过程,进一步体会幂 的意义,发展推理能力和有条理的表达能力. 2.了解幂的乘方的运算性质,并能解决一些实际问题.
【解析】xm·x2m= x3m =2 x9m =(x3m)3 = 23 =8 6.若a3n=3,求(a3n)4的值.
人教版数学八年级上册14.1.4整式的乘法(第4课时)优秀教学案例

在教学评价方面,我采用了多元化的评价方式,既注重学生的课堂表现,也关注学生的作业完成情况。通过及时反馈,让学生了解自己的学习情况,提高学生的学习效果。此外,我还针对学生的个体差异,给予不同的指导和帮助,让每个学生都能在课堂上得到有效的学习。
2.通过多媒体展示、实物演示等方式,形象直观地展示整式乘法的运算过程,增强学生的直观感受。
3.设计具有挑战性和启发性的问题,激发学生的思考,引导学生主动探索整式乘法的运算规律。
4.创设轻松、愉快的学习氛围,使学生在课堂上能够放松心情,积极主动地参与学习活动。
(二)问题导向
1.针对整式乘法的重难点,设计系列问题,引导学生逐步深入思考,自主探索解题思路。
4.讲解多项式乘以多项式的运算规则,举例说明运算过程,让学生熟练掌握相关运算。
(三)学生小组讨论
1.分配任务,让学生分组讨论如何将实际问题转化为整式乘法问题。
2.引导学生运用已学知识,分析问题、解决问题,培养学生的团队协作能力和沟通能力。
3.教师巡回指导,及时发现学生在小组讨论中的问题,给予针对性的帮助和指导。
人教版数学八年级上册14.1.4整式的乘法(第4课时)优秀教学案例
一、案例背景
本节课是人教版数学八年级上册第14章第1节第4课时,内容是整式的乘法。在此之前,学生已经学习了整式的加减、乘方以及因式分解等基础知识。通过前面的学习,学生已经掌握了整式的基本运算方法和技巧,但对于整式的乘法运算还不太熟练,特别是对于多项式乘以多项式的运算方法还不太理解。因此,本节课的教学目标是让学生掌握整式乘法的基本运算方法,提高学生的运算能力,培养学生的逻辑思维能力。
人教版数学八年级上册15.1.3《整式的乘法》说课稿

人教版数学八年级上册15.1.3《整式的乘法》说课稿一. 教材分析《人教版数学八年级上册》第15.1.3节《整式的乘法》是初中数学中非常重要的一部分,主要介绍了整式乘法的基本概念和运算法则。
这部分内容是学生学习更高级数学知识的基础,也是解决实际问题的重要工具。
本节课的内容包括整式乘法的定义、运算规则以及具体的计算方法。
通过本节课的学习,学生应该能够理解和掌握整式乘法的基本概念和运算法则,并能够运用到实际问题中。
二. 学情分析在八年级的学生中,他们已经学习了整式的基本概念和运算法则,对代数知识有一定的了解。
然而,对于整式乘法这样的高级运算,他们可能还存在一些困难和模糊的地方。
因此,在教学过程中,我们需要关注学生的知识基础,针对他们的薄弱环节进行有针对性的教学。
同时,学生对于实际问题的解决能力也需要进一步的培养和提高。
三. 说教学目标本节课的教学目标包括以下三个方面:1.知识与技能:学生能够理解整式乘法的定义和运算法则,能够熟练地进行整式乘法的计算。
2.过程与方法:学生能够通过自主学习和合作交流,掌握整式乘法的基本方法,并能够将这些方法应用到实际问题中。
3.情感态度与价值观:学生能够培养对数学的兴趣和自信心,养成良好的学习习惯和团队合作精神。
四. 说教学重难点本节课的重难点是整式乘法的运算法则和具体的计算方法。
学生需要理解并掌握整式乘法的规则,并能够灵活运用到实际问题中。
在教学过程中,我们需要针对这些重难点进行详细的讲解和辅导,帮助学生理解和掌握。
五. 说教学方法与手段在教学过程中,我们将采用多种教学方法和手段,以提高学生的学习效果和兴趣。
1.引导式教学:通过提问和引导,激发学生的思考和探究欲望,培养他们的自主学习能力。
2.合作学习:学生进行小组讨论和合作交流,让他们在互动中学习和提高。
3.实例讲解:通过具体的例题讲解,让学生理解和掌握整式乘法的计算方法。
4.练习与反馈:通过布置练习题和及时的反馈,帮助学生巩固知识,提高解题能力。
八年级数学上册14.1整式的乘法14.1.4整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版

八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版一. 教材分析新人教版八年级数学上册第14.1节整式的乘法,主要介绍了单项式乘以单项式的运算方法。
这是初中数学中基础而重要的一部分,对于学生来说,这部分内容既是复习和巩固之前学过的知识,又是学习更复杂数学运算的基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数的乘法、乘方以及单项式的概念。
他们对这些基础知识有一定的理解和掌握,但可能对于如何将乘法应用到单项式上,以及如何处理符号等问题会感到困惑。
因此,在教学过程中,我需要针对学生的这些特点进行引导和解释。
三. 说教学目标1.知识与技能目标:使学生掌握单项式乘以单项式的运算方法,能够正确地进行计算。
2.过程与方法目标:通过实例演示和练习,培养学生独立解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索的精神。
四. 说教学重难点1.教学重点:单项式乘以单项式的运算方法。
2.教学难点:如何处理符号问题,以及如何将乘法应用到单项式上。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导法、实践法等多种教学方法。
通过实例讲解,引导学生自己探索和发现规律,再通过练习巩固所学知识。
同时,我会利用黑板、粉笔等教学手段,清晰地展示运算过程,帮助学生理解和记忆。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行单项式的乘法运算。
2.讲解:讲解单项式乘以单项式的运算规则,并通过示例进行演示。
3.练习:学生进行练习,教师引导学生思考和解决问题。
4.总结:对本节课的内容进行总结,强调重点和难点。
5.作业布置:布置相关的练习题,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出重点。
我会用不同的颜色标注出运算规则和注意事项,帮助学生理解和记忆。
八. 说教学评价教学评价主要通过学生的练习情况和课堂表现来进行。
《整式的乘法》说课稿

《整式的乘法》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《整式的乘法》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析《整式的乘法》是人教版八年级上册第十四章整式的乘法与因式分解中的重要内容。
在此之前,学生已经学习了整式的加减运算,这为本节课的学习奠定了基础。
同时,整式的乘法又是后续学习因式分解、分式运算以及方程等知识的重要工具,具有承上启下的作用。
本节课主要包括单项式乘以单项式、单项式乘以多项式以及多项式乘以多项式这三个部分。
通过对这些内容的学习,学生将进一步体会数式通性,发展运算能力和推理能力。
二、学情分析从学生的知识基础来看,他们已经掌握了整式的概念以及整式的加减运算,具备了一定的符号意识和运算能力。
但是,对于整式乘法的运算规律和法则的理解和应用可能会存在一定的困难。
从学生的认知特点来看,八年级的学生正处于由形象思维向抽象思维过渡的阶段,他们对直观的、具体的事物比较感兴趣,对于抽象的数学概念和运算容易产生畏难情绪。
因此,在教学过程中,要注重引导学生通过观察、比较、归纳等方法,自主探索整式乘法的运算规律,激发学生的学习兴趣和积极性。
三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解单项式乘以单项式、单项式乘以多项式以及多项式乘以多项式的运算法则。
(2)能够熟练地进行整式的乘法运算,并能解决一些简单的实际问题。
2、过程与方法目标(1)通过经历探索整式乘法运算法则的过程,体会数式通性和转化的数学思想,培养学生的观察、分析、归纳和概括能力。
(2)在整式乘法的运算过程中,培养学生的运算能力和逻辑推理能力。
3、情感态度与价值观目标(1)通过自主探索和合作交流,让学生体验成功的喜悦,增强学习数学的自信心。
(2)培养学生严谨的学习态度和勇于创新的精神。
四、教学重难点教学重点:掌握单项式乘以单项式、单项式乘以多项式以及多项式乘以多项式的运算法则,并能正确地进行运算。
人教八年级数学上册整式的乘法

新知探究
零指数幂的示例:
指数为0
(- 2)0 1
底数是-2
结果为1
指数为0
1000 1
底数是100
结果为1
新知探究
拓展:a0 =1 (a≠0)的推导过程: 当 m=n 时,am ÷an=am-n =a0 , 因为 m=n , 所以am ÷an =1 . 则 a0 =1 .
随堂练习 1
计算下列式子: (1) (-xy)13÷(-xy)8 ;
法则:一般地,单项式与多项式相乘,就是单项式去乘多项式的每一项,再把 所得的积相加. 式子表示:p(a+b+c)=pa+pb+pc(p,a,b,c都是单项式).
多项式中的每一项都包括它前面的符号,根据去括号的法则,积的符 号由单项式的符号与多项式的符号共同决定.
新知探究
单项式与多项式相乘的步骤: (1) 利用乘法分配律,转化为单项式乘以单项式; (2) 将单项式与单项式相乘的结果相加.
新知探究
重点:(1) 对于三个或三个以上的单项式相乘,单项式乘法法则同样适用; (2) 单项式乘以单项式,若有乘方、乘法混合运算,应按“先乘方再乘法”的运 算顺序进行; (3) 单项式乘以单项式的结果仍然是单项式,对于幂的底数是多项式形式的, 应将其作为一个整体进行运算.
新知探究 知识点2 单项式乘多项式法则
新知探究
同底数幂的除法的示例:
指数相减
x9 x6 x96 x3
底数不变
新知探究 知识点2 零指数幂
性质:任何不等于0的数的零次幂都等于1. 符号表示:a0=1(a≠0).
(1) 零指数幂中的底数可以是单项式,也可以是多项式,但不可以是0; (2) 因为 a=0 时,a0 无意义,所以 a0 有意义的条件是 a≠0,常据此确定底数中所 含字母的取值范围.
八年级数学上人教版《整式的乘法》教案

《整式的乘法》教案一、教学目标:1.掌握整式乘法的基本法则和运算步骤。
2.能够正确地进行整式的乘法运算。
3.培养学生的运算能力和代数思维,体验数学中的一般思想和方法。
二、教学内容:1.单项式与单项式相乘。
2.单项式与多项式相乘。
3.多项式与多项式相乘。
4.乘法公式。
三、教学重点:1.单项式与单项式、单项式与多项式、多项式与多项式相乘的运算法则。
2.乘法公式的推导和应用。
四、教学难点:1.乘法公式的推导和理解。
2.运用乘法公式进行复杂整式乘法的运算。
五、教学方法:1.通过实例引入,引导学生自主探究,发现整式乘法的规律和法则。
2.通过讲解、示范和练习相结合的方式,使学生掌握运算法则和运算步骤。
3.运用多媒体教学工具,帮助学生更好地理解抽象的概念和解决问题的方法。
六、教学过程:1.导入新课:通过复习旧知,引出新课题。
引导学生观察、思考整式乘法的规律和特点。
2.新课学习:通过实例讲解和示范,引导学生探究单项式与单项式、单项式与多项式、多项式与多项式相乘的运算法则。
然后通过练习题和例题讲解,使学生掌握运算法则和运算步骤。
最后推导乘法公式,并讲解其意义和应用。
3.课堂练习:通过练习题和例题讲解,使学生能够正确地进行整式的乘法运算,并运用乘法公式进行复杂整式乘法的运算。
同时引导学生发现整式乘法中的规律和特点,培养其代数思维和运算能力。
4.归纳小结:总结整式乘法的运算法则和运算步骤,强调重点和难点。
同时强调学生在运算中需要注意的事项,如符号问题、括号问题等。
人教版初中数学八年级上册14.1整式的乘法(教案)

总的来说,今天的课程让我认识到,在教授整式乘法时,我需要更加注重学生的实际操作和个别辅导,确保每个人都能跟上课程进度。同时,我要不断改进教学方法,提高课堂互动性,激发学生的学习兴趣,帮助他们更好地理解和掌握整式乘法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的乘法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或体积的情况?”比如,计算一个长方形的面积,或者一个长方体的体积。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式乘法的奥秘。
三、教学ቤተ መጻሕፍቲ ባይዱ点与重点
1.教学重点
(1)单项式乘单项式:熟练掌握同类项乘法法则,特别是系数相乘、相同字母的指数相加、字母相乘的方法。
举例:3x^2 * 4x = 12x^3(系数相乘,字母相乘,指数相加)
(2)单项式乘多项式:运用分配律,将单项式分别与多项式的每一项相乘,并将结果相加。
举例:3x * (2x^2 + 5) = 6x^3 + 15x(分配律的应用)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式乘法的基本概念。整式乘法是指两个或多个整式相乘的运算。它在解决实际问题,如几何图形的面积和体积计算中起着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有两个整式,一个代表长,一个代表宽,通过整式乘法我们可以得到长方形的面积。这个案例展示了整式乘法在实际中的应用,以及它如何帮助我们解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.(-2x3y2)2
原式=x4.4x6y4 =4x10y4
(3)(1.2×103)
·(5×10精2品)课件
原式=(1.2×5)×103×102 =6×105
2:计算
解(1:)原24式 112241311424112 8610
2
3
4
(2) 2a b
(3) ma b
解:原式2a2b 解:原式mamb
变式:
化简求值:-2a2·(ab+b2)-5a(a2b-ab2), 其中a=1,b=-1.
解:原式=-2a3b-2a2b2-5a3b+5a2b2
=-2a3b-2a2b2-5a3b+5a2b2
=-7a3b+3a2b2
当a=1,b=-1 时,
原式=-7×13×(-1)+3×12×(-1)2
=-7×1×(-1)+3×1×1
2
33
解:原式2 x
1 2
x2
12x
3x
1 3
x2
3x
2 3
x 32x x 3 2x
4x
精品课件
计算:
-2a2·(ab+b2)-5a(a2b-ab2)
解:原式=-2a3b-2a2b2-5a3b+5a2b2
=-2a3b-2a2b2-5a3b+5a2b2
=-7a3b+3a2b2
注意: 1.将-2a2与-5a的“-”看成性质符 号 2.单项式与多项式相精品课乘件 的结果中,应将
多项式的每___一____项_,再把所得的积___相____加_
2.4(a-b+1)=____4__a__-_4__b___+__4___ 3.3x(2x-y2)=_____6__x_2__-_3__x__y__2__
4.-3x(2x-5y+6z)=__-_6__x_2_+__1__5__x_y_-__1_8_ xz 5.(-2a2)2(-a-2b+c精)品=课件_-__4_a__5_-_8__a_4_b__+__4_a__4c
-123x 4x2
练 ( 1 ) 3 ( 5 a b ) a 习 精品课( 件 - 7 2 2 y 2 x x ) 3 y 2
练(1 习 ) 3(a 5 ab )
解:原式 3a5a3ab 1a 523ab
(2 -7 2 ) y x 2 x 3 y 2
解 :原 式 (7x2y)2x(7x2y)3y2 1x4 3y2x1 2y3
三.选择
下列计算错误的是(D)
(A)5x(2x2-y)=10x3-5xy (B)-3xa+b ·4xa-b=-12x2a (C)2a2b·4ab2=8a3b3 (D)(-xn-1y2)·(-xym)2=xnym+2
=(-xn-1y2)·(x精2品y课件2=m-)xn+1y2m+2
精品课件
例5(1)计算:(1)(2ab 22ab )1ab
3
2
解:原式23
a
b2
1 2
a
b
2ab
1 2
ab
1 3
a 2b 3a2b2
(2 )(2 x22x4 )(9 x) (3 (- x ) 3y (-)2) 6x
解:原式 3 2x9 29x23
x
9
x
4
9
9x
18x3 6x2 4x精来自课件(3()x-3y()-62x)
多项式的每___一____项_,再把所得的积___相____加_
精品课件
一.判断
巩固练习
× 1.m(a+b+c+d)=ma+b+c+d( )
× 2.1a(a2a2)1a31a21( )
2
22
× 3.(-2x)·(ax+b-3)=-2ax2-2bx-6x( )
精品课件
二.填空
1.单项式与多项式相乘,就是用单项式去乘
§14.2 整式的乘法
2. 单项式与多项式相乘
精品课件
一、复习
单项式乘以单项式的法则有几点? ① 各单项式的系数相乘; ② 相同字母的幂按同底数的幂相乘; ③ 单独字母连同它的指数照抄。 一、口算:
(1)5x2y2.(-3x2y) 原式=5×(-3)(x2x2)(y2y)
=-15x4y3
(2)
(x2)2
=7+3=10
精品课件
2.先化简,再求值
x(x 1 )2x(x 1 ) 3 x(2x 5 )其中 -2 解:原式x2 x2x22x6x215x
3x216x 当 x-2时 :原式 3(2)21 6(2)
34(3)2
1232
44 精品课件
课时小结: 1、单项式乘以多项式的乘法法则及注 意事项; 2、转化的数学思想。 单项式与多项式相乘,就是用单项式去乘
(4) ma b c
解:原式mambmc
精品课件
单项式与多项式相乘法则: 概括:单项式与多项式相乘,只要将单项
式分别乘以多项式的每一项,再将所得积相 单项加式。与多项式相乘公式:
m a b c m m a m b c
二、过手训练:例1:计算:
(1 ) ( 42 x )3 (x1 )
解:原式(-42x)(3x)(4x2)1
解:原式x(-6x2)3y(-6x2) -6x3 (18x2y) -63x18x2y
点评:(1)多项式每一项要包括前面的符号; (2)单项式必须与多项式中每一项相乘,结果的 项数与原多项式项 数一致; (3)单项式系数为负时,改变多项式每项的符号。
精品课件
综合训练 2x(1x21)3x(1x22)