八年级数学上册53变化的鱼教案扫描扫描版北师大版88
2019-2020年八年级数学上册 变化的鱼教案 北师大版

2019-2020年八年级数学上册变化的鱼教案北师大版教学目标:【知识目标】:1、经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。
2、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移,轴对称,伸长,压缩)之间的关系。
【能力目标】:1、经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能。
2、通过图形的平移,轴对称等,培养学生的探索能力。
【情感目标】1、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
2、通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
3、通过“变化的鱼”,让学生体验数学活动充满着探索与创造。
教学重点:经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。
教学难点:由坐标的变化探索新旧图形之间的变化。
教学过程设计:一、创设问题情境,引入新课『师』:在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。
我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。
如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。
练习:拿出方格纸,在方格纸上建立直角坐标系,根据读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。
坐标是(0,0),(5,4),(3,0),(5,1),(5,−1),(3,0),(4,−2),(0,0)。
『师』:你们画出的图形和我这里的图形是否相同?『生』:相同。
『师』:观察所得的图形,你们决定它像什么?『生』:像“鱼”。
北师大版-数学-八年级上册-上5.3变化的鱼(2)教案

北师大版八年级上第五章第三节变化的鱼(2)教案教学目标:(一)教学知识点1. 进一步巩固图形坐标变化与图形的平移、轴对称、伸长、压缩之间的探索过程,发展学生的形象思维能力和数形结合意识。
2. 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。
(二)能力训练要求1. 通过对称轴左边的图形,观察得出右边的图形,训练学生的识图能力。
2. 具有初步的创新精神和实践能力。
(三)情感与价值观要求1. 通过研究有趣的图形,学生能进行探索和创造,把学到的知识灵活地运用现实生活中。
教学重点:作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。
教学难点:作某一图形关于对称轴的对称图形。
课堂导入:创设问题情境,导入新课『师』:在日常生活中,你们见到过哪些轴对称图形?中心对称图形?『生』:……『师』:轴对称图形和中心对称图形随处可见。
古时我国很多的建筑就有对称的结构,既美观又大方。
上节课,我们已经知道,把一个图形的横坐标都乘以-1,纵坐标不变时,所得的图形与原图形关于y轴对称;把一个图形的纵坐标都乘以-1,横坐标不变时,所得的图形与原图形关于x轴对称。
把一个图形的横坐标、纵坐标都乘以-1时,所得的图形与原图形关于原点对称。
那么,如果已知一个图形,你能否求出这个图形中的某些点关于x轴或y轴或原点对称的对称点的坐标呢?或者已知轴对称图形(或者中心对称图形)的一半,你能否画出另一半呢?教学过程:探究新知1.例题讲解如图中,左右两幅图案关于y轴对称,右图中的左右眼睛的坐标分别是(2,3),(4,3)。
嘴角左右端点的坐标分别是(2,1),(4,1)。
(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标。
(2)你是怎样得到的?与同伴交流。
(此题较为简单。
抽学生解答)『师』:现从对称的角度来考虑,可以发现什么?『生』:左右两幅图案关于y轴对称。
从而发现两幅图案上各个对应点的纵坐标相同,初中-数学-打印版横坐标互为相反数。
八年级数学上册 5.3变化的鱼(一)教案 北师大版

教学目标: 【知识目标】:1、经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。
2、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移,轴对称,伸长,压缩)之间的关系。
【能力目标】:1、经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能。
2、通过图形的平移,轴对称等,培养学生的探索能力。
【情感目标】1、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
2、通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
3、通过“变化的鱼”,让学生体验数学活动充满着探索与创造。
教学重点:经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。
教学难点:由坐标的变化探索新旧图形之间的变化。
教学方法:导学法 教学过程设计:一、 创设问题情境,引入新课『师』 :在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。
我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。
如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。
练习:拿出方格纸,并在方格纸上建立直角坐标系,根据我读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来。
坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)。
『师』 :你们画出的图形和我这里的图形(挂图)是否相同?『生』 :相同。
『师』 :观察所得的图形,你们决定它像什么? 『生』 :像“鱼”。
数学第五章变化的鱼(一)教案(北师大版八年级上)

第五章位置确实定3.变化的鱼〔一〕一、学生的知识技能根底:学生已学习了运用多种方法确定物体的位置,使学生感受到了丰富确实定位置的现实背景;系统学习了平面直角坐标系的根本概念,能在平面直角坐标系中准确地表示物体的位置,清楚地认识了点和坐标之间的对应关系;能确定点的坐标及根据坐标描点、进而连线形成图形。
学生的活动经验根底:学生有了一定的合作学习的根底,有了一定的学习能力,教学中要安排一定的合作交流与自主学习的时机,加强学生之间的交流。
二、学习任务分析本节课学生通过“变化的鱼〞这样一个趣味性较强的话题,深切感受图形坐标的变化与图形形状的变化之间的密切关系,也进一步加深对“数形结合思想〞的认识.具体的教学目标如下:【知识目标】:1.经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间的关系的探索过程,开展学生的形象思维能力和数形结合意识。
2.在同一直角坐标系中,感受图形上点的坐标变化与图形的变化〔平移、轴对称、伸长、压缩〕之间的关系。
【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的根底知识和根本技能,培养学生的探索能力。
【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,开展形象思维。
2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
3.通过“变化的鱼〞,让学生体验数学活动充满着探索与创造。
教学重点:经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间关系的探索过程,开展学生的形象思维能力和数形结合意识。
教学难点:由坐标的变化探索新旧图形之间的变化。
教学方法:三、教学过程设计本节课设计了六个教学环节:○1创设情境;○2探究新知;○3归纳结论;○4练习提高;○5课堂小结;○6布置作业 第一环节 创设问题情境,引入新课我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。
如果坐标中的横〔纵〕坐标不变,纵〔横〕坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。
变化的鱼教案

《变化的“鱼”》(第一课时)
义务教育课程标准实验教科书
(北师大版)八年级上册第五章第三节《变化的“鱼”》(P162--166)
一、教学目标
(1)知识技能:在同一直角坐标系中,感受图形上点的坐标变化与图形平移、压缩、拉伸等变换之间的关系。
(2)数学思考:使学生认识到平面直角坐标系是数与形之间的桥梁,感受数与形的相互关系,初步建立空间观念。
(3)问题解决:通过探究,归纳出图形上点的坐标变化与图形变换之间的变化规律,积累数学活动经验,发展学生的形象思维能力和数形结合意识。
(4)情感与态度:通过对有趣的图形—“鱼”的研究,感受图形的平移、伸缩的变化之美,增强学生学习数学的兴趣。
二、.教学重、难点
重点:探索并掌握图形点的坐标变化与图形的平移、伸缩等变换之间的关系。
难点:在探究学习过程中,由坐标的变化探索新旧图形之间的变化规律。
三、教法与学法
教法:目标教学,小组合作,师生互动探究。
学法:自主探究,合作交流研讨式
四、教学过程
图1
活动2:亲身经历初探新知
问题与情境
)将图1的“鱼”的顶点纵坐标保持不变,横
坐标分别加3,所得各点坐标分别是什么?再将
得到的点用线段依次连接起来,并观察所得的“鱼”与原来的“鱼”相比有什么变化?
附:板书设计§5.3.1 变化的“鱼”
《变化的“鱼”》(第一课时)义务教育课程标准实验教科书(北师大版)
八年级上册第五章第三节《变化的“鱼”》(P162--166)
平顶山市二十八中
张志明
2003-6。
北师大版-数学-八年级上册-5.3 变化的鱼 教案2

变化的鱼(二)●教学目标(一)教学知识点1.进一步巩固图形坐标变化与图形的平移,轴对称,伸长,压缩之间的探索过程,发展学生的形象思维能力和数形结合意识.2.根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标.(二)能力训练要求1.通过对称轴左边的图形,观察得出右边的图形,训练学生的识图能力.2.具有初步的创新精神和实践能力.(三)情感与价值观要求通过研究有趣的图形,使学生能以饱满的热情投入数学学习中,并能进行探索与创造,把学到的知识灵活地运用到现实生活中.●教学重点作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标.●教学难点作某一图形关于对称轴的对称图形.●教学方法互动学习法.●教具准备坐标纸若干张.投影片三张:第一张:做一做(记作§5.3.2 A);第二张:练习(记作§5.3.2 B);第三张:练习(记作§5.3.2 C).●教学过程Ⅰ.创设问题情境,导入新课[师]同学们,你们在日常生活中见到过哪些轴对称图形?[生]电视机、电脑、桌子、课本等.[生]还有建筑物如天安门城楼,雄伟的人民大会堂.[师]是的,轴对称图形随处可见.古代的中国人民就已经懂得了轴对称图形,他们在建造建筑物的时候就采用了对称的结构,既美观又大方,可见中华民族的文化之悠久,人民之聪明,我们作为新世纪的主人,不仅要学习前人的经验,更重要的是在前人的基础上要有所创新,才能适应时代的要求,才能有发展,才能站在世界峰巅.上节课我们已经知道,把一个图形的横坐标都乘以-1,纵坐标不变时,所得图形与原图形关于y轴对称;把一个图形的横坐标不变,纵坐标都乘以-1时,所得图形与原图形关于x轴对称.那么如果已知一个图形,你能否求出这个图形中的某些点关于x轴或y轴对称的对称点的坐标呢?或者已知轴对称图形的一半,你能否画出另一半呢?这就是本节课要解决的问题.Ⅱ.讲授新课1.例题讲解如下图中,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3).嘴角左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标.(2)你是怎样得到的?与同伴交流.[师]这个问题比较容易解答,下面我找一位同学进行解答.[生]解:(1)左图案中的左眼坐标为(-4,3),右眼坐标为(-2,3),嘴角的左端点坐标为(-4,1),右端点坐标为(-2,1).(2)我是看图观察到的.[师]非常棒,从图上直观的可以得出答案,如果从对称的角度来考虑可以吗?[生]可以,因为左右两幅图案关于y轴对称,所以,两幅图案上各个对应点的纵坐标相同,横坐标互为相反数.因此,左图案中的左右眼睛的坐标分别是(-4,3),(-2,3),嘴角左右端点的坐标分别是(-4,1),(-2,1).2.议一议(1)如果将上图中的右图案沿x轴正方向平移1个单位长度,那么左右眼睛的坐标将发生什么变化?(2)如果作图中的右图案关于x轴的轴对称图形,那么左右眼睛的坐标将发生什么变化?(3)如果图中的右图案沿y轴正方向平移2个单位长度,那么左右眼睛的坐标将发生什么变化?[师]上节课我们分别对这些情况进行过探讨,估计大家应该设计什么问题,所以自己先进行独立思考,然后再按小组交流,最后把你的答案说给大家听.[生甲]解:(1)根据题意可知,右图案沿x轴正方向平移1个单位长度,所以每一个点的横坐标都加1,纵坐标不变.因此左、右眼睛的坐标分别为(3,3),(5,3).[生乙](2)如果作右图案关于x轴的轴对称图形,根据关于x轴对称的两图形中对应点的特点可知,横坐标不变,纵坐标变为原纵坐标的相反数,所以右图案中左、右眼睛的坐标原来为(2,3),(4,3),现在应变为(2,-3),(4,-3).[生丙](3)如果图中的右图案沿y轴正方向平移2个单位长度,那么图案中的每一点的纵坐标都增加2,横坐标不变.所以左、右眼睛的坐标为(2,5),(4,5).[师]大家非常聪明,回答的问题很好.如果在上面的问题中右图案不是沿x轴正方向或y轴正方向移动,而是沿x轴负方向或y轴负方向移动,那么左、右眼睛的坐标又该如何变化呢?[生]和上面相反,沿x轴负方向移动几个单位长度,横坐标减去几,纵坐标不变;沿y轴负方向移动几个单位长度,纵坐标减去几,横坐标不变.[师]大家认为这位同学的回答精彩不精彩?[生]精彩.[师]非常精彩,应给予掌声鼓励.如下图,正方形ABCD的顶点坐标分别为A(1,1),B(3,1),C(3,3),D(1,3).(1)在同一个直角坐标系中,将正方形向左平移2个单位,画出相应的图形,并写出各点的坐标;(2)将正方形向下平移2个单位,画出相应的图形,并写出各点的坐标.(3)在(1)(2)中,你发现各点的横、纵坐标发生了哪些变化?[师]请大家先按要求画出图形,再口头回答.[生甲]解:(1)将正方形向左平移2个单位,也就是横坐标都减去2,纵坐标不变.如下图所示.A(-1,1),B(1,1),C(1,3),D(-1,3).[生乙]将正方形向下平移2个单位,也就是横坐标不变,纵坐标都减去2.如右图所示.A(1,-1),B(3,-1),C(3,1),D(1,1).[生丙]在(1)中,各点的横坐标都减少了2,纵坐标未变;在(2)中,横坐标未变,纵坐标都减少了2.Ⅲ.课堂练习1.如下图,铅笔图案的五个顶点的坐标分别是(0,1),(4,1),(5,1.5),(4,2),(0,2).将图案向下平移2个单位长度,作出相应图案,并写出平移后相应5个点的坐标.[生]因为图案是向下平移2个单位长度,所以纵坐标都减去2,横坐标不变,如下图所示.五个点的坐标分别为(0,-1),(4,-1),(5,-0.5),(4,0),(0,0).2.如下图,作字母H关于坐标原点的中心对称图形,并写出所得图形相应各点的坐标.解:字母中的六个点的坐标分别为(-3,3),(-3,2),(-3,1),(-1,1),E(-1,2),F(-1,3),因为关于中心对称的两个点的横坐标是互为相反数,纵坐标也是互为相反数.所以A、B、C、D、E、F这六个点关于原点的对称点的坐标为A′(3,-3),B′(3,-2),C′(3,-1),D′(1,-1),E′(1,-2),F′(1,-3).如下图所示.Ⅳ.课时小结本节课主要研究了以下问题.1.会作出某一图形关于x轴、y轴、原点的对称图形,并能写出相应点的坐标.2.把整个图形整体向上、向下、向左、向右移动几个单位长度后,图形有何变化,对应点的坐标有何变化,变化的规律是什么.Ⅴ.课后作业习题5.7解:1.A(-4,2),B(4,2),它们的横坐标是互为相反数,纵坐标相同,C(-4,-2),D(4,-2).它们的横坐标是互为相反数,纵坐标相同.2.解:如下图所示.A′(4,0),B′(4,3),C′(2.5,0),D′(1,3),E′(1,0).Ⅵ.活动与探究1.如下图,以树干为对称轴,画出树的另一半.分析:要画出树的另一半,根据轴对称图形的性质,关于对称轴对称的对应点的横坐标是互为相反数,纵坐标不变.因此需要在图中先建立直角坐标系,写出对称轴左侧某些点的坐标,然后对称地写出右侧的对应点的坐标,再进行连接.解:如上图所示建立直角坐标系,对称轴为y轴,y轴左侧的点A、C两点的坐标为(-4,0),(-3,4),对称点A′,C′的坐标为(4,0),(3,4),O、B、D三点都在对称轴上,然后用线段连接起来.2.A、B、C、D、E各点的坐标如下图所示,确定△ABE、△EBD、△ABC的面积,你是怎样做的?你发现了什么规律?解:A 、B 、C 、D 、E 各点的坐标分别为A (0,6),B (0,3),C (6,1),D (-2,-2),E (-8,0).△ABE 的面积为21 (8×6-8×3)=12. △EBD 的面积为8×5-21×8×3-21×2×5-21×6×2=17. △ABC 的面积为21 (6×5-2×6)=9. 规律为可以将每个三角形的面积看成边与坐标轴平行的矩形的一半.●板书设计 变化的鱼(二)一、例题讲解(有关对称问题)二、议一议三、做一做(当一个图形整体向某一方向运动时,坐标的变化有何规律)四、课堂练习五、课时小结六、课后作业●备课资料一、数学大世界笛卡儿揭榜破题的故事笛卡儿是法国著名哲学家、数学家、物理学家.他早年就读于拉弗莱什公学时,因孱弱多病,被允许早晨在床上读书,养成了喜欢安静,善于思考的习惯.1617年5月,法国公爵奥伦治的军队屯驻在荷兰南部的布勒达城.刚从大学毕业的笛卡儿正在这支部队从军.一天,他在街头散步,忽听人声喧嚷,不知何事.他上前探询,只见众人正围观一张榜文,议论纷纷,榜文是用荷兰文写的,他看不懂,只好请旁边一位颇有风度的学者翻译成法语.原来榜文的内容是一道几何题,他认真揣摩思索了几个小时,就破解了这道难题,如此奇迹,使那位“翻译”大吃一惊,并盛加赞扬,邀请他到家中叙谈,果然话语投机,遂结为金兰之好.这位翻译就是当地有名的多特大学的校长毕克门.他为笛卡儿的数学才华感到高兴,但又为他弃学从军感到可惜.他劝笛卡儿,既然在数学方面有如此才能,何不脱离军界,专门学习数学呢?笛卡儿的破题成功,加上毕克门校长的评价赞扬,更加激发了他学习数学的兴趣,从而出使他改变了从军的初志,转向数学探索,并在后来的创造性工作中,将过去对立着的两个研究对象“数”和“形”统一了起来,他在数学中引入了“变量”,完成了数学史上一项划时代的变革.革命导师恩格斯把它称为数学的转折点.此后,人类进入变量数学阶段.二、参考练习建立适当的直角坐标系,表示边长为2的正六边形的各个顶点的坐标.(1)作出这个正六边形关于x轴的对称图形,并写出各顶点的坐标.(2)作出这个正六边形关于y轴的对称图形,并写出各顶点的坐标.(3)作出这个正六边形关于原点的对称图形,并写出各顶点的坐标.(4)把这个正六边形整体向上移动3个单位长度,写出六个顶点的坐标;整体向下移动3个单位长度,写出六个顶点的坐标.(5)把这个正六边形整体向左移动3个单位长度,并写出六个顶点的坐标;整体向右移动3个单位长度,并写出六个顶点的坐标.(6)把上述每种情况中坐标变化的规律找出来.答案:略。
云南省昆明市艺卓高级中学八年级数学上册《5.3 变化的鱼》教学设计 北师大版

变化的鱼一、教学内容及其分析(一)教学内容:在同一直角坐标系中,感受图形上点的坐标变化与图形的变化之间的关系.对称点坐标的规律及求法.(二)内容分析:在同一直角坐标系中,感受图形上点的坐标变化与图形的变化之间的关系.其核心是让学生通过图形的变化,探索图形上面坐标的变化,或是通过坐标的变化,探索图形的变化,理解它关键就是要对各点坐标的变化加以分析,学生已经学过确定位置和直角坐标系,本节课的内容变化的鱼就是在此基础上的发展。
本节的重点是根据坐标中的横坐标或纵坐标按一定的规律变化,图形发生了怎样的变化、变化的规律是怎样的,根据已知点的坐标和对称点坐标的规律写出相对称点的坐标。
解决重点的关键是学生自己动手,根据各点坐标画出图形,对图形进行分析,找出变化的规律。
二、目标及其解析1、目标定位:在同一直角坐标系中,感受图形上点的坐标变化与图形的变化之间的关系.掌握对称点坐标的规律及求法.2、目标解析:图形上点的坐标变化与图形的变化之间的关系.就是指根据坐标的变化,画出变化后的图形,观察图形的变化(平移,轴对称,伸长,压缩)。
根据已知点的坐标和对称点坐标的规律写出相对称点的坐标。
三、问题诊断与分析在本节课的教学中,学生可能遇到的问题是根据坐标的变化,找出图形变化的规律。
产生这一问题的原因是知识点的综合应用不够。
要解决这一问题,其关键是引导学生对图形坐标变化与图形的平移,轴对称,伸长,压缩之间关系进行具体的分析。
四、教学支持条件分析五、教学过程一、感受图形上点的坐标变化与图形的变化之间的关系.问题一:如果坐标中的横坐标不变,纵坐标同时加上一个相同的正数(或负数),或者纵坐标不变,横坐标同时加上一个相同的正数(或负数)那么图形是否会变化?变化的规律是怎样的?设计意图:感知图形平移与图形坐标变化之间的关系。
1、根据下面各点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来,坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0).画出的图形2、横坐标保持不变,纵坐标分别加上3或加上-3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?3、纵坐标保持不变,横坐标分别加3或加上-3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?师生活动:先根据题意把变化前后的坐标作一对比,再画出图形,教师归纳结论。
八年级数学教案变化的鱼

八年级数学教案《变化的鱼》一、教学目标:1. 知识与技能:(1)让学生了解和掌握鱼群问题的基本概念和原理;(2)培养学生运用坐标系和函数思想解决实际问题的能力。
2. 过程与方法:(1)通过观察、分析和讨论,培养学生合作探究的能力;(2)利用现代信息技术,如计算机软件,进行图形绘制和分析。
3. 情感态度与价值观:(1)培养学生对数学美的感受和欣赏能力;(2)培养学生勇于探索、创新的精神。
二、教学重点与难点:1. 教学重点:(1)鱼群问题的基本概念和原理;(2)坐标系和函数思想在鱼群问题中的应用。
2. 教学难点:(1)鱼群问题的建模和求解;(2)利用计算机软件进行图形绘制和分析。
三、教学准备:1. 教师准备:(1)熟悉鱼群问题的相关知识和方法;(2)掌握现代信息技术,如计算机软件的使用。
2. 学生准备:(1)掌握坐标系和函数的基本知识;(2)具备一定的数学思维能力。
四、教学过程:1. 导入:通过展示一些实际的鱼群图片,引导学生关注鱼群问题的实际意义,激发学生的学习兴趣。
2. 新课导入:(1)介绍鱼群问题的基本概念和原理;(2)讲解坐标系和函数思想在鱼群问题中的应用。
3. 案例分析:(1)给出一个具体的鱼群问题案例;(2)引导学生运用坐标系和函数思想进行分析和解决。
4. 实践操作:(1)让学生利用计算机软件,如几何画板,绘制鱼群问题的图形;(2)引导学生通过观察和分析图形,总结规律和结论。
5. 总结提升:(1)对本节课的内容进行总结;(2)强调鱼群问题在实际生活中的应用价值。
五、作业布置:1. 完成课后练习,巩固所学知识;2. 结合生活实际,找一个鱼群问题的案例,下节课进行分享。
六、教学反思:教师需对整个教学过程进行反思,包括:1. 学生对鱼群问题的理解和掌握程度;2. 学生在解决实际问题时,坐标系和函数思想的运用情况;3. 学生在实践操作中,对现代信息技术(如计算机软件)的掌握和运用程度;4. 教学方法和教学内容的适用性,是否需要调整。