工厂供电第三章供电系统
《工厂供电》课程教学大纲

《工厂供电》课程教学大纲课程名称:工厂供电课程类型:专业技术课程课程学时:48学时课程编号:ELEC1005课程目标:本课程旨在培养学生对工厂供电系统的理论知识和实际应用的理解和应用能力。
通过本课程的学习,学生应具备工厂供电系统设计与维护的基本知识和能力。
课程内容:第一章:工厂供电基础知识1.1 工厂供电系统的概述1.2 工厂负荷特点及需求分析1.3 工厂电气设备及其电源要求第二章:工厂供电系统设计2.1 工厂供电系统的结构和布置2.2 工厂变电站设计与选型2.3 工厂配电系统设计与选型2.4 工厂电气线路设计与选型第三章:工厂供电系统调试与运行3.1 工厂供电系统调试原理3.2 工厂变电站调试与运行3.3 工厂配电系统调试与运行3.4 工厂电气设备运行与检修第四章:工厂供电系统维护与管理4.1 工厂供电系统维护与保养4.2 工厂供电系统事故处理与应急预案4.3 工厂供电系统能源优化和节能管理4.4 工厂供电系统监测与运行管理教学方法:本课程将采用理论与实践相结合的教学方法。
理论部分将通过课堂讲授和案例分析的方式进行;实践部分将通过实地考察和实验操作的方式进行。
教师还将引导学生进行小组讨论、课堂演示和开展小型实践项目。
教学评价:本课程将通过学生作业、课堂互动、实验报告、论文写作、实践能力考核等多种方式进行教学评价。
其中,学生实践能力考核的成绩占总评成绩的30%。
课程参考教材:1. 罗明义,《工厂供电》,中国电力出版社,2010年。
2. 杨德明,《工厂供电设计与运行》,中国电力出版社,2012年。
备注:本课程的教学大纲仅供参考,具体教学进度和内容根据教师和学生的实际需求而确定。
为了提高学生的综合能力,教师还应引导学生进行课程相关的实践项目,如实地考察、实验实训等。
通过课堂教学和实践训练的结合,学生将真正掌握工厂供电系统的设计与维护技术,为今后从事相关工作打下良好的基础。
第一章:工厂供电基础知识1.1 工厂供电系统的概述工厂供电系统是一个复杂而重要的电力系统,用于为工厂提供稳定、可靠的电力供应。
《工厂供电》教案3

课程名称: 课程名称: 班 级: 工厂供电 05 电气 1-2 班 2006 年至 2007 年第 1 学期第 17 次课 编制日期: 年 11 月 12 日 编制日期:20 06
教学单元(章节) :第三章 教学单元(章节) 第三章 短路电流及其计算 : 短路的原因、 第一节 短路的原因、后果及其形式 第二节 无限大容量电力系统三相短路的物理过程及物理量 目的要求: 目的要求:1. 了解短路的原因、后果及其形式 2. 了解电力系统三相短路的物理过程及其物理量
第
页
教
学
内
容
板书或旁注
例 3-1 某工厂供电系统如图 3-4 所示。已知电力系统出口断路器 为 SN10-10Ⅱ型。试求工厂变电所高压 10kV 母线上 k-1 点短路和低 压 380V 母线上 k-2 点短路的三相短路电流和短路容量。
知识要点: 知识要点:1. 2. 3. 4. 技能要点: 技能要点:
欧姆法 电力系统的阻抗计算 电力变压器的阻抗计算 电力线路的阻抗计算
教学步骤: 教学步骤:1. 概述短路电流的计算 2. 欧姆法的概念 3. 采用欧姆法进行电力系统、电力变压器及电力线路的阻抗计算 教具及教学手段: 教具及教学手段:多媒体课堂教学;讲述、分析、举例。
作业布置情况: 作业布置情况:思考题 2、3、4
课后分析与小结: 课后分析与小结:
授课教师: 授课教师:
陈剑
授课日期: 2006 授课日期:
年 11 月 15 日
第 页
教
学
内
容
板书或旁注
二、短路有关的物理量 (-)短路电流周期分量 假设在电压 u=0 时发生三相短路,如图 3-3 所示。短路电流周期 分量为 (3-1) 式中, 为短路电流周期分量幅值,其中 为短路电路的总阻抗[模] ; 为短路电路 的阻抗角。由于短路电路的 ,因此 。故短路初瞬 间(t=0 时)的短路电流周期分量为 (3-2) 式中,I″为短路次暂态电流有效值,即短路后第一个周期的短路电流 周期分量 ip 的有效值。 (二)短路电流非周期分量 由于短路电路存在电感,因此在突然短路时,电感上要感生一个 电动势,以维持短路初瞬间(t=0 时)电路内的电流和磁链不致突变。 电感的感应电动势所产生的与初瞬间短路电流周期分量反向的这一电 流,即为短路电流非周期分量。 短路电流非周期分量的初始绝对值为
习题册参考答案-《工厂变配电技术习题册》-B02-9710

《工厂变配电技术习题册》参考答案第一章 电力系统概论§1-1 电力系统组成一、填空题1、直接取得2、煤炭 电力3、位能 热能4、太阳光能5、电力系统6、可靠7、电压二、选择题1、C2、C3、B三、判断题1、√2、×3、√4、√5、√6、×7、×四、简答题1、答:水力发电厂是利用水流的上下水位(落差),即水流的位能发电的。
当控制水流的闸门打开时,水流沿水管进入水轮机蜗壳室,冲动水轮机带动发电机发电。
其能量转换过程是:水流位能→机械能→电能。
2、答:由发电厂的电气设备、不同电压的电力网和电力用户的用电设备所组成的一个发电、变电、输电、配电和用电的整体,称为电力系统。
对电力系统的基本要求如下:⑴安全。
在电能的供应、分配和使用中,不应发生人身事故和设备事故。
⑵可靠。
应满足电能用户对供电可靠性的要求。
⑶优质。
应满足电能用户对电压和频率等质量的要求。
⑷经济。
供电系统的投资要少,运行费用要低,并尽可能地节约电能和减少有色金属消耗量。
3、答:火电厂是指火力发电厂,向用户提供电能。
热电厂是指除供电能外,同时还兼供热能的火电厂。
§1-2 电力系统的电压一、填空题1、5%2、10kV3、220/380二、选择题1、A2、B3、 C三、判断题1、√2、×3、√四、简答题答:由于电力线路允许的电压偏差一般为±5%,即整个线路允许有10‰的电压损失值,因此为了维持线路的平均电压在额定值,线路首端(电源端)的电压可较线路额定电压高5%,所以发电机额定电压规定高于同级电网定电压5%。
§1-3 电力系统中性点运行方式一、填空题1、不接地2、1103、经消弧线圈接地二、选择题1、A2、C3、C4、A5、C三、判断题1、√2、√四、简答题1、答:当电源中性点不接地的电立系统中发生单相接地时,三相用电设备的正常工作并未受到影响,因为线路的线电压无论其相位还是量值均未发生变化,因此三相用电设备仍能照常运行。
工厂供电第3章-负荷计算与供配电线路

图3-14原理式主接线图 原理式主接线图
高压进线柜
低压总开关柜 主变压器
低压照明及动力6路出线 低压照明及动力 路出线 低压动力柜5路出线 低压动力柜 路出线 电容器柜
图3-15
配电装置式主接线图
高 压 进 线 柜
低压动力柜5路出线 低压动力柜 路出线 主 变 压 器 低压照明及动 力6路出线 路出线
母线隔离开关 :靠近母线侧, 母线隔离开关QS:靠近母线侧,用于 开关 隔离母线电源和检修断路器; 隔离母线电源和检修断路器;
图3-2单母线主接线图
• 2、单母线分段接线 、
这种接线适用于 双电源进线的比 双电源进线的比 较重要的负荷, 较重要的负荷, 电压为6~ 电压为 ~10kV 级。
图3-3
• 3.01 用电设备及工作制
• 工厂用电设备的工作制分以下三类: 工厂用电设备的工作制分以下三类: • (1)连续工作制 • 电气设备在恒定负荷下运行,其运行时间长到足 电气设备在恒定负荷下运行, 以使之达到热平衡状态。 以使之达到热平衡状态。此类设备在计算其设备 容量时,可直接查取其铭牌上的额定容量, 容量时,可直接查取其铭牌上的额定容量,不用 转换计算。 转换计算。 • (2)短时工作制 • 设备在恒定负荷下运行的时间短,而停歇的时间 设备在恒定负荷下运行的时间短, 较长。此类设备在工厂负荷中占比例很小, 较长。此类设备在工厂负荷中占比例很小,在计 算其设备容量时,也是直接查取其铭牌功率 接查取其铭牌功率。 算其设备容量时,也是直接查取其铭牌功率。
•(1)工厂有总降压变电所或高压配电所— ( 工厂有总降压变电所或高压配电所 —而车间变电所通常只设变压器室和低压配 而车间变电所通常只设变压器室和低压配 而车间变电所通常 电室, 电室,高压侧大多不装开关或只装简单的隔 离开关、熔断器(室外为跌落式熔断器)、 离开关、熔断器(室外为跌落式熔断器)、 避雷器。 避雷器。 •(2)工厂无总降压变电所或总配电所—— ( 工厂无总降压变电所或总配电所 车间变电所高压侧的开关电器、保护装置和 车间变电所高压侧的开关电器、 测量仪表等,都必须配备齐全 配备齐全, 测量仪表等,都必须配备齐全,一般要设置 高压配电室。 高• 原理式主接线图——按照电能输送和分配 原理式主接线图 按照电能输送和分配 主接线图 按照 的顺序用规定的符号和文字来表示设备的 的顺序用规定的符号和文字来表示设备的 相互连接关系。 相互连接关系。 • 配电装置式主接线图——即按高压或低压 配电装置式主接线图 主接线图 即按高压或低压 配电装置之间的相互连接和排列位置而画 和排列位置 配电装置之间的相互连接和排列位置而画 出的主接线图。 出的主接线图。
工厂供电 第三章 四章习题解答

第三章 习题解答3-1 有一地区变电站通过一条长7km 的10kV 架空线路供电给某工厂变电所,该变电所装有两台并列运行的Yyn0联结的S9-1000型变压器。
已知地区变电站出口断路器为 SN10-I0型。
试用欧姆法计算该工厂变电所10kV 母线和380V 母线的短路电流(3)k I 、"(3)3I I ∞()、、(3)(3)sh shi I 、及短路容量(3)k S ,并列出短路计算表。
解:1.计算k-1点处的短路电流和短路容量(Uc1=10.5kV ) 1)计算k-1短路电路中各元件的电抗及总电抗①电力系统的电抗:()Ω=⋅==∞37.03005.102211AMV kV S U X C ②架空线路电抗:X 2=X 0l=0.35(Ω/km)×7km=2.45Ω③绘k-1点短路的等效电路如下,计算其总阻抗为:()12k-10.37 2.45 2.82X X X =+=+=Ω∑2)计算k-1点短路电流和短路容量①短路电流周期分量有效值:()31 2.15kA K I −===②短路次暂态电流和稳态电流:(3)(3)(3)1''2.15kA K I I I ∞−===③冲击电流及第一个周期短路全电流有效值:()3(3)sh i 2.55'' 2.55 2.15kA 5.48kA I ==⨯=()3(3)sh I 1.51'' 1.51 2.15kA 3.82kA I ==⨯=④短路容量:(3)(3)11110.5 2.1539.3K C K S I kV kA MV A −−==⨯=⋅2)计算k-2点的短路电流和短路容量(Uc1=0.4kV )1)计算短路电路中各元件的电抗及总电抗①电力系统的电抗:()Ω⨯=⋅==−∞422111033.53004.0'AMV kV S U X C ②架空线路电抗:X 2'=X 0l 212⎪⎪⎭⎫ ⎝⎛C C UU =0.35(Ω/km)×7 km 25.104.0⎪⎭⎫ ⎝⎛=435.410−⨯Ω ③电力变压器的电抗:Ω⨯=⨯=⋅==−322243102.710004.01005.4100%N C K S U U X X④绘k-2点短路的等效电路如下:计算其总阻抗为:1234(2)3444''//7.2105.331035.410276.7310K XX X X X −−−−−=++∑⨯=⨯Ω+⨯Ω+Ω=⨯Ω2)计算短路电流和短路容量①短路电流周期分量有效值:()3230.1kA K I −=== ②短路次暂态电流和稳态电流:(3)(3)(3)2''30.1kA K I I I ∞−=== ③冲击电流及第一个周期短路全电流有效值:()3(3)sh i 1.84'' 1.8430.1kA 55.4kA I ==⨯= ()3(3)sh I 1.09'' 1.0930.1kA 32.8kA I ==⨯=④短路容量:(3)(3)1220.430.120.8K C K S I kV kA MV A −−==⨯=⋅短路计算表如下表所示:3-2 试用标幺制法重作习题3-1。
工厂供电第六版课程设计

工厂供电第六版课程设计课程背景随着社会的快速发展和人们生活水平的提高,电力已成为现代化社会发展不可或缺的基础设施之一。
为适应现代化电力需求,提高国家电力供应可靠性,电力工业需要大量的研究和工程实践。
在这一过程中,工厂供电系统扮演着非常重要的角色,它主要由电源、电缆、配电设备和变压器等组成。
因此,从工程角度出发,开发工厂供电系统的设计和管理课程,培养工程师的能力,有助于提高工厂供应电力安全和可靠性。
课程目标本课程设计旨在培养应用工程知识解决实际问题的能力。
学生将具备以下能力:1.掌握工厂供电系统设计和管理的相关知识。
2.学会分析红外线热成像图像和电子文件图像,应用图像处理技术来提高供电系统的可靠性和安全性。
3.学会应用计算机软件进行工艺分析、优化及其策略规划。
4.熟悉供电系统常见的故障和解决方案,提高对施工过程的监控能力。
课程大纲第一章:工厂供电系统基础知识1.供电系统的结构和工作原理2.智能化电力系统的实现3.工厂供电系统的各种供电方式及选型4.工厂供电系统所需资金、成本和储备及其监控第二章:工厂供电系统设计1.工厂供电系统设计的基本理念和思想2.工厂供电系统的负荷分析和系统设计3.工厂供电系统设计的应用程序和计算方法4.工程设计中的技术参数及措施等第三章:工厂供电系统建设和管理1.工厂供电系统的现场建设技术2.工厂供电系统现场的主要问题及解决方案3.工厂供电系统的合同管理及建设监督体系4.工厂供电系统的经济、安全和环保管理第四章:工厂供电系统应用技术1.工厂供电系统的开启和维护管理2.红外线热成像技术在供电系统中的应用3.供电系统故障诊断与维修技术4.具有网络管理平台的智能管控技术第五章:课程实践1.工厂供电系统的实地考察和维护2.工厂供电系统的模拟设计3.工厂供电系统的实际应用4.工厂供电系统管理的实践总结本课程设计旨在提供关于工厂供电系统的详细信息。
通过理论和实践相结合的学习方式,培养学生实际解决问题的能力。
工厂供电技术供电系统PPT课件

(2)负荷中心的确定 负荷指示图 负荷指示图将负荷按一定比例用负荷图标明在厂区平面图上,负荷图的圆心与 车间的负荷的“重心”大致相符。
(2)外桥式接线 结构 断路器跨在进线断路器的外侧,靠近电源 侧,称为外桥式接线。 特点 它适用于进线线路较短、负荷变化较大, 变压器需要经常切换的场合。 适用范围 一、二级负荷的变电所
3、单母线和母线分段 母线的概念
母线(也叫汇流排)实质上是主接线电路中接受和分配电能的一个电气联结点, 形式上它将一个电气联结点延展成一条线,以便于多个进出线回路的联结。 设置母线制的意义 设置母线可以方便地把电源进线和多路引出线通过开关电器连接在一起,以保 证供电的可靠性和灵活性。 母线制的种类 单母线制、单母线分段制和双母线制。
三、总降压变电所的设置数量
1、总降变电所的设置 总降压变电所数量应尽可能的少,尽可能的只设一个变电所,这样投资少又便于 管理。 2、总降变电所变压器的设置 • 对于企业中一级、二级负荷所占比重大,或虽为三级负荷,但负荷容量大
而集中的变电所,应装设两台变压器。 • 对于三级负荷供电的总降压变电所,或者有少量一、二级负荷,可只装设
1960
封 闭
式 低压配电(变压器)室
母 线 桥
变压器 1
进线 补偿 补偿 出线 出线 出线 低压开关柜
3600
2760
工具室 值班室
0.38kV出线
第四节 变电所的电气主接线
《工厂供电》试题库(第三章)

第三章短路电流计算一、填空题1、造成短路的原因有,,。
答:绝缘损坏,工作人员误操作,鸟兽破坏绝缘2、如果电力系统的电源总阻抗不超过短路电路总阻抗的,或电力系统容量超过用户供电系统容量倍时,可将电力系统视为无限大容量系统。
答:5%~10%,503、计算短路电流的方法有和两种方法。
答:欧姆法,标幺制法4、短路时间t k是和之和。
答:保护装置动作时间t op,断路器断路时间t oc5、短路电流很大,一方面要产生很大的,另一方面要产生,对电器和导体的安全运行威胁极大,必须充分注意。
答:电动力(电动效应),很高的温度(热效应)二、判断题1、单相短路电流只用于单相短路保护整定及单相短路热稳定度的校验。
()答案:√2、短路电流的周期分量就是短路稳态电流。
()答案:√3、短路次暂态电流I’’是一个瞬时值()答案:⨯4、当发生三相短路时电力系统变电所馈电母线上的电压基本保护不变。
()答案:√5、三、选择题1、当发生三相短路时,导体中所承受的电动力。
A)两边相最大B)中间相最大C)三相均匀D)不能确定答案:B2、主要用于选择电气设备和导体的短路稳定度校验的短路电流是。
A)三相短路电流B)两相短路电流C)单相短路电流D)不能确定答案:A3、主要用于相间保护的灵敏度校验的短路电流是。
A)三相短路电流B)两相短路电流C)单相短路电流D)不能确定答案:B4、下列哪一个电力系统不能视为无限大容量系统?A)电力系统的电源总阻抗不超过短路总阻抗的5~10%B)电力系统的电源总阻抗不超过短路总阻抗的10%C)电力系统容量低于供电系统容量50倍时D)电力系统容量超过供电系统容量50倍时答案:C5、下列哪一个设备的阻抗在短路计算时不会考虑的?A)电力系统B)电力设备C)电力输送线D)开关设备答案:D四、名词解释1、短路答:短路就是指不同的电位的导电部分包括导电部分对地之间的低阻性短接。
2、无限大容量电力系统答:无限大容量的电力系统,是指供电容量相对于用户供电系统容量大得多的电力系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
~ 35 110KV变为0.4KV。
工厂供电第三章供电系统
第二节 电压的选择
三)低压配电电压选择 原则:依据用电设备性质决定
直接选择380V/220V低压等级 潮湿地方:36V 煤矿等:660V;1140V 英、美、法:500V
工厂供电第三章供电系统
第二节 电压的选择
二)厂区高压线供电电压(广泛使用10KV) 1.依据 该地区原有供电条件和备用电源情况 高压电动机及其它高压用电设备等级 供电线路传输功率相同条件下(一般在500KW),10KV比6KV节约金属
40%,还可减少出线回路。 额定电压6KV、10KV的开关设备,当其切断容量相同时,价格相差
第一节 概述
一)什么是工厂供电系统 从电力电源进线到厂内高低压用电设备进线端,将这个系统称之为~。 二)典型系统
工厂供电第三章供电系统
第二节 电压的选择
一)供电电压的选择(从电力网---总降压变电所)(35KV---110KV) 1.有两种电源可供选择 选择原则: 1)负荷大小与电源远近(负荷距)(表3.2.1) 2)考虑以下的因素 用电设备对电压的要求 负荷的均衡度 工厂的供电功率因数高低 导线的横截面 工厂设备的折旧率,贷款利息 电价 3)尽量减少工厂内电压等级
3.4.1 对主结线的基本要求
电气主接线的形式,将影响配电装置的布置、供电可靠性、运行灵活性和二次接线、 继电保护等问题。电气主接线对变电所以及电力系统的安全、可靠和经济的运行起着 重要作用。因此,对变配电所主接线有下列基本要求。 (1) 安全:应符合有关国家标准和技术规范的要求,能充分保证人身和设备的安全。 (2) 可靠:应满足电力负荷特别是其中一、二级负荷对供电可靠性的要求。 (3) 灵活:应能适应必要的各种运行方式,便于切换操作和检修,且适应负荷的发展。 (4) 经济:在满足上述要求的前提下,尽量使主接线简单,投资少,运行费用低,并 节约电能和有色金属消耗量。
工厂供电第三章供电系统
第四节 变电所的电气主结线
2) 外桥式 二次侧采用单母线分段的总降压变电所主接 线图, 这种主接线,其一次侧的高压断路器QF5也 跨接在两路电源进线之间,但处在线路断路 器QFl和QF2的外侧,靠近电源方向,因此称 为外桥式接线。这种主接线的运行灵活性也 较好,供电可靠性也较高,适用于一、二级 负荷的工厂。但与上述内桥式接线适用的场 合有所不同。如果某台变压器例如T1停电检 修或发生故障时,则断开QFl,投入QF5(其两 侧QS先合),使两路电源进线又恢复并列运行。 这种外桥式接线适用于电源线路较短而变电 所昼夜负荷变动较大、适于经济运行需经常 切换变压器的总降压变电所。当一次电源线 路采用环形接线时,也宜于采用这种接线, 使环形电网的穿越功率不通过断路器QFl QF2, 这对改善线路断路器的工作及其继电保护的 整定都极为有利。
工厂供电第三章供电系统
第四节 变电所的电气主结线
电气主结线是指变电所中各种开关设备、电力变压器、母线、电流互感器以及电压 互感器等主要电气设备,按照一定顺序用导线连接而成的,用以接受和分配电能的电 路,也称为主电路。电气主接线中的设备用标准的图形符号和文字符号表示的电路图 称为电气主接线图。因为三相交流电气设备的每相结构一般是相同的,所以电气主接 线图一般绘成单线图,只是在局部需要表明三相电路不对称连接时,才将局部绘制成 三线图;若有中性线(或接地线)可用虚线表示,使主接线清晰易看。在变电所的控制 室内,为了表明变电所主接线实际运行状况,通常设有电气主接线的模拟图。运行时, 模拟图中的各种电气设备所显示的工作状态必须与实际运行状态相符。
只用一台变压器 SN﹥S30=SCa
选变压器,余量:15~25% 4)一、二级负荷占比重大而且比较集中(定一个变电所但有2台主变)
两台变压器关系:明备用:一台用,另一台备用,互为备用,SN≥S30 暗备用:两台都占用50%,一台故障,另一台100%负荷 70%S30
工厂供电第三章供电系统
第三节 变电所的设置和变压器的选择
二.车间变电所位置及变压器选择 独立变电所 附设变电所 车间内变电所 地下变电所 杆上或高台变电所
工厂供电第三章供电系统
第三节 变电所的设置和变压器的选择
变压器选择: 1)车间一台(二三级负荷) SN≥S30 2)一二级负荷比重大,负荷比较分散,可设两个变电所,
每一个变电所有一台变压器; 若一二级负荷比重大,负荷集中,则设一个变电所, 但有两台变压器。
工厂供电第三章供电系统
第四节 变电所的电气主结线
3.4.2 总降压变电所的主结线
1.线路-变压器组接线
主要特பைடு நூலகம்:变压器高压侧无母线,低压侧通过开关接 成单母线结线供电
2.桥式接线
工厂供电第三章供电系统
第四节 变电所的电气主结线
1)内桥式 这种主接线,其一次侧的高压断路 器QF10跨接在两路电源进线之间,犹 如一架桥梁,而且处在线路断路器 QFl和 QF2的内侧,靠近变压器,因此 称为内桥式接线。这种主接线的运行 灵活性较好,供电可靠性较高,适用 一、二级负荷的工厂。如果某路电源 例如 L1线路停电检修或发生故障时, 则断开QFl,投入 QF5(其两侧 QS先 合),即可由L2恢复对变压器T1的供电。 这种内桥式接线多用于电源线路较长 因而发生故障和停电检修的机会较多、 变压器不需经常切换的总降压变电所
工厂供电第三章供电系统
第三节 变电所的设置和变压器的选择
2)负荷指示图:
r P30K• 2
r P 30 K
工厂供电第三章供电系统
第三节 变电所的设置和变压器的选择
3)负荷电能矩法(动态负荷中心计算法) 三)总变压器设置数量 1)车间厂房负荷集中(一个) 2)企业非常大、容量大、分散(设两个) 3)三级负荷,少量一、二级负荷,可以从临近企业取备用电源,设一个且
工厂供电第三章供电系统
第三节 变电所的设置和变压器的选择
一、变电所位置的确定
1、变电所位置选择原则
接近负荷中心 进出线方便 接近电源侧 设备运输方便
无剧烈振动或高温的场所 尘土少、无腐蚀性气体 不在有水的下方 不在有爆炸危险的地方
2、确定负荷中心的方法 1)按负荷功率矩法确定负荷中心
负荷中心的计算不必十分精确