调谐质量阻尼器

合集下载

调谐质量阻尼器动画原理

调谐质量阻尼器动画原理

调谐质量阻尼器动画原理一、引言调谐质量阻尼器是一种常用于振动控制的装置,其原理是通过调节阻尼系数和质量比来消耗振动能量。

本文将介绍调谐质量阻尼器的动画原理。

二、调谐质量阻尼器的基本原理调谐质量阻尼器由弹簧、阻尼器和质量块组成。

当结构受到外力作用时,会发生振动。

振动会使得弹簧变形,从而引起弹性势能的积累。

同时,阻尼器也会将振动能量转化为热能进行消耗。

当弹性势能达到一定程度时,质量块开始运动,并且通过改变其位置来改变系统的共振频率,从而达到控制振动的目的。

三、调谐质量阻尼器的工作过程1. 初始状态在初始状态下,结构处于平衡状态,没有发生任何振动。

2. 外力作用当结构受到外力作用时,会发生振动,并且弹簧开始变形。

3. 弹性势能积累随着时间的推移,弹性势能不断积累,振幅不断增加。

4. 阻尼器消耗能量阻尼器开始消耗振动能量,并将其转化为热能进行散失。

5. 质量块开始运动当弹性势能积累到一定程度时,质量块开始运动,并通过改变其位置来改变系统的共振频率。

6. 共振频率调节通过调节质量块的位置,可以改变系统的共振频率,从而达到控制振动的目的。

四、调谐质量阻尼器动画原理为了更好地理解调谐质量阻尼器的工作原理,我们可以借助动画来模拟其工作过程。

具体步骤如下:1. 设计结构模型首先需要设计一个结构模型,包括弹簧、阻尼器和质量块等组成部分。

可以使用CAD软件进行建模。

2. 添加外力作用在模型中添加外力作用,使得结构发生振动。

可以通过添加重物或者施加力来实现。

3. 模拟弹性势能积累根据弹簧的变形情况,计算出弹性势能的大小,并将其在动画中表示出来。

随着时间的推移,弹性势能不断积累,振幅不断增加。

4. 模拟阻尼器消耗能量在动画中添加阻尼器,并根据其参数计算出消耗的振动能量。

同时将其转化为热能进行散失。

5. 模拟质量块运动当弹性势能积累到一定程度时,质量块开始运动,并通过改变其位置来改变系统的共振频率。

可以在动画中模拟质量块的运动轨迹。

质量调谐阻尼器和调频液体阻尼器

质量调谐阻尼器和调频液体阻尼器
近 20 年 来 , 国 内 外 学 者 针 对 单 个 TMD系统的理论和技术方法 , 提出了 系统的理论和技术方法, 系统的理论和技术方法 多调谐质量阻尼器的概念,简称 MTMD。 MTMD系统可对受较宽频带 。 系统可对受较宽频带 的外激励的结构进行振动控制, 的外激励的结构进行振动控制 , 效果 明显。上海青浦电视塔高168m,在离 明显。 上海青浦电视塔高 , 地面137.5m的一段悬挂 个质量摆 , 的一段悬挂11个质量摆 地面 的一段悬挂 个质量摆, 这 11 个 质 量 摆 的 自 振 周 期 为 地 0.398Hz~0.487Hz , 它 们 组 成 的 频 带 震 与风激励所产生的电视塔振动频带基 与风激励所产生的电视塔 振动频带基 动 本吻合, 经测试发现, 本吻合 , 经测试发现 , 电视塔天线端 时 位移的控制效果为 控制效果为20.3﹪ , 塔楼的 加 位移的 控制效果为 ﹪ 塔楼的加 程 ﹪ 速度反应最大值的控制效果 为 36.4﹪ 。 速度反应最大值的 控制效果为 控制效果
调谐质量阻尼器的早期研究
为了增强用于减小主系统最大动力响应的吸振器的效果: 为了增强用于 减小主系统最大动力响应 的吸振器的效果: 减小主系统最大动力响应的吸振器的效果 研究者们尝试了通过引入非线性吸振器弹簧 来 研究者们尝试了通过引入 非线性吸振器弹簧来加宽调谐 非线性吸振器弹簧 频率范围,Roberson(1962 1962) 频率范围 , Roberson(1962) 研究了将动力吸振器支承于主 系统的没有阻尼的线性弹簧上的动力响应。他将“消除带” 系统的没有阻尼的线性弹簧上的动力响应。他将“消除带 ” 定义为主系统幅值小于 1 的共振峰值之间的频率带。 定义为 主系统幅值小于1 的共振峰值之间的频率带 。 非线 主系统幅值小于 性吸振器的这个带宽很清楚地表明了比线性吸振器要宽得 性吸振器的这个带宽很清楚地表明了比线性吸振器要宽得 的这个带宽很清楚地表明了 多。 Pipes(1953)研究了有双曲正弦特征的强化弹簧, Pipes(1953)研究了有双曲正弦特征的强化弹簧,并得出 1953 阻止尖锐共振峰的出现 弹簧中非线性的影响是要阻止尖锐共振峰的出现, 弹簧中非线性的影响是要阻止尖锐共振峰的出现,并将相 对小幅值的奇次谐分量引入吸振器和主系统的运动中。 对小幅值的奇次谐分量引入吸振器和主系统的运动中。

钢箱梁桥中质量调谐阻尼器的性能分析

钢箱梁桥中质量调谐阻尼器的性能分析

钢箱梁桥中质量调谐阻尼器的性能分析钢箱梁桥是一种常见的桥梁结构形式,常用于高速公路、铁路等大跨度的桥梁建设。

在钢箱梁桥设计和施工中,质量调谐阻尼器是一种常用的结构措施,用于减小桥梁振动,提高桥梁的抗震性能。

下面将对钢箱梁桥中质量调谐阻尼器的性能进行分析。

质量调谐阻尼器是一种基于质量的动力控制装置,通过调节其自身质量和阻尼特性,来实现减震和消能的效果。

在钢箱梁桥中,质量调谐阻尼器通常采用液体质量调谐阻尼器或者粘滞阻尼器。

液体质量调谐阻尼器是一种通过液体在容器内的运动来实现减震和消能的装置。

其基本原理是,当桥梁发生振动时,液体质量调谐阻尼器内的液体会受到外力的作用而迅速运动,从而吸收振动的能量。

液体质量调谐阻尼器具有调谐频率的特点,可以根据桥梁的振动频率调节液体的密度、容积等参数,以达到最佳的减震效果。

此外,液体质量调谐阻尼器还可以通过调节阻尼器内的反射器和阀门,实现对液体运动和振动频率的控制。

粘滞阻尼器是一种利用液体或者液体粉末的粘滞阻尼特性来实现减震和消能的装置。

其基本原理是,当桥梁发生振动时,粘滞阻尼器中的液体或者液体粉末会受到外力的作用而产生相对运动,从而吸收振动的能量。

粘滞阻尼器的阻尼特性可以通过调节液体或者液体粉末的黏度、温度等参数来实现,以达到最佳的减震效果。

此外,粘滞阻尼器还可以通过调节阻尼器的尺寸、结构等参数,实现对振动的控制。

质量调谐阻尼器在钢箱梁桥中具有以下几个关键性能:1.减震效果:质量调谐阻尼器能够吸收桥梁振动的能量,减小桥梁的振幅和振动响应。

通过调节阻尼器的参数和结构,可以实现最佳的减震效果,提高桥梁的抗震性能。

2.安全性能:质量调谐阻尼器在设计和施工过程中需要考虑桥梁的结构安全性和稳定性。

阻尼器的尺寸、材料和安装方式等都需要满足相关的设计和施工标准,以确保桥梁的安全运行。

3.耐久性能:质量调谐阻尼器需要具有较长的使用寿命和良好的耐久性能。

在桥梁的设计和施工过程中,需要选择合适的材料和结构,以及定期检查和维护阻尼器的状态,以保证其长期稳定运行。

调谐质量阻尼器的两大主要特点

调谐质量阻尼器的两大主要特点

调谐质量阻尼器的两大主要特点
调谐质量阻尼器(Tuned Mass Damper,简称TMD)是一种离散型阻尼装置,也称作为一个主动质量阻尼器或谐波减振器,这种装置安装在振动结构,以抑制结构的振动,防止结构的损坏和失效。

调谐阻尼器的使用场合主要用于控制框架结构、支架系统、整台设备、高层建筑和海洋船舶等的振动和噪声,并可取得令人满意的结果,且结构简单、使用方便、成本也低。

调谐质量阻尼器对谐波振动造成的激烈运动具有稳定作用,它能用较轻巧的组件来抑制振动,即使在最恶劣条件下也能起到减振的作用。

调谐阻尼器是一个单自由度系统,由质量和大阻尼粘弹弹簧组合而成;它也可以由质量、线性弹簧和粘性阻尼器组成;或者是弹阻尼共振梁:或用粘弹材料连接复杂结构中的不同零件而成。

因此,可以根据结构特点将调谐阻尼器设计成不同的形式。

但是这些装置的一个共同特点是既通过调谐来吸收主要振型的振动,又通过阻尼损耗结构的宽频振动能量来控制结构振动,它不同于无阻尼谐振器或动力吸器,后者如同一个调谐共振能量转换装置,仅在其调谐频率上吸收结构振动。

由于调谐阻尼器的最大特点是通过调谐来吸收主要振型的振动,和通过阻尼损耗结构振动其它振型的振动能量来控制振动,因此它们就可在一个较宽的频率范围内,而不仅是在调谐频率上抑制结构振动所以一个调谐阻尼器往往可以控制结构的几阶共振频率的振动,这样就大大地扩大了调谐阻尼器抑制振动的适用范围。

调谐阻尼器的另一个特点是它所损耗的结构振动能量取决于结构上某一局部位置的振动位移,而不像表面阻尼处理结构那样取决于表面一个区域的应变。

因此,调谐阻尼器就可以应用于非板状零件、框架结构、大型天线、高层建和船舶等,它的安装位置是在大位移响应点上而并非一个面,因此施工简单、机动灵活。

调谐质量阻尼器工作原理

调谐质量阻尼器工作原理

调谐质量阻尼器工作原理调谐质量阻尼器,这个名字听起来像是高大上的科技产品,其实它的工作原理并不复杂,嘿,让我们一起拆解一下吧。

想象一下你在一条颠簸的路上开车,车子一颠一颤的,仿佛在跟地面进行一场“斗牛”。

这时候,如果你有个神奇的装置,可以把这种颠簸感减少,那就是调谐质量阻尼器的魅力所在。

它的目标就是让一切变得更平稳,简直就像给车子装上了一个“减震器”。

好,咱们聊聊它是怎么工作的。

调谐质量阻尼器就像个聪明的小助手,能及时感应到周围的震动。

想象一下,你在家里听到楼上邻居的“舞会”,一开始你可能还忍着笑,但随着声音越来越大,你忍不住了。

这时候,调谐质量阻尼器就会启动,发挥它的“超级力量”,通过调整内部的质量和弹簧,让这些震动被吸收,或者说“消灭”掉,简直就像给你装上了个耳塞。

再来讲讲它的构造。

调谐质量阻尼器通常由一个质量块和一些弹簧组成。

质量块就像个大肚子,负责承载震动,而弹簧则是它的“助手”,帮助吸收和反弹。

两个好伙伴一搭档,碰到问题就来个“合力”,让周围的震动不再那么难受。

就好比你和朋友一起去搬重物,一个人扛着,另一个人扶着,配合得当,轻松多了。

很多时候,咱们会觉得生活就是一场“摇滚音乐会”,尤其是在一些高楼大厦里,风一吹,墙壁就开始轻轻颤动,这可让人心里没底。

不过,调谐质量阻尼器就像个小小的守护者,默默无闻地在为你“保驾护航”。

就算外面刮风下雨,它也能让你在家里安静得像个小猫咪,舒服得很。

在建筑领域,调谐质量阻尼器的应用可谓是“如鱼得水”。

高楼大厦在风中摇曳,就像那“沙滩上的小船”,如果不加以控制,很容易就会出问题。

这时候,调谐质量阻尼器就是建筑师们的秘密武器。

它可以有效地减少震动,让建筑物更稳固,真的是为“高空生活”加了一道保险。

如果你觉得这个设备只对建筑有帮助,那就错了。

汽车、桥梁,甚至一些大型机械设备,调谐质量阻尼器都能大展身手。

比如,汽车在行驶过程中,路面的小坑洼就像是在给车子“放大招”,而调谐质量阻尼器则像个防守队员,帮助车子稳住,让你在旅途中不再“惊心动魄”。

调谐质量阻尼器TMD

调谐质量阻尼器TMD

NO.4 TMD能否用于抗震 1、进行风时程工况下TMD方案与阻尼器方案减震效果对比 由表可见,在加设TMD或阻尼器以后,楼层加速度、基地位移角、基底剪力和弯矩都有明显 改善,且本次试验的阻尼器方案减振效果尚略优于TMD方案。
NO.4 TMD能否用于抗震
2、进行地震程工况下TMD方案与阻尼器方案减震效果对比
NO. TMD在工程上的应用 3二、纽约Citicorp中心
Citicorp中心高279m,大楼底部仅设 置了4根粗大的柱子支撑整个大厦,水 平刚度较柔,在强风作用下,水平摆 动很大,该大楼最后采用了约 3630KN重的混凝土调频质量块。
该TMD安装于建筑的59楼,在这个高 度,建筑物可以用一个约为20000t的 简单模态质量表设计,TMD固定于其 上形成图二所示的2-DOF系统。实验 结果和实际观测显示,TMD能将建筑 的风致加速度水平减少约50%。
TMD构造布置的多样性
NO.2
各种形式的TMD
TMD构造布置的多样性
TMD在工程上的应用
NO.3
一、澳大利亚悉尼Centerpoint塔 TMD在工程上的应用
安装TMD的第一个结构是悉尼的Centerpoint塔。作为结构的供 水和防火设施,塔的水箱和一个液压吸振器一起被设计到TMD中 用以减小风致运动。水塔悬挂于回转塔的径向构件上,随后又将 一个40t重的辅助质量安装在中间锚固环上以进一步控制第二振型 的振动。加速度测定结果表明,风致加速度响应减少了40%— 50%。 单摆型TMD结构的例子还包括加拿大多伦多CN塔、位于日本 Osaka的水晶塔等。其中高157m的水晶塔也利用了置于结构顶部 的储水箱作为单摆TMD。
D在工程上的应用
三、合肥电视塔 NO.3 由加速度响应比例来看,最优的频率比和最优阻尼比分别是1.02和 0.07。最大的加速度减振率达到了49%。 为获得电视塔风振响应的最大减振率 需要进行TMD参数的优化分 析从而确定TMD的三个重要参数即质量、频率和阻尼比。由于电视 塔的风振响应是以第一振型为主,故TMD 应调谐至结构第一阶频 率。设计时水箱总质量为60000kg,故TMD质量即为60000kg, 因而TMD 与电视塔第一阶振型广义质量的比值为0.0196 。固定质 量比,变化TMD与结构第一振型的频率比和TMD阻尼比可计算出 各种控制情况下电视塔(以第12质点响应为代表)和TMD的位移和 加速度响应。

调谐质量阻尼器用途

调谐质量阻尼器用途

调谐质量阻尼器用途
调谐质量阻尼器是一种用于电力系统中的电气设备。

它们的主要用途是控制电力系统中的电压和电流。

调谐质量阻尼器可以提高电力系统的稳定性和可靠性,同时也可以减少系统中的谐波和杂波。

调谐质量阻尼器的工作原理是基于电力系统中的谐振现象。

当电力系统中出现谐振时,调谐质量阻尼器会自动调整其电感和电容值,以消除谐振并稳定电力系统。

调谐质量阻尼器还可以用于降低电力系统中的电磁辐射和噪声,提高系统的功率因数和效率。

调谐质量阻尼器适用于各种电力系统,包括电力变压器、电力电容器、电力滤波器和电力调压器等。

它们通常安装在电力系统的主要设备上,以确保整个系统的稳定性和可靠性。

调谐质量阻尼器是电力系统中非常重要的设备之一。

它们帮助保持电力系统的稳定性和可靠性,并提高系统的功率因数和效率。

随着电力系统的不断发展和改进,调谐质量阻尼器将继续发挥重要作用。

- 1 -。

调谐质量阻尼器定义

调谐质量阻尼器定义

调谐质量阻尼器定义
调谐质量阻尼器(TMD)是一种被广泛应用于结构振动控制领域的装置。

它通过与结构共振频率相匹配的质量和阻尼特性,有效地减小结构振动的幅值。

TMD通常由一个质量块、弹簧和阻尼器组成,其工作原理基于质量块的惯性和阻尼器的能量耗散。

TMD的主要作用是通过消耗结构振动的能量来减小结构的振动响应。

当结构受到外部激励时,TMD会产生与结构振动方向相反的惯性力,从而减小结构的振动幅值。

同时,阻尼器会吸收和耗散结构振动的能量,进一步减小结构的振动响应。

调谐质量阻尼器的设计需要考虑结构的固有频率、质量比和阻尼比等参数。

通过合理选择这些参数,可以实现最佳的振动控制效果。

在实际应用中,TMD通常被安装在建筑物、桥梁、风力发电机塔等结构中,以减小结构受到的地震、风载等动力负荷引起的振动响应。

总之,调谐质量阻尼器是一种用于结构振动控制的装置,通过消耗振动能量来减小结构振动幅值,提高结构的抗震性能和舒适性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调谐质量阻尼器
上海蓝科建筑减震科技股份有限公司 2020.3.7
蓝科减震:
1、悬挑梁采用型钢制作,其材质应符合现行国家标准《碳素结构钢》GB/T700或《低合金高强度结构钢》GB/T1591中的规定。2、用于固定悬挑梁的U型 钢筋拉环或锚固螺栓材质应符合现行国家标准《钢筋混凝土用钢第1部分:热轧光圆钢筋》GB1499.1中HPB235级钢筋的规定。3、脚手架钢管应采用现行 国家标准《直缝电焊钢管》GB/T13793或《低压流体输送用焊接钢管》GB/T3091中规定的Q235普通钢管,钢管的钢材质量应符合现行国家标准《碳素结 构钢》GBT700中Q235级钢的规定。每根钢管的最大质量不应大于25.8kg。新钢管表面应平直光滑,不应有裂缝、结疤、分层、错位、硬弯、毛刺、压痕 和深的划道,钢管要有产品质量合格证、质量检验报告钢管材质检验方法应符合现行国家标准全属拉伸温拉伸试验方法》GB/T228的有关规定,质量和钢 管外径、壁、端面等的偏差应符合建筑施工扣件式钢管脚手架安全技术规范JG130的有规定,应涂有漆旧钢管表面锈蚀深度、钢管弯曲变形应符合《建筑 工扣件式钢管脚手架安全技术规范》JGJ130的有关规定。锈蚀检查应每年一次检查时,应在锈蚀严重的钢管中抽取3根,在每根锈蚀严重部位横问断取检 查当的深超过规定值时不得使用钢管上严禁打孔。4、扣件应采用可锻铁或钢制作,其量和性能应符合现行国家标准《管脚手架扣件》GB15831的要求,采 用其他材制作的扣件,应经试验证明其质量符合该标准的规定后方可使用扣应有生产许可证、法定检测单位的测试报告和产品合格证。扣件进入施工现 场应检查产品并应进行抽样复试扣件在使用前应逐个挑选,有裂,变形、照出现治禁使用。扣件在螺栓拧扭矩达65Nm时,不得发生。新、扣件均应进行锈 处理5、设架子前应进行保养,除统一涂色,环保观应符合现行行业标准《建筑施工木脚手架安全技术规范》JGJ64的相关规定。7、安全网采用密目式安 全立网,应符合下列要求:(1)网目密度不低于2000目/100cm3(2)网体各边缘部位的开眼环扣必须牢固可靠,孔径不低于1mm(3)网体缝线不得有跳针、露缝, 缝边应均匀(4)一张网体上不得有一个以上的接,且接缝部位应端正牢固:(5)不得有断沙、破洞、变形及有碍使用的编织缺陷:(6)阻燃安全网的续燃、阻燃 时间均不得大于4s使用的安全网必须有产品生产许可证和质量合格证,以及由相关建筑安全监督管理部门发放的准用证:(7)做耐贯穿试验不穿 透,1.6×1.8m的单张网重量在3kg以上(8)颜色应满足环境效果要求,选用绿8、连墙件材料用钢管或型钢制作,其材质应符合现行国标准《碳素钢结构》 GB/T700中Q235级钢或《低合金强度结构钢》GBT1591中Q345级钢的规定9、可调底座的底板和可调托座托板宜采用Q235板制作,厚度不应小于5mm,允 许尺寸偏差应为0.2mm,示力面钢板长度和宽度均不应小于150mm:承力面钢板和丝杆应采用环焊,并应设置加劲片或加劲拱度:可调托座托板应设置开口 挡板,挡板高度不应小于0mm10、可调底座及可词托杆与螺合长度不得小于6,螺母厚度不得小于30mm,插入立杆内的长度不得小于150mm主要材料参数 表定距定位。根据构造要求在建筑物四角用尺量出内、外立杆离墙距离,并做好标记:用钢卷尺拉直,分出立杆位置,并用小竹片点出立杆标记;垫板、底座 应准确地放在定位线上,垫板必须铺放平整,不得悬空。在搭设首层脚手架过程中,沿四周每框架格内设一道斜支撑,拐角处双向增设,待该部位脚手架与主 体结构的连墙件可拉结后方可拆除。当脚手架操作层高出连墙件以上两步时,宜先立外排,后立内排。其余按以下构造要求搭设。本工程脚手架地基础部 位应在回填土完后夯实,采用强度等级不低于C15的混凝土进行硬化,混凝土化厚度不小于10cm地基承载能力能够满足外脚手架的搭设要求(具体计算数据 参阅脚于计算书),立杆垫板或底座面标高高于自然地坪50mm100mm,两侧设置排沟,排水证垫板尺寸采用长度不少于2厚度不小于50mm、宽度不小于 200mm的垫板或槽钢。【扣件式脚手架】【型钢挑脚手(件式)1、立杆设置(1)立杆采用对接接头连接,立杆与纵小平杆采用直角扣件连。接头位置交错布 置,两个相邻立杆接头避免出现在同步同内,并在高度方向错开的离不小于50cm;各接头中心距节点的正离不于步的13(2)上部单立杆与下部双立杆接处,采 用单立杆与双立杆之中的一根对接连接。主立杆与立杆采用旋转扣件连接,件数量不应少于2个。每根立杆底部应设置块,并且必须设置纵、横向地纵向 地杆应采用直扣件固定
TMD适用范围
• 1、跨度大于24m的大跨结构; • 2、单悬挑超过8m的部位; • 3、双悬挑超过6m的部位; • 4、跨度超过20m的人行天桥; • 5、多层悬吊结构。
TMD减振原理
• 调谐质量阻尼器(TMD)主要由刚度元件(弹簧)、阻尼元件 (阻尼器)和惯性质量组成的结构振动系统,一般支撑或悬挂在 结构上。当结构在外激励作用下产生振动时,带动TMD系统一起 振动,TMD系统产生的惯性力反作用到结构上,调谐这个惯性力, 使其对主结构的振动产生协调作用,从而减少结构的振动反应, 提高结构舒适度,降低结构的疲劳损伤。
传统楼板或者桥面板设计中,一般将人群荷载简化为静力荷载,而 未考虑其动力效应。实际情况下,人群荷载属于动力荷载,在传统 的设计方法下,虽鲜有楼板或桥面板因无法满足承载力要求而现 的强度破坏,但因楼板、桥面板振动而导致的楼板破坏、人员伤亡 的情况却时有发生。随着技术水平的发展,大跨度,长悬臂结构等 结构不断涌现,楼板舒适度问题日益受到设计师的重视。楼板舒适 度问题的根源在于楼板的竖向频率较小,当楼板的竖向频率与人步 行频率接近时,易导致楼板共振现象。为解决以上问题,我国学者 在长期对减振技术研究的基础上,结合大量的工程实践经验,研究 表明TMD 系统对于长周期、窄频带的动荷载引起的响应具有很好 的减振效果
相关文档
最新文档