数学建模和计算机的重要性

合集下载

数学建模与计算机的重要性

数学建模与计算机的重要性

数学建模与计算机的联系及重要性摘要:在当今科技发达的今天,计算机已经得到了广泛的应用,也为数学建模的计算提供了有力工具。

本文浅谈了数学建模与计算机在人类生产和生活中的重要性。

关键词:数学建模计算机重要性当今社会计算机已经被广泛的应用了,在计算机的协助下许多问题的求解变得简单、方便、快捷。

而数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。

在科技迅猛发展的今天计算机和数学建模在人类的生存和发展中都具有举足轻重的作用。

一、数学建模与计算机息息相关其一、我们在模型求解时,有些计算单纯的用纸和笔是难以完成的,这就需要利用计算机上机计算、编制软件、绘制图形等,当结果通过计算机算出后也必须通过打印机随时进行输出。

其二、数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展方面做出杰出贡献的人,在数学方面也颇有造诣。

我们在遇到一些实际问题时往往需要计算机和数学建模同时应用才能解决问题,否则问题将无法进行。

数学问题与计算机通常采用一些数学软件(lingo,Matlab,MathCAD 等等)的命令来描述算法,既简单又容易操作。

例如下面有这样一道题就是利用数学软件lingo 求解的。

例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大?解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型为:目标函数 12max 200300z x x =+约束条件 1212100,120,160,0,1,2.i x x x x x i ≤⎧⎪≤⎪⎨+≤⎪⎪≥=⎩编写LINGO 程序如下:MODEL:SETS:SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J;ENDSETSDATA:A=1,2 ; B=100,120; C=200,300;ENDDATAMAX=@SUM(SHC:C*X);@FOR(SHC(I):X(I)<B(I)); @SUM(SHC(I):A(I)*X(I))<=160; END程序运行结果如下Global optimal solution found.Objective value: 29000.00Total solver iterations: 0Variable Value Reduced CostA( 1) 1.000000 0.000000A( 2) 2.000000 0.000000B( 1) 100.0000 0.000000B( 2) 120.0000 0.000000C( 1) 200.0000 0.000000C( 2) 300.0000 0.000000X( 1) 100.0000 0.000000X( 2) 30.00000 0.000000J( 1) 0.000000 0.000000J( 2) 0.000000 0.000000J( 3) 0.000000 0.000000Row Slack or Surplus Dual Price1 29000.00 1.0000002 0.000000 50.000003 90.00000 0.0000004 0.000000 150.0000最优解为12100,30,x x ==最优值为29000.00z =.即每天生产100个M 产品30个P 产品,可获得29000元利润.可见数学建模和计算机共同为问题求解提供了有效的手段,对其它课程的辅助学习帮助也是极大的。

对数学建模的认识

对数学建模的认识

对数学建模的认识作为一名大学生,我深刻认识到数学建模在现代科学和工程领域中的重要性和广泛应用。

数学建模作为一种将现实世界问题抽象为数学模型,然后通过数学方法进行分析、求解和预测的过程,不仅是学术研究的一部分,更是现实问题解决的有力工具。

在我看来,数学建模不仅是一门学科,更是一种思维方式,它在抽象、分析、解决问题等方面带来了挑战与机遇。

数学建模首先要求我们将复杂的现实问题进行抽象和简化,将问题的关键特征提取出来并用数学语言进行表达。

这个过程不仅需要对问题有深刻的理解,还需要运用数学知识和技能将问题转化为可计算的形式。

例如,考虑一个城市的交通流量问题,我们需要抽象出道路、车辆、人流等元素,并建立数学模型来描述它们之间的关系。

这种抽象能力不仅有助于理清问题,还能够培养我们从问题中抽象出本质的思维方式,使我们能够更好地应对各种挑战。

其次,数学建模要求我们具备丰富的数学知识和技能,能够在建立模型时选择适当的数学方法和工具。

不同的问题可能涉及代数、几何、微积分、概率论等不同领域的知识,因此我们需要具备跨学科的数学素养。

这也激励我在学习数学的过程中不仅仅关注基础知识,还要注重不同领域之间的联系,培养数学思维的广度和深度。

在数学建模过程中,我们需要运用数学方法对模型进行分析和求解。

这就需要我们具备系统的思维和逻辑推理能力,能够从模型中提取有用的信息,得出合理的结论。

这个过程中可能会遇到复杂的计算问题,需要我们具备良好的计算机编程能力,能够用计算机辅助求解模型。

这种分析和计算能力的培养,使我们在面对复杂问题时能够从整体把握问题,迅速找到解决方案。

数学建模也在很大程度上促进了跨学科的合作与交流。

许多问题需要多个领域的专业知识才能全面解决,这就需要不同背景的人能够用共同的语言进行交流和合作。

数学建模提供了一个平台,使不同专业的人能够协同工作,共同解决问题。

这种合作能力在现实生活和职业发展中同样具有重要意义,帮助我们更好地与他人合作,共同创造价值。

数学建模在计算机专业中的应用

数学建模在计算机专业中的应用

数学建模在计算机专业中的应用一、摘要本文重点分析了数学建模的特点,探讨了数学建模与计算机的之间的关系,并重点的阐述了数学建模在计算机专业中的应用。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、做出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型。

数学模型的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。

这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。

二、数学建模的特点1、面向现实生活的应用,有相关的科研背景,综合性强,涉及面广,因素关系复杂,缺乏足够的规范性,难以套用传统成熟的解决手段,数据量庞大,可采取的算法也比较复杂,结果具有一定的弹性空间,需要一定的伴随条件,许多问题得到的只能是近似解。

2、建模问题不同于理论研究,它重在对实际问题的处理,而不是深层次纯粹数学理论或者世界难题。

3、数学建模与数学试验教学的重点是高等数学与现代数学的深层应用和面向问题的设计,而不是经典理论的深入研讨和系统论证。

4、数学建模问题绝大部分来自一些具体科研课题或实际工程问题。

三、数学建模与计算机的关系数学建模与生活实际密切相关,所采集到的数据量多,而且比较复杂,比如长江水质的评价和预测,银行贷款和分期付款等,往往计算量大,需要借助于计算机才能快捷、简便地完成。

数学建模竞赛与以往所说的那种数学竞赛(纯数学竞赛)不同,它要用到计算机,甚至离不开计算机,但却又不是纯粹的计算机竞赛,它涉及到物理、化学、生物、医学、电子、农业、军事、管理等各学科、各领域,但又不受任何一个具体的学科、领域的限制。

数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。

例如,模型求解时,需要上机计算、编制软件、绘制图形等,数学建模竞赛中打印机随时可能使用,同时,数学建模的学习对计算机能力的培养也起着极大推动作用。

数学与计算机的结合应用

数学与计算机的结合应用

数学与计算机的结合应用在当今数字化时代,数学与计算机的结合应用发挥着越来越重要的作用。

数学作为一门抽象思维和逻辑推理的学科,与计算机科学的应用结合,不仅丰富了数学的研究内容和方法,也推动了计算机科学的发展和应用。

本文将从数学与计算机的密切关系、数学在计算机领域的应用以及计算机在数学领域的应用等方面进行探讨。

一、数学与计算机的密切关系数学与计算机科学是紧密相关的学科,两者相辅相成,互为依托。

数学为计算机科学提供了严密的理论基础,而计算机则使数学的研究更加高效和便捷。

数学和计算机科学在方法和思想上有许多共同点:都强调逻辑推理、精确性和抽象思维。

同时,计算机科学注重实际问题的求解和应用,而数学则更加关注问题的本质和证明。

二、数学在计算机领域的应用1. 数据加密与解密数据加密是计算机安全的重要组成部分,而数学在数据加密算法中扮演着重要角色。

例如,RSA加密算法就是基于数论的一个典型例子。

该算法利用了大数分解的困难性,将数据加密成为只有私钥才能解密的形式,保障了数据的安全性。

2. 图像处理与计算机视觉图像处理是计算机视觉中的重要分支,而数学提供了图像处理算法中的数学模型和方法。

例如,数字图像处理中的卷积算法、图像变换等操作都依赖于数学的线性代数和傅里叶分析等理论基础。

这些数学方法能够对图像进行分析、增强、压缩等处理,从而实现计算机对图像的高效处理和识别。

3. 数据分析与机器学习数据分析和机器学习是计算机科学中非常热门的领域,而数学在其中起着至关重要的作用。

数据分析依赖于统计学的方法和模型,而机器学习则基于数学的优化算法和概率模型。

数学方法可以帮助我们从大量的数据中发现规律和模式,进而进行预测和决策,应用广泛。

三、计算机在数学领域的应用1. 符号计算与计算机代数系统符号计算是数学研究中的一项重要工具,可以进行复杂的代数运算和符号推导。

计算机代数系统(如Maple、Mathematica等)的出现使符号计算更加高效和方便。

数学建模的作用和意义

数学建模的作用和意义

数学建模的作用和意义数学建模的作用和意义「篇一」大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。

数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。

因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。

一般来说",数学建模"包含五个阶段。

1、准备阶段主要分析问题背景,已知条件,建模目的等问题。

2、假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3、建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4、求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5、验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。

如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质。

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题,因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。

数学建模和计算机仿真技术的研究

数学建模和计算机仿真技术的研究

数学建模和计算机仿真技术的研究数学建模和计算机仿真技术是当今社会中非常重要的两个研究领域,广泛应用于各个领域,如工业制造、金融经济、医学、科学研究等等。

数学建模是指将实际问题转化为数学问题,并利用数学方法求解实际问题的过程。

而计算机仿真技术则是指利用计算机对实际问题进行模拟和分析,进而得到实际问题的解决方案的过程。

本文将从理论和应用的角度,分别讨论数学建模和计算机仿真技术的研究。

数学建模的研究数学建模的研究主要涉及到以下三个方面。

第一,数学建模的方法。

数学建模的方法主要包括问题建模、模型选择、模型求解和模型评价等。

问题建模是指了解实际问题的背景、意义、数据等信息,并将问题抽象成数学形式;模型选择是指从候选模型中选择合适的模型,并进行合适的约束和简化;模型求解是指利用现有的数学方法对模型进行求解;模型评价是指对求解结果进行判断和评价。

第二,数学建模的应用。

数学建模广泛应用于各个领域,如物理、化学、经济、医学、环境等。

具体应用包括利用数学建模预测自然灾害、优化物流系统、研究生态环境等。

第三,数学建模的研究前沿。

数学建模的研究前沿主要包括非线性数学建模、混合整数线性规划、时间序列分析等。

这些前沿问题都需要新的理论和方法来求解。

计算机仿真技术的研究计算机仿真技术的研究也包括以下几个方面。

第一,仿真软件的开发。

仿真软件是计算机仿真技术的核心,它能够模拟实际问题,并通过仿真结果来辅助决策和优化。

目前广泛应用的仿真软件包括Matlab, Simulink, Comsol等。

第二,计算机图形学的研究。

计算机图形学主要研究计算机如何呈现和处理现实世界中的图形和动画。

它与计算机仿真技术密切相关,常用于可视化仿真结果。

第三,仿真算法的研究。

仿真算法主要研究如何利用数学方法和计算机算法来模拟实际问题。

目前最常用的仿真算法包括Monte Carlo仿真、离散事件仿真等。

数学建模与计算机仿真技术的联合应用数学建模和计算机仿真技术通常相互配合应用,以实现对实际问题的深入研究和解决。

计算机技术与数学建模的有机联系

计算机技术与数学建模的有机联系

计算机技术与数学建模的有机联系计算机技术与数学建模的有机联系摘要本文阐述了计算机技术对数学建模的影响,以及它在数学建模竞赛中的应用,结合2012年全国大学生数学建模竞赛题目重点分析了数学建模的特点,探讨了多种计算机技术在数学建模中不可或缺的作用,为更好地开展数学建模,提出了建设性思路和方法。

关键词数学建模计算机技术计算机模拟一、引言计算机科学技术的迅猛发展,给许多学科带来了巨大的影响。

它不但使问题的求解变得更加方便、快捷和精确,而且使解决实际问题的领域变得更加广泛。

计算机适合于解决那些规模大、难以解析的数学模型。

在历届国际和中国大学生的数学建模(MCM)竞赛中,学生经常用计算机模拟方法求解,然后解释验证以及指导实际问题。

这个过程如果用人工实现,费时费力且短时期内可能得不到很好的解决,如果借助计算机来完成这些过程,就从根本上加快了数学建模全过程的进度,使数学建模的发展如虎添翼[1]。

因此,计算机技术是数学建模过程中不可缺少的工具和手段,数学建模也把大学生学习计算机技术与研究数学科学两者紧密结合在一起。

二、计算机技术在数学建模中的重要性众所周知,计算机是数学建模的产物,同时计算机技术的发展又极大地推动了数学建模活动,计算机高速的运算能力,非常适合数学建模过程中的数值计算;它的大容量贮存能力以及网络通讯功能,使得数学建模过程中资料存贮、检索变得方便有效;它的多媒体化,使得数学建模中一些问题能在计算机上进行更为逼真的模拟;它的智能化,能随时提醒、帮助我们进行数学模型求解[2]。

近年来的数学建模竞赛对学生的计算机技术的要求是越来越高,几乎所有的竞赛题目都涉及大量的数值计算或逻辑运算,因此不掌握计算机技术和相关数学软件的使用很难取得较好成绩的。

因此,计算机技术和数学建模之间具有密不可分的联系,两者只有有机结合,才能有效地提高学生灵活运用理论知识的能力、知识迁移的'能力、实际应用能力以及分析问题和解决问题的能力[3]。

计算机技术在数学建模中的应用

计算机技术在数学建模中的应用

计算机技术在数学建模中的应用数学建模是一种将现实问题抽象为数学模型并运用数学方法进行分析和求解的方法。

随着计算机技术的不断发展和应用,计算机在数学建模中的作用变得越来越重要。

本文将探讨计算机技术在数学建模中的应用,并从实际案例出发,论述其在数学建模中发挥的重要作用。

一、计算机在数学模型的建立中的应用数学建模的第一步是建立问题的数学模型,这要求我们能够准确地描述问题,并将其转化为数学形式。

计算机在这一过程中发挥着重要的作用。

例如,在非线性规划问题中,我们需要求解一个非线性的优化问题,这个问题的求解过程非常复杂。

借助计算机,我们可以将问题的目标函数和约束条件转化为数学表达式,并通过求解软件来获得问题的最优解。

计算机的高计算能力和快速运算速度,使得我们能够处理更加复杂的数学模型,并获得更准确的解答。

二、计算机在数学模型的求解中的应用数学建模的第二步是对建立好的数学模型进行求解,获得问题的解析解或近似解。

计算机在数学模型的求解过程中发挥着重要的作用。

例如,在微分方程求解中,我们常常需要借助计算机进行数值计算。

通过数值方法,我们可以将微分方程转化为差分方程,并借助计算机进行迭代计算。

这样,我们就可以获得微分方程的近似解。

计算机不仅可以进行有效的计算,还能够通过图像绘制等方式直观地展示问题的求解过程和结果,使得我们更加容易理解和分析问题。

三、计算机在数学模型的分析和验证中的应用数学建模的第三步是对求解得到的数学模型进行分析和验证,确保模型的有效性和适用性。

计算机在这一过程中也起到了关键的作用。

例如,在系统动力学建模中,我们需要对系统进行仿真分析,通过模拟系统的运行过程来研究系统的行为和性能。

计算机可以帮助我们建立系统的仿真模型,并进行模拟实验,观察系统的运行情况和结果。

通过对仿真结果的分析,我们可以进一步优化数学模型,确保模型的准确性和可靠性。

总结起来,计算机技术在数学建模中发挥着重要的作用。

它不仅可以帮助我们快速建立数学模型,还能够通过高效的计算和图像展示,帮助我们求解和分析数学模型,提高问题求解的效率和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模与计算机的联系及重要性
摘要:在当今科技发达的今天,计算机已经得到了广泛的应用,也为数学建模的计算提供了有力工具。

本文浅谈了数学建模与计算机在人类生产和生活中的重要性。

关键词:数学建模计算机重要性
当今社会计算机已经被广泛的应用了,在计算机的协助下许多问题的求解变得简单、方便、快捷。

而数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。

在科技迅猛发展的今天计算机和数学建模在人类的生存和发展中都具有举足轻重的作用。

一、数学建模与计算机息息相关
其一、我们在模型求解时,有些计算单纯的用纸和笔是难以完成的,这就需要利用计算机上机计算、编制软件、绘制图形等,当结果通过计算机算出后也必须通过打印机随时进行输出。

其二、数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展方面做出杰出贡献的人,在数学方面也颇有造诣。

我们在遇到一些实际问题时往往需要计算机和数学建模同时应用才能解决问题,否则问题将无法进行。

数学问题与计算机通常采用一些数学软件(lingo,Matlab,MathCAD 等等)的命令来描述算法,既简单又容易操作。

例如下面有这样一道
题就是利用数学软件lingo 求解的。

例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大?
解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型
为:
目标函数 12max 200300z x x =+
约束条件 1212100,120,160,
0,1,2.
i x x x x x i ≤⎧⎪≤⎪⎨+≤⎪⎪≥=⎩
编写LINGO 程序如下:
MODEL:
SETS:
SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J;
ENDSETS
DATA:
A=1,2 ; B=100,120; C=200,300;
ENDDATA
MAX=@SUM(SHC:C*X);
@FOR(SHC(I):X(I)<B(I)); @SUM(SHC(I):A(I)*X(I))<=160; END
程序运行结果如下
Global optimal solution found.
Objective value: 29000.00
Total solver iterations: 0
Variable Value Reduced Cost
A( 1) 1.000000 0.000000
A( 2) 2.000000 0.000000
B( 1) 100.0000 0.000000
B( 2) 120.0000 0.000000
C( 1) 200.0000 0.000000
C( 2) 300.0000 0.000000
X( 1) 100.0000 0.000000
X( 2) 30.00000 0.000000
J( 1) 0.000000 0.000000
J( 2) 0.000000 0.000000
J( 3) 0.000000 0.000000
Row Slack or Surplus Dual Price
1 29000.00 1.000000
2 0.000000 50.00000
3 90.00000 0.000000
4 0.000000 150.0000
最优解为12100,30,x x ==最优值为29000.00z =.即每天生产100个M 产品30个P 产品,可获得29000元利润.可见数学建模和计算机共同为问题求解提供了有效的手段,对其它课程的辅助学习帮助也是极大的。

二、 数学建模和计算机共同促进科学问题的探索
在自然科学中许多问题都被归结为了某些数学问题,数学建模将这些应用问题的静态特性和动态特性用数据和图形的方式多方面描述,有助于问题的解决。

数学建模问题绝大部分来自一些具体的科研课题或实际工程问题,而不同于普通的数学习题或竞赛题。

数学建模问题的特点是:面向现实生活的应用,有相关的科研背景,综合性强,涉及面广,因素关系复杂,缺乏足够的规范性,难以套用传统成熟的解决手段,数据量庞大,可采取的算法也比较复杂,结果具有一定的弹性空间,需要一定的伴随条件,许多问题得到的只能是近似解。

这些难度大、工作量大问题都需要数学建模和计算机共同合作来解决。

由此
可见,二者在科学问题的探索上作用极大、密不可分的。

三、数学建模和计算机共同完成优秀的课件
为了提高教学效率,学生对教师制作课件的水平也越来越高,这就需要我们制作出非常优秀的数学课件,制作数学课件需要使用大量的数学对象(数学符号、数学公式、数学表格、数学图形等)。

数学建模利用相关的软件就可以完成复杂的数值计算机和符号运算。

而且数学软件的HTML、TeX图形输出格式,可以直接用于课件的创作。

有些软件可以得到数学符号和公式的数学排版系统,这样就避免了输入公式和符号的麻烦,同时老师和学生们也可以利用一些软件(Flash,Firework.Dreamweaver等)和与之相结合,并稍加润色,就会成为高水平的数学课件样本。

四、数学建模和计算机课的实用性都非常强
我身边从事教育的朋友对数学建模和计算机课都非常感兴趣,我想原因在于这两门课程的实用性都非常强。

数学模型是利用数学语言模拟现实的模实的模型,是用来解释现实问题的。

而计算机已经成为了当今社会人类生产、生活必备之物。

大到世界各国、小到各个家庭都应用到了计算机,它能帮助人类把复杂性的问题简单化,从而也推动了社会的进步、人类的发展。

因此,我相信数学建模和计算机一样会越来越受到人们的重视。

五、数学建模和计算机一样应该在各学校早点开设
现在计算机课程小学有的已经开设了,而数学建模一般大学才有,我们应该把简单的数学建模题编成一本书,提前在中小学开设,相信同学们一定会对这门课程感兴趣,同时也会促进其它课程的学习,从而为快速提高教学效率奠定坚实的基础。

参考文献《计算机应用基础》
《优化数学课堂教学》 2012-2-22。

相关文档
最新文档