同济版大一高数下第七章第一节微分方程的基本概念PPT课件
合集下载
高等数学-第七章-微分方程

工程应用
在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
微分方程—微分方程的基本概念(高等数学课件)

2
2
把 2 、x的表达式代入方程后成为一个恒等式,
这说明: = 1 + 2 ,是微分方程的解,并且是通解.
课程小结
微分方程的定义
微分方程的阶
(常微分方程,偏
微分方程)
微分方程的解
(通解,特解,
定解条件)
= −0.2 2 + 20.
微分方程的阶,解
例1:验证函数 = 1 +
2
2 ,是微分方程 2
+ 2 = 0的解.
解:求出所给函数的导数
= −1 + 2 ,
2
2
2
=
−
−
2
1
其中 ,−1 ⋯ ,1 , (), 是关于的函数.
微分方程的阶,解
微分方程的阶:方程中所含有未知函数导数(或微分)的最高阶数.
一般的,n阶微分方程的形式:
, , ′ , ⋯ () = 0, 或 () = , , ′ , ⋯ (−1) .
等式,那么函数 = 是微分方程的解.
例:
通解:
2
= −0.4
2
= 3,
=
3 2
2
3
+ ,
3
2
特解: = 2 + 2 .
= −0.2 2 + 1 + 2 ,
= −0.2 2 + 20.
微分方程的阶,解
通解:微分方程的解中含有任意常数,且独立的任意的常数的个数
等于该方程的阶数.
特解:当通解中各任意常数都取定值时所得的解.
2
把 2 、x的表达式代入方程后成为一个恒等式,
这说明: = 1 + 2 ,是微分方程的解,并且是通解.
课程小结
微分方程的定义
微分方程的阶
(常微分方程,偏
微分方程)
微分方程的解
(通解,特解,
定解条件)
= −0.2 2 + 20.
微分方程的阶,解
例1:验证函数 = 1 +
2
2 ,是微分方程 2
+ 2 = 0的解.
解:求出所给函数的导数
= −1 + 2 ,
2
2
2
=
−
−
2
1
其中 ,−1 ⋯ ,1 , (), 是关于的函数.
微分方程的阶,解
微分方程的阶:方程中所含有未知函数导数(或微分)的最高阶数.
一般的,n阶微分方程的形式:
, , ′ , ⋯ () = 0, 或 () = , , ′ , ⋯ (−1) .
等式,那么函数 = 是微分方程的解.
例:
通解:
2
= −0.4
2
= 3,
=
3 2
2
3
+ ,
3
2
特解: = 2 + 2 .
= −0.2 2 + 1 + 2 ,
= −0.2 2 + 20.
微分方程的阶,解
通解:微分方程的解中含有任意常数,且独立的任意的常数的个数
等于该方程的阶数.
特解:当通解中各任意常数都取定值时所得的解.
高等数学微分方程的基本概念教学ppt讲解

三、主要问题——求方程的解
微分方程的解:
代入微分方程能使方程成为恒等式的函数.
微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且 独立的任意常数的个数与微分方程的阶数相同.
独立的任意常数的个数=微分方程的阶数 含有几个任意常数的表达式,如果它们不能合并而使 得任意常数的个数减少,则称这表达式中的几个任意 常数相互独立.
由题意知 t = 0 时,
s 0, v ds 0 dt
(8)
Nanjing College of Information and Technology
8
第六章 常微分方程
第一节 微分方程的基本概念
把(8)式分别代入(6),(7)式,得
C1 = 0 , C2 = 0. 故(7)式为
s 1 gt 2
是该微分方程的特解.
第一节 微分方程的基本概念
Nanjing College of Information and Technology
22
第六章 常微分方程
内容小结
第一节 微分方程的基本概念
本节基本概念: 微分方程; 微分方程的阶; 微分方程的解; 通解,初始条件; 特解; 初值问题; 积分曲线.
Nanjing College of Information and Technology
15
第六章 常微分方程
第一节 微分方程的基本概念
例如y = C1x + C2x + 1 与 y = Cx+1 (C1,C2,
C都是任意常数)所表示的函数族是相同的,
因此y = C1x + C2x + 1中的C1,C2是不独立的;
代入初始条件
同济版大一高数下第七章第一节微分方程的基本概念ppt课件

dy 2x
①
dx
y x1 2
②
由①得
(C为任意常数)
由 ② 得 C = 1, 因此所求曲线方程为 y x2 1.
3
引例2. 列车在平直路上以
的速度行驶, 制动时
获得加速度
求制动后列车的运动规律.
解: 设列车在制动后 t 秒行驶了s 米 , 即求 s = s (t) .
已知
s t0 0 ,
由前一次积分, 可得
7
例4 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q 且线段 PQ 被 y 轴平分, 求曲线所满足的微分方程 .
解: 如图所示, 设法线上的任一点为(X,Y), 曲线上的点 P(x, y) 处的法线方程为
令 Y = 0 , 得 Q 点的横坐标
y P
即 yy 2x 0 Q o x x
偏微分方程(未知数是多元函数) 方程中所含未知函数导数的最高阶数叫做微分方程 的阶. 一般地 , n 阶常微分方程的形式是
F (x, y, y,, y(n) ) 0 或 y(n) f (x, y, y,, y(n1) ) ( n 阶显式微分方程)
5
微分方程的解 — 使方程成为恒等式的函数.
通解 — 解中所含独立的任意常数的个数与方程 的阶数相同.
常用的方法: 1) 根据几何关系列方程 ( 如: 例1,4 ) 2) 根据物理规律列方程( 如: 例2 ) 3) 根据微量分析平衡关系列方程 (P298,6 ) (2) 利用反映事物个性的特殊状态确定定解条件. (3) 求通解, 并根据定解条件确定特解.
书上 例2 例4 自学
10
作业
P298 1(1)(5)口答; 2 (3); 5;
ds dt
高等数学同济件 微分方程总结PPT课件

2.求微分方程 y 4 y 3 y 0 的积分曲线方程, 使其在点(0,2)与直线x-y+2=0相切.
第14页/共21页
四、设f(x)是二阶可微函数,且 f ( x) f ( x) f ( x) 0
证明若f(x)在某不同两点处的函数值为0, 则f(x)在该两点之间恒为零。
设x1, x2使f ( x1 ) f ( x2 ) 0
第7页/共21页
y(n) p1( x) y(n1) pn1( x) y pn( x) y 0
(1)
y(n) p1( x) y(n1) pn1( x) y pn( x) y f ( x) (2)
定理3 设y*是非齐次线性方程(2)的特解, Y是齐次线性方程(1)的通解, 则 y=Y+y* 是非齐次线性方程(2)的通解。
第9页/共21页
定理2:若 y1( x)与 y2( x)是方程
y p( x) yq( x) y 0 (1)的两个线性无关
的特解, 则 y C1 y1 C2 y2就是方程(1)的通解. 五、二阶常系数线性微分方程的解法
第10页/共21页
一、填空题
综合练习
1.曲线族 y Cx2 所满足的一阶微分方程是_x_y__ 2 y
f ( x) f ( x) f ( x) 0 ( x1 x x2 )
r2 r 1 0
r1,2
1 (1 2
5)
第15页/共21页
故f ( x) C1er1x C2er2x f ( x1) f ( x2 ) 0 C1er1x1 C2er2x1 0
C1er1x2 C2er2x2 0 C1 C2 பைடு நூலகம் 故f(x)=0
第8页/共21页
y(n) p1( x) y(n1) pn1( x) y pn( x) y f1( x) (3) y(n) p1( x) y(n1) pn1( x) y pn( x) y f2( x) (4) 定理4 设 y1* , y2* 分别是方程(3)与(4)的特解, 则 y1* y2* 是方程 y(n) p1( x) y(n1) pn1( x) y pn( x) y f1( x) f2( x) 的特解。
常微分方程的基本概念ppt课件

其中 P(x) cos x, q(x) esin x
1 2 1 y2 1 C
2
3x
通解
1 y2 1 C 3x
注 意 : y2 1 ,即y 1也 是 方 程 的 解! 奇异解
例
设降落伞从跳伞塔下落后所受空气阻力与速度
成正比, 并设降落伞离开跳伞塔时( t = 0 ) 速度为0, 求
降落伞下落速度与时间的函数关系.
或写成 u ln | xu | C ,
再将 u y 代入,得通解为 y ln | y | C ;
x
x
再由初始条件 y(1) 1 , 得 C 1 ,
于是得所求特解为 y ln | y | 1 . x
例 在制造探照灯反射镜面时,要求点光源的光线反
射出去有良好的方向性 , 试求反射镜面的形状.
但未知函数的导数必须出现.
未知函数是多元函数,含有未知函数的 偏导数的微分方程称为偏微分方程.
定义2: ( 微分方程的阶 )未知函数的导数的最高 阶数称为微分方程的阶.
例如 dy 4x2 ,
dx
一阶
d 2
dt 2
m
d
dt
g
l
0
二阶
二阶及二阶以上的微分方程称为高阶微分方程.
定义3: ( 微分方程的解)
gt C1,
再积一次分得:S
1 2
gt2
C1t
C2 , 其中C1,C2为任意常数.
5.1 微分方程的基本概念
定义1: 含有未知函数的导数的方程称为微
分方程.
未知函数是一元函数,含有未知函数的导数的微
分方程称为常微分方程.
1 2 1 y2 1 C
2
3x
通解
1 y2 1 C 3x
注 意 : y2 1 ,即y 1也 是 方 程 的 解! 奇异解
例
设降落伞从跳伞塔下落后所受空气阻力与速度
成正比, 并设降落伞离开跳伞塔时( t = 0 ) 速度为0, 求
降落伞下落速度与时间的函数关系.
或写成 u ln | xu | C ,
再将 u y 代入,得通解为 y ln | y | C ;
x
x
再由初始条件 y(1) 1 , 得 C 1 ,
于是得所求特解为 y ln | y | 1 . x
例 在制造探照灯反射镜面时,要求点光源的光线反
射出去有良好的方向性 , 试求反射镜面的形状.
但未知函数的导数必须出现.
未知函数是多元函数,含有未知函数的 偏导数的微分方程称为偏微分方程.
定义2: ( 微分方程的阶 )未知函数的导数的最高 阶数称为微分方程的阶.
例如 dy 4x2 ,
dx
一阶
d 2
dt 2
m
d
dt
g
l
0
二阶
二阶及二阶以上的微分方程称为高阶微分方程.
定义3: ( 微分方程的解)
gt C1,
再积一次分得:S
1 2
gt2
C1t
C2 , 其中C1,C2为任意常数.
5.1 微分方程的基本概念
定义1: 含有未知函数的导数的方程称为微
分方程.
未知函数是一元函数,含有未知函数的导数的微
分方程称为常微分方程.
高等数学-第7章 微分方程

将上式两端积分,并由
中的函数可写成的函数,即
(引进新的未知函数(
代入方程(),便得方程
分离变量,得两端积分,得
代替
解方程
因此是齐次方程。
令,则
两端积分,得
以代入上式中的
方程
离变量后得,两端积分,得
,这是对应的齐次线性方程(
把上式代入(
.
以除)的两端,再通过上述代换得线性方程
型的微分方程
(
..
,那末而方程就成为
但是,因此又得到一个一阶微分方程
)的通解为
(3)
合函数的求导法则把化为对
)就成为
通解为
)的通解为
如果函数均是方程的解,那末
我们所求得的解是不是方程的通解呢?
,那末称此两函数在区间,否则,即
如果
就是该方程的通解,其中
的任一特解,
就是方程的通解。
.如果
的解,那末
(
的系数(
和它的各阶导数都只相差一个常数因子。
将
把代入方程(
(
)的两个根。
特征方程微分方程
(
型,
(是与
不是特征方程的根,
若
型
,
,)其中、
)的重复次数。
2019-高等数学课件同济版微分方程的基本概念-文档资料

例1. 验证函数 x C cos k t C sin k t ( C ,C 为常数 ) 1 2 1 2 d2 x 2 的解, 并求满足初始条件 是微分方程 2 k x 0 d t dx x A cos k t 0 的特解 . x t0 A, dt t 0 例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q 且线段 PQ 被 y 轴平分, 求所满足的微分方程 .
M M 0e
t
例7. 设降落伞从跳伞塔下落后所受空气阻力与速度
成正比, 并设降落伞离开跳伞塔时( t = 0 ) 速度为0, 求
降落伞下落速度与时间的函数关系.
k t m g v ( 1e m )
k
内容小结
1. 微分方程的概念 微分方程; 阶; 定解条件; 解; 通解; 特解
2. 可分离变量方程的求解方法:
( x y )y 0
后者是通解 ,
但不包含前一个解 . 通解不一定是方程的全部解 .
d y x y 例5. 求方程 e 的通解 . d x
x y ( e C ) e 1 0(C<0 )
例6. 已知放射性元素铀的衰变速度与当时未衰变原
子的含量 M 成正比, 已知 t = 0 时铀的含量为 M 0 , 求在 衰变过程中铀含量 M(t) 随时间 t 的变化规律.
分类
常微分方程 (本章内容)
偏微分方程
方程中所含未知函数导数的最高阶数叫做微分方程
的阶. 一般地 , n 阶常微分方程的形式是
( n ) F ( x , y , y , , y ) 0
或
( n ) ( n 1 ) ( n 阶显式微分方程) y f ( x , y , y , , y )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 如图所示, 设法线上的任一点为(X,Y),
曲线上的点 P(x, y) 处的法线方程为
Yy
1 y
(Xx)
令 Y = 0 , 得 Q 点的横坐标
y
P
Xxyy
x yy x, 即 yy2x0 Q o x x
-
9
内容小结
1. 微分方程的概念 微分方程; 阶; 定解条件; 解; 通解; 特解 说明: 通解不一定是方程的全部解 .
说明: 利用这一规律可求出制动后多少时间列车才
能停住 , 以及制动后行驶了多- 少路程 .
5
微分方程的基本概念
含未知函数及其导数(微分)的方程叫做微分方程 .
分类 常微分方程(未知数是一元函数) (本章内容) 偏微分方程(未知数是多元函数)
方程中所含未知函数导数的最高阶数叫做微分方程 的阶.
一般地 , n 阶常微分方程的形式是
n 阶方程的初始条件(或初值条件):
y ( x 0 ) y 0 , y ( x 0 ) y 0 , , y ( n 1 ) ( x 0 ) y 0 ( n 1 )
引例1
dy dx
2x
y x12
引例2
d 2s
dt 2 0.4
st00,
ds dt
t0 20
通解: yx2 C 特解: yx2 1
解: 设列车在制动后 t 秒行驶了s 米 , 即求 s = s (t) .
已知
d2 dt
s
2
0.4
ds
st00, dt
t
0 20
再由积前分一次s 积 分0 .,2 可t2 得 C 1t C 2V(t)ddst0.4tC1
利用后两式可得 因此所求运动规律为
C 12,0 C 20 s0.2t220 t
例如, 方程 (xy)y0有解
y=–x 及 y=C 后者是通解 , 但不包含前一个解 .
-
10
2. 解微分方程应用题的方法和步骤 (1) 找出事物的共性及可贯穿于全过程的规律列方程.
常用的方法: 1) 根据几何关系列方程 ( 如: 例1,4 )
2) 根据物理规律列方程( 如: 例2 )
ቤተ መጻሕፍቲ ባይዱ
3) 根据微量分析平衡关系列方程 (P298,6 ) (2) 利用反映事物个性的特殊状态确定定解条件.
y e xc 1 1 ,c 2 0 是方程的特解. y e 3 xc 1 0 ,c 2 1 是方程的特解.
ycex 其中只有一个常数,则即不是方程的
通解,也不-是特解.
8
例4 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q 且线段 PQ 被 y 轴平分, 求曲线所满足的微分方程 .
(3) 求通解, 并根据定解条件确定特解.
书上 例2 例4 自学
-
11
作业
P298 1(1)(5)口答; 2 (3); 5;
-
12
解: 设所求曲线方程为 y = y(x) , 则有如下关系式:
dy 2x
①
dx
y x12
②
由 ① 得 y2xdx x2C (C为任意常数)
由 ② 得 C = 1, 因此所求曲线方程为 yx21.
-
4
引例2. 列车在平直路上以 20m s 的速度行驶, 制动时
获得加速度 a0.4ms2,求制动后列车的运动规律.
s 0 .2t2C 1 tC 2
s0.2t22t0
-
7
例3 二阶微分方程 y4y3y0试问下列函数
1 .yc 1 exc2 e3x 2 .y ex 3 .y e 3 x 4 .y cxe
是否是方程的解,是通解还是特解?
解: 分别将四个函数代入方程,均 左边=右边
则这四个函数均为方程的解.
y c 1 e x c 2 e 3 x其中有两个任意常数是方程的通解.
高等数学
第二十九讲
主讲教师: 王升瑞
-
1
第七章 微分方程
已y知 f(x),求 y— 积分问题 推广
已知含y及其若干阶导数的 ,求方y 程 — 微分方程问题
-
2
第一节
第七章
微分方程的基本概念
几何问题 引例
物理问题
微分方程的基本概念
-
3
引例1. 一曲线通过点(1,2) ,在该曲线上任意点处的
切线斜率为 2x , 求该曲线的方程 .
F (x,y,y, ,y(n))0
或 y (n ) f(x ,y ,y , ,y (n 1 ))( n 阶显式微分方程)
-
6
微分方程的解 — 使方程成为恒等式的函数.
通解 — 解中所含独立的任意常数的个数与方程 的阶数相同.
特解 — 不含任意常数的解, 其图形称为积分曲线.
定解条件 — 确定通解中任意常数的条件.