高中数学基础知识汇编(PDF版)

合集下载

高中数学基本知识点汇总(2篇)

高中数学基本知识点汇总(2篇)

高中数学基本知识点汇总(2篇)高中数学基本知识点汇总(一)一、集合与函数1. 集合的基本概念集合是数学中最基本的概念之一,表示具有某种共同性质的事物的全体。

常见的集合表示方法有列举法和描述法。

列举法:将集合中的元素一一列举出来,例如 \( A = \{1, 2, 3\} \)。

描述法:用集合中元素的共同性质来描述集合,例如\( B = \{x \mid x > 0\} \)。

2. 集合的基本运算并集:两个集合的所有元素的集合,记作 \( A \cup B \)。

交集:两个集合的共同元素的集合,记作 \( A \cap B \)。

补集:全集中不属于某集合的元素的集合,记作 \( C_UA \)。

差集:属于第一个集合但不属于第二个集合的元素的集合,记作 \( A B \)。

3. 函数的概念函数是数学中描述两个变量之间依赖关系的重要工具。

函数的定义域、值域和对应关系是函数的三要素。

定义域:函数中自变量可以取值的集合。

值域:函数中因变量可以取值的集合。

对应关系:自变量与因变量之间的对应法则。

4. 常见函数类型一次函数:\( y = ax + b \),图像为一条直线。

二次函数:\( y = ax^2 + bx + c \),图像为一条抛物线。

指数函数:\( y = a^x \),其中 \( a > 0 \) 且 \( a \neq 1 \)。

对数函数:\( y = \log_a x \),其中 \( a > 0 \) 且 \( a\neq 1 \)。

三角函数:包括正弦函数 \( y = \sin x \)、余弦函数 \( y = \cos x \) 和正切函数 \( y = \tan x \)。

5. 函数的性质单调性:函数在某一区间内单调递增或单调递减。

奇偶性:奇函数满足 \( f(x) = f(x) \),偶函数满足 \( f(x) = f(x) \)。

周期性:函数在某一区间内重复出现,例如三角函数。

高中数学会考知识点总结(超级经典)(2020年8月整理).pdf

高中数学会考知识点总结(超级经典)(2020年8月整理).pdf

数学学业水平复习知识点第一章 集合与简易逻辑1、 集合(1)、定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。

集合中的元素具有确定性、互异性和无序性;表示一个集合要用{ }。

(2)、集合的表示法:列举法()、描述法()、图示法();(3)、集合的分类:有限集、无限集和空集(记作φ,φ是任何集合的子集,是任何非空集合的真子集); (4)、元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;(5)、常用数集:自然数集:N ;正整数集:N ;整数集:Z ;整数:Z ;有理数集:Q ;实数集:R 。

2、子集(1)、定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ(2)、性质:①、A A A ⊆⊆φ,;②、若C B B A ⊆⊆,,则C A ⊆;③、若A B B A ⊆⊆,则A =B ; 3、真子集(1)、定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂; (2)、性质:①、A A ⊆≠φφ,;②、若C B B A ⊆⊆,,则C A ⊆;4、补集①、定义:记作:},|{A x U x x A C U ∉∈=且;②、性质:A A C C U A C A A C A U UU U ===)(,, φ; 5、交集与并集(1)、交集:}|{B x A x x B A ∈∈=且性质:①、φφ== A A A A , ②、若B B A = ,则A B ⊆ (2)、并集:}|{B x A x x B A ∈∈=或性质:①、A A A A A ==φ , ②、若B B A = ,则B A ⊆6、一元二次不等式的解法:(二次函数、二次方程、二次不等式三者之间的关系)ABBA不等式解集的边界值是相应方程的解含参数的不等式ax 2+b x +c>0恒成立问题⇔含参不等式ax 2+b x +c>0的解集是R ; 其解答分a =0(验证bx +c>0是否恒成立)、a ≠0(a<0且△<0)两种情况。

高考数学知识点总结(超级详细).pdf

高考数学知识点总结(超级详细).pdf
k
y 1 [ f (x) b]的反函数.
k
28.几个常见的函数方程
(1)正比例函数 f (x) cx , f (x y) f (x) f ( y), f (1) c .
(2)指数函数 f (x) ax , f (x y) f (x) f ( y), f (1) a 0 .
(6) f (x a) f (x) f (x a) ,则 f (x) 的周期 T=6a.
30.分数指数幂

0
1 1.
f (x) N M N
8.方程 f (x) 0 在 (k1, k2 ) 上有且只有一个实根,与 f (k1) f (k2 ) 0 不等价,前者是后者的一个必要而不是充分条件.特别地,
方 程 ax2 bx c 0(a 0) 有 且 只 有 一 个 实 根 在 (k1, k2 ) 内 , 等 价 于
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
16.函数的单调性
(1)设 x1 x2 a,b, x1 x2 那么
(x1 x2 ) f (x1) f (x2 ) 0
f (x1) f (x2 ) 0 x1 x2
f (x)在a,b上是增函数;
函数是奇函数;如果一个函数的图象关于 y 轴对称,那么这个函数是偶函数.
19.若函数 y f (x) 是偶函数,则 f (x a) f (x a) ;若函数 y f (x a) 是偶函数,则 f (x a) f (x a) .
20.对于函数 y f (x) ( x R ), f (x a) f (b x) 恒成立 , 则函数 f (x) 的对称轴 是函数 x a b ;两个函数 y f (x a) 与

高中数学基础知识汇总[经典版].pdf

高中数学基础知识汇总[经典版].pdf

高中数学基础知识汇总[经典版]高中数学知识归纳汇总目录第一部分集合 (3)第二部分函数与导数 (4)第三部分三角函数、三角恒等变换与解三角形 (8)第四部分立体几何 (10)第五部分直线与圆 (12)第六部分圆锥曲线 (14)第七部分平面向量 (16)第八部分数列 (17)第九部分不等式 (19)第十部分复数 (20)第十一部分概率 (21)第十二部分统计与统计案例 (22)第十三部分算法初步 (23)第十四部分常用逻辑用语与推理证明 (24)第十五部分推理与证明 (25)第十六部分理科选修部分 (26)第一部分 集合1.N ,Z ,Q ,R 分别表示自然数集、整数集、有理数集、实数集;2.交集,}.{B x A x x B A ∈∈=且I 并集,}.{B x A x x B A ∈∈=或Y 符号区分; 3.(1)含n 个元素的集合的子集数为2n ,非空子集数为2n -1;真子集数为2n -1;非空真子集的数为2n -2; (2);B B A A B A B A =⇔=⇔⊆Y I 注意:讨论的时候不要遗忘了φ=A 的情况。

(3));()()();()()(B C A C B A C B C A C B A C I I I I I I Y I I Y == 4.φ是任何集合的子集,是任何非空集合的真子集。

第二部分 函数与导数1.定义域:①抽象函数;已知[k(x)]f 定义域,求[g(x)]f 定义域,(x)k 与(x)g 值域相同。

(具体可以参考本节第4点复合函数定义域求法)。

②具体函数。

分母不为0,偶次根号下不为负数,0a 中a 不为0,tan θ ,log a x 中的x 为正数。

2.值域:①一元二次方程配方法 ;②换元法;③分离参数法 ;3.解析式:①配方法 ;②换元法;③待定系数和;④消去法。

4.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤g(x)≤b 解出;② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x ∈[a,b]时,求g(x)的值域。

高中数学知识点全总结(电子版)

高中数学知识点全总结(电子版)

高中数学知识点全总结(电子版)高中数学知识点全一、求导数的(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即_二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。

记作:=A。

如:2、函数的极限:当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。

2、在的导数。

3、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是_注:函数的导函数在时的函数值,就是在处的导数。

例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。

由此,可以利用导数求曲线的切线方程。

具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=_(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

如何学好高中数学方法1、上课认真听、仔细做笔记学习新的知识首先得通过老师的讲解,然后自己理解,这样才能通过做题巩固,不然上课不认真听的话,下课自己做题也不会,即使自己参照例题做出来了,也会有很多地方不理解,而且自己学还很浪费时间。

所以高中的学生们一定不能轻视了上课老师讲的内容。

再有一点就是数学也是需要记笔记的,上课的时候把老师讲的书上没有的步骤都记一下,重点的内容该画的画,改写的写,千万不要觉得现在看了一眼就记住了,要知道数学的知识从高一到高三会越来越难,前面的知识相当于为后面做铺垫,尤其是高三复习的时候。

所以同学们在高一高二的时候老师讲的重点的内容一定要整理在笔记上,不然到了高三复习的时候忘记了又得浪费时间重新做笔记。

2、以课本为主,把握课本去理解提高数学成绩主要是靠听课和做题来提高。

高中数学基础知识汇总.pdf

高中数学基础知识汇总.pdf

f ( x)( a 0)
f ( x) 的周期为 2a ;
8.基本初等函数的图像与性质
⑴幂函数: y x ( R) ;⑵指数函数: y a x (a 0, a 1) ;
⑶对数函数 : y log a x(a 0, a 1) ;⑷正弦函数 : y sin x ;
⑸余弦函数: y cos x ;( 6)正切函数: y tan x ;⑺一元二次函数: ax 2 bx c 0 ;
11.函数图象(曲线)对称性的证明
(1)证明函数 y f ( x) 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点
仍在图像上;
( 2)证明函数 y f ( x) 与 y g (x) 图象的对称性,即证明 y f ( x) 图象上任意点关于对称
中心(对称轴)的对称点在 y g (x) 的图象上,反之亦然;
f ( x) ;ⅱ y f ( x) y 0 y
f (x) ;
ⅲ y f (x) x 0 y f ( x) ; ⅳ y f (x) y x x f ( y) ;
③ 翻转变换:
ⅰ ) y f ( x) y f (| x |) ——— 右不动,右向左翻( f ( x) 在 y 左侧图象去掉) ;
ⅱ ) y f ( x) y | f ( x) | ——— 上不动,下向上翻( | f (x) |在 x 下面无图象) ;
如没有特别说明, 遇到的周期都指最小正周期。
① y sin x : T 2 ;② y cos x : T 2 ;③ y tan x : T ;
④ y Asin( x
), y A cos( x
) : T 2 ;⑤ y tan x : T

||
||
(3) 与周期有关的结论

高中数学基础知识汇总

高中数学基础知识汇总

高中数学基础知识汇总一、集合、简易逻辑(14课时,8个)1、集合;2.子集、补集;3.交集、并集;4.逻辑连结词;5.四种命题;6.充要条件。

二、函数(30课时,12个)1、映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩展;7.有理指数幂的运算性质;8.指数函数;9.对数;10.对数的运算性质;11.对数函数。

三、数列(12课时,6个)1、数列的有关概念;2.等差数列;3.等差数列的前n项和;4.数列求和的常用方法。

四、三角函数(46课时,17个)1、角的概念的扩展;2.弧度的概念;3.任意的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.期中轴线对称、伸缩变换和图象的间断点;11.函数的图象与性质;12.还请大家注意平移和伸缩变换,它们是研究图象的基本方法。

五、平面解析几何(16课时,7个)1、平面直角坐标系;2.直线方程;3.圆的方程。

六、不等式(10课时,5个)1、不等式的基本性质;2.一元一次不等式和一元二次不等式;3.不等式的证明。

七、平面向量(12课时,8个)1、向量的基本概念及表示方法;2.向量的运算。

高中语文基础知识汇总一、表达方式:记叙、描写、抒情、议论、说明二、文学体裁:诗歌、小说、散文、剧本、传记文学、报告文学、寓言三、修辞手法:比喻、借代、夸张、对偶、对比、反复、反问、设问、引用、四、表现手法:象征、联想、想象、衬托(正衬、反衬)、烘托(即托与衬的区别)、渲染、用典、动静相衬、虚实相生等五、选材剪材:选材要围绕写作中心,选择感受最深的事来写,选择材料要典型新颖。

剪裁就是对详写和略写的安排。

材料有详有略,才能突出中心。

六、结构安排:包括开头和结尾、段落和层次、过渡和照应,以及伏笔和点睛之笔。

高中数学几何基础知识点全面梳理汇编

高中数学几何基础知识点全面梳理汇编

高中数学几何基础知识点全面梳理汇编在高中数学中,几何是一个非常重要的部分。

掌握几何基础知识点对于学好数学非常关键。

本文将从平面几何和立体几何两个方面来全面梳理高中数学几何基础知识点。

一、平面几何基础知识点1. 点、线、面的基本概念- 点:在几何中,点是最基本的概念,它没有长度、宽度和厚度。

- 线:通过两个点可以确定一条直线,直线没有宽度,只有长度。

- 面:由三个或三个以上的点确定的平面称为面,面是由无数个点组成,没有厚度。

2. 角的基本概念- 角:由两条射线和一个公共端点组成的图形称为角。

- 角的度量:角的度量用角度来表示,圆周角为360度。

- 角的分类:根据角的度量可以分为锐角、直角、钝角和平角。

3. 三角形的性质与分类- 三角形:由三条线段组成的图形称为三角形。

- 三角形的分类:根据边长和角度可以将三角形分为等边三角形、等腰三角形和普通三角形。

- 三角形的性质:三角形有很多重要的性质,如角的和为180度、任意两边之和大于第三边等。

4. 直线与圆的关系- 直线与圆的位置关系:直线与圆可能相离、相切或相交。

- 切线与法线:切线是与圆相切于一点且与半径垂直的直线;法线是与切线垂直的直线。

5. 相似三角形- 相似三角形的定义:两个三角形的对应角相等,对应边成比例时称为相似三角形。

- 相似三角形的性质:相似三角形之间有很多重要的性质,如对应边成比例、对应角相等等。

二、立体几何基础知识点1. 空间几何基本概念- 点、线、面与空间:空间是由无数个点、线和面组成的物体。

- 平行线:在空间中,不在同一平面内且不相交的线段称为平行线。

2. 多面体的概念与分类- 多面体:由多个面围成的立体称为多面体。

- 多面体的分类:根据面的形状和边的性质可以将多面体分为正多面体、柱面体和棱柱面体等。

3. 圆柱、圆锥与球体- 圆柱:由一个底面和与底面平行的母线组成的立体称为圆柱。

- 圆锥:由一个底面和一个顶点连接底面上的所有点组成的立体称为圆锥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档