2016年全国高中数学联赛(A卷)

合集下载

2016年全国高中数学联赛A卷真题word版

2016年全国高中数学联赛A卷真题word版

2016年全国高中数学联赛A 卷一试一、填空题1. 设实数a 满足a a a a <-<1193,则a 的取值范围是__________.2. 设复数w z ,满足3=z ,()()i w z w z 47+=-+,其中i 是虚数单位,w z ,分别表示w z ,的共轭复数,则()()w z w z 22-+的模为__________.3. 正实数w v u ,,均不等于1,若5log log =+w vw v u ,3log log =+v u w v ,则u w log 的值为__________.4. 袋子A 中装有2张10元纸币和3张1元纸币,袋子B 中装有4张5元纸币和3张1元纸币.现随机从两个袋子中各取出两张纸币,则A 中剩下的纸币面值之和大于B 中剩下的纸币面值之和的概率为 .5. 设P 为一圆锥的顶点,C B A ,,是其底面圆周上的三点,满足︒=∠90ABC ,M 为AP 的中点.若2,2,1===AP AC AB ,则二面角A BC M --的大小为__________.6. 设函数()10cos 10sin 44kx kx x f +=,其中k 是一个正整数.若对任意实数a ,均有(){}(){}R x x f a x a x f ∈=+<<1,则k 的最小值为__________.7. 双曲线C 的方程为1322=-y x ,左、右焦点分别为1F 、2F .过点2F 作一直径与双曲线C 的右半支交于点Q P ,,使得︒=∠901PQ F ,则PQ F 1∆的内切圆半径是__________.8. 设4321,,,a a a a 是100,,2,1Λ中的四个互不相同的数,满足()()()2433221242322232221a a a a a a a a a a a a++=++++, 则这样的有序数组()4321,,,a a a a 的个数为__________.二、解答题 9. 在ABC ∆中,已知⋅=⋅+⋅32.求C sin 的最大值.10. 已知()x f 是R 上的奇函数,()11=f ,且对任意0<x ,均有()x xf x x f =⎪⎭⎫ ⎝⎛-1. 求()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛511501981319912110011f f f f f f f f Λ的值.11. 如图所示,在平面直角坐标系xOy 中,F 是x 轴正半轴上的一个动点.以F 为焦点、O 为顶点作抛物线C .设P 是第一象限内C 上的一点,Q 是x 轴负半轴上一点,使得PQ 为C 的切 线,且2=PQ .圆21,C C 均与直线OP 相切于点P ,且均与x 轴相切.求点F 的坐标,使圆1C 与2C 的面积之和取到最小值.2016年全国高中数学联赛A 卷二试一、设实数201621,,,a a a Λ满足21119+>i i a a ()2015,,2,1Λ=i .求()()()()212016220162015232221a a a a a a a a ----Λ的最大值.二、如图所示,在ABC ∆中,X 、Y 是直线BC 上的两点(X 、B 、C 、Y 顺次排列),使得AB CY AC BX ⋅=⋅. 设ACX ∆,ABY ∆的外心分别为21,O O ,直线21O O 与AB 、AC 分别交于点U 、V .证明:AUV ∆是等腰三角形.三、给定空间中10个点,其中任意四点不在一个平面上,将某些点之间用线段相连,若得到的图形中没有三角形也没有空间四边形,试确定所连线段数目的最大值.四、设p 与2+p 均是素数,3>p .数列{}n a 的定义为21=a ,⎥⎦⎤⎢⎣⎡+=--n pa a a n n n 11,Λ,3,2=n . 这里[]x 表示不小于实数x 的最小整数.证明:对1,,4,3-=p n Λ均有11+-n pa n 成立.。

2016全国高中数学联赛试题及评分标准

2016全国高中数学联赛试题及评分标准

2016全国高中数学联赛试题及评分标准9月将至,开学的同时,每年一年一度的全国高中数学联赛也即将来了,同学们可知道高中联赛的前世今生吗?从1956年起,在华罗庚、苏步青等老一辈数学家的倡导下,开始举办中学数学竞赛,在北京、上海、福建、天津、南京、武汉、成都等省市都开展了数学竞赛,并举办了由京、津、沪、粤、川、辽、皖合办的高中数学联赛。

1979年,我国大陆上的29个省、市、自治区都举办了中学数学竞赛。

1980年,在大连召开的第一届全国数学普及工作会议上,确定将数学竞赛作为中国数学会及各省、市、自治区数学会的一项经常性工作,每年9月第二个星期日举行“全国高中数学联合竞赛”。

竞赛分为一试和二试,在这项竞赛中取得优异成绩的全国约200名学生有资格参加由中国数学会奥林匹克委员会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”(每年元月)。

各省的参赛名额由3人到8人不等,视该省当年的联赛考试成绩而定,且对于承办方省份有一定额外的优惠。

在CMO中成绩优异的60名左右的学生可以进入国家集训队。

经过集训队的选拔,将有6名表现最顶尖的选手进入中国国家代表队,参加国际数学奥林匹克(IMO)。

为了促进拔尖人才的尽快成长,教育部规定:在高中阶段获得全国数学联赛省、市、自治区赛区一等奖者便获得保送重点大学的资格,对于没有保送者在高考中加分,加分情况根据各省市政策而定,有些省、市、自治区保留了竞赛获奖者高考加5分到20分不等,而部分省级行政区已经取消了竞赛加分。

对二、三等奖获得者,各省、市、自治区又出台了不同的政策,其中包括自主招生资格等优惠录取政策。

为严格标准,中国数学会每年限定一等奖名额1000名左右,并划分到各省、市、自治区。

各省、市、自治区在上报一等奖候选人名单的同时,还要交上他们的试卷,最终由中国数学会对其试卷审核后确定获奖名单。

☆ 试题模式自2010年起,全国高中数学联赛试题新规则如下:联赛分为一试、加试(即俗称的“二试”)。

《全国高中数学联赛真题暨答案(2011-2021)

《全国高中数学联赛真题暨答案(2011-2021)
ቤተ መጻሕፍቲ ባይዱ
2011 年全国高中数学联赛二试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2020 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 72 2020 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 78 2020 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 84 2020 年全国高中数学联赛二试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 89 2019 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 93 2019 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 97 2019 年全国高中数学联赛一试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 101 2019 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 105 2018 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 109 2018 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 114 2018 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 118 2018 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 122 2017 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 125 2017 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 133 2017 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 141 2017 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 147 2016 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 2016 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 2015 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2015 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 2014 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 2014 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 2013 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2013 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 2012 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2012 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 2011 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2011 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

2016年全国高中数学联赛福建赛区预赛试卷及参考答案

2016年全国高中数学联赛福建赛区预赛试卷及参考答案

2016年福建省高中数学竞赛暨2016年全国高中数学联赛(福建省赛区)预赛试卷参考答案(考试时间:2016年5月22日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。

请直接将答案写在题中的横线上)1.若函数()3cos()sin()63f x x x ππωω=+--(0ω>)的最小正周期为π,则()f x 在区间02π⎡⎤⎢⎥⎣⎦,上的最大值为 。

【答案】【解答】∵ ()3cos()sin()3cos()sin()63662f x x x x x πππππωωωω=+--=+-+-3cos()cos()4cos()666x x x πππωωω=+++=+,且()f x 的最小正周期为π。

∴ 2ω=,()4cos(2)6f x x π=+。

又02x π⎡⎤∈⎢⎥⎣⎦,时,72666x πππ≤+≤,∴ 266x ππ+=,即0x =时,()f x 在区间02π⎡⎤⎢⎥⎣⎦,上取最大值 2.已知集合{}2320A x x x =-+≤,13B x a x ⎧⎫=<⎨⎬-⎩⎭,若A B ⊆,则实数a 的取值范围为 。

【答案】 1()2-+∞,【解答】{}12A x x =≤≤。

由13a x <-,得3103ax a x -++<-。

∴ 0a =时,{}3B x x =<。

满足A B ⊆。

0a >时,由3103ax a x -++<-,得1(3)03x a x -+>-,133B x x x a ⎧⎫=<>+⎨⎬⎩⎭或。

满足A B ⊆。

0a <时,由3103ax a x -++<-,得1(3)03x a x -+<-,133B x x a ⎧⎫=+<<⎨⎬⎩⎭。

由满足A B ⊆,得131a +<,102a -<<。

综合得,12a >-。

a 的取值范围为1()2-+∞,。

《全国高中数学联赛真题暨答案(2011-202

《全国高中数学联赛真题暨答案(2011-202

−−→ AF1
·
−−→ AF2
+
−−→ BF1
·
−−→ BF2
=
0,

|AB| |F1F2|
的值为

3.
设a
>
0,函数 f (x)
=
x+
100 x
在区间 (0, a] 上的最小值为 m1,在区间 [a, +∞) 上的
最小值为 m2,若 m1m2 = 2020,则 a 的值为 .
4.
设z
为复数,若
z−2 z−i
为实数(i 为虚数单位),则 |z + 3| 的最小值为
.
5. 在 △ABC 中,AB = 6,BC = 4,边 AC 上的中线长为 √10,则 sin6 A + P − ABC 的所有棱长均为 1,L, M, N 分别为棱 P A, P B, P C 的中点,则该 正三棱锥的外接球被平面 LM N 所截的截面面积为 .
2011 年全国高中数学联赛二试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2020 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 72 2020 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 78 2020 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 84 2020 年全国高中数学联赛二试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 89 2019 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 93 2019 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 97 2019 年全国高中数学联赛一试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 101 2019 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 105 2018 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 109 2018 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 114 2018 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 118 2018 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 122 2017 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 125 2017 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 133 2017 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 141 2017 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 147 2016 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 2016 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 2015 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2015 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 2014 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 2014 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 2013 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2013 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 2012 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2012 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 2011 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2011 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

历年全国高中数学竞赛试卷及答案(77套)

历年全国高中数学竞赛试卷及答案(77套)
2017年全国高中数学联合竞赛(四川初赛)
(5月14日下午14:30—16:30)
题目



总成绩
13
14
15
16
得分
评卷人
复核人
考生注意:1.本试卷共有三大题(16个小题),全卷满分140分
2.用黑(蓝)色圆珠笔或钢笔作答。
3.计算器,通讯工具不准待入考场。
4.解题书写不要超过封线
一,单项选择题(本大题共6个小题,每小题5分,共30分)
二,填空题(本大题共6个小题,每小题5分,共30分)
7.1008 8.0 9.2 10. 11.2 12.243
三,解答题(本大题共4个小题,每小题20分,共80分)
13.证明:(1)因为
所以,数列 成等比数列 ……5分
于是
即数列 的通项公式 ……10分
(2)法1:因为 对任意的正整数n都成立,故
由(1)知
∴共有C 种比赛方式.
三.(15分)长为 ,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积.
解:过轴所在对角线BD中点O作MN⊥BD交边AD、BC于M、N,作AE⊥BD于E,
则△ABD旋转所得旋转体为两个有公共底面的圆锥,底面半径AE= = .其体积V= ( )2· = π.同样,
1.设有三个函数,第一个是y=φ(x),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x+y=0对称,那么,第三个函数是( )
A.y=-φ(x)B.y=-φ(-x)C.y=-φ-1(x)D.y=-φ-1(-x)
解:第二个函数是y=φ-1(x).第三个函数是-x=φ-1(-y),即y=-φ(-x).选B.

2016年高中数学联赛四川预赛试题

2016年高中数学联赛四川预赛试题

2016年全国高中数学联合竞赛(四川初赛)(5月22日下午14:30——16:30)考生注意:1、本试卷共三大题(16个小题),全卷满分140分.2、用黑(蓝)色圆珠笔或钢笔作答.3、计算器、通讯工具不准带入考场.4、解题书写不要超过密封线.一、单项选择题(本大题共6个小题,每小题5分,共30分)1、在ABC Δ中,设内角C B A 、、的对边长分别为c b a 、、.命题p :2B C A +=,且a c b 2=+;命题q : ABC Δ是正三角形.则命题p 是命题q 的 【 】.A、充要条件B、充分条件但不是必要条件C、必要条件但不是充分条件D、既不是充分条件又不是必要条件2、若i 为虚数单位,复数122z i =+,则2016z 的值是 【 】. A 、1− B 、i − C 、i D 、13、已知函数t tx x x f +−=2)(2,当[]1,1−∈x 时,记)(x f 的最小值为m ,则m 的最大值是 【 】.A 、2−B 、0C 、41D 、1 4、对任意正整数n 与()k k n ≤,),(k n f 表示不超过n k ⎡⎤⎢⎥⎣⎦,且与n 互质的正整数的个数,则(100,3)f = 【 】.A 、11B 、13C 、14D 、195、设数列{}n a满足:*116,n a a n +==∈N ,其中[]x 表示不超过实数x 的最大整数,n S 为{}n a 的前n 项和,则2016S 的个位数字是 【 】.A 、1B 、2C 、5D 、66、已知F 1、F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且1260F PF ∠=D,则该椭圆和双曲线的离心率之积的最小值是 【 】.ABC 、1 D三 题 目一 二13 14 15 16 总成绩 得 分 评卷人 复核人 得 分 评卷人二、填空题(本大题共6个小题,每小题5分,共30分)7、在54(4)x x+−的展开式中3x 的系数是 .(用具体数作答) 8、若实数α、β、γ构成以2为公比的等比数列,sin α、sin β、sin γ构成等比数列,则cos α的值是 .9、已知正四棱锥S −ABCD 侧棱长为4,∠ASB =30°,过点A 作截面与侧棱SB 、SC 、SD 分别交于E 、F 、G ,则截面AEFG 周长的最小值是 . 10、已知△ABC 的外心为O ,且234OA OB OC ++JJG JJJ G JJJ G =0,则cos BAC ∠的值是 .11、实数x 、y 、z 、w 满足1x y z w +++=,则23345M xw yw xy zw xz yz =+++++的最大值是 .12、对于任何集合S ,用||S 表示集合S 中的元素个数,用()n S 表示集合S 的子集个数.若A 、B 、C 是三个有限集,且满足条件:① ||||2016A B ==;② )()()()(C B A n C n B n A n ∪∪=++.则||C B A ∩∩的最大值是 .三、解答题(本大题共4个小题,每小题20分,共80分)13、设等比数列{}n a 的前n 项和为n S ,2n n S r =+(r 为常数),记22(1log )n n b a =+ *()n ∈N .(1)求数列{}n n a b 的前n 项和n T ;(2)若对于任意的正整数n,都有1212111n nb b b b b b +++⋅⋅⋅≥"成立, 求实数k 的最大值.得 分 评卷人得 分 评卷人14、已知a 、b 、c 为正实数, 求证:222()()()111a b c abc a b c b c a c a b a b c++≥≥+−+−+−++.15、已知抛物线y 2=2px 过定点C (1,2),在抛物线上任取不同于点C 的一点A ,直线AC 与直线y =x +3交于点P ,过点P 作x 轴的平行线交抛物线于点B .(1)求证:直线AB 过定点;(2)求△ABC 面积的最小值.16、已知a为实数,函数f(x)=|x2−ax|−ln x,请讨论函数f(x)的单调性.。

2016年全国高中数学联赛陕西赛区预赛及解析

2016年全国高中数学联赛陕西赛区预赛及解析

2016年全国高中数学联赛陕西赛区预赛注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题1.已知集合,10},A为M的子集,且子集A中各元素的和为8.则满足条件的子集A共有()个.A. 8B. 7C. 6D. 52.在平面直角坐标系中,不等式组{√3x−y≤0,x−√3y+2≥0,y≥0表示的平面区域的面积是A. √32B. √3C. 2D. 2√33.设a、b、c为同一平面内的三个单位向量,且a⊥b.则(c-a)•(c-b)的最大值为().A. 1+√2B. 1-√2C. √2-1D. 14.从1,2,…,20这20个数中,任取三个不同的数.则这三个数构成等差数列的概率为().A. 319B. 119C. 338D. 1385.已知A、B为抛物线y=3-x2上关于直线x+y=0对称的相异两点.则|AB|等于().A. 3B. 4C. 3√2D. 4√26.设函数f(x)=x3+ax2+6x+c(a、b、c均为非零整数).若f(a)=a3,f(b)=b3,则c的值为().A. -16B. -4C. 4D. 167.如图,在棱长为1的正四面体ABCD中,G为△BCD的重心,M为线段AG的中点.则三棱锥M-BCD的外接球的表面积为().A. πB. 3π2C. √6π4D. √6π88.设非负实数a 、b 、c 满足ab +be +ca =a +b +c >0.则√ab +√bc +√ca 的最小值为( ). A. 2 B. 3 C. √3 D. 2√2第II 卷(非选择题)二、填空题9.在数列n 4=1,a 11=9,且任意连续三项的和均为15.则a 2016=________. 10.设m 、n 均为正整数,且满足24m =n 4.则m 的最小值为________.11.设函数f(x)、g(x)分别是定义在R 上的奇函数和偶函数,且f(x)+g(x)=2x ,若对x∈[1,2],不等式af(x)+g(x)≥0恒成立,则实数a 的取值范围是__________.12.设a ∈R .则函数f (x )=|2x -1|+|3x -2|+|4x -3|+|5x -4|的最小值为_______. 三、解答题13.设x y 、均为非零实数,且满足sincos955tan 20cos sin 55x y x y πππππ+=-.(Ⅰ)求yx的值; (Ⅱ)在ABC ∆中,若tan yC x=,求sin 22cos A B +的最大值. 14.已知直线l :y =√3x +4,动圆⊙O :x 2+y 2=r 2(1<r <2),菱形ABCD 的一个内角为60°,顶点A 、B 在直线l 上,顶点C 、D 在⊙O 上.当r 变化时,求菱形ABCD 的面积S 的取值范围. 15.如图,⊙O 1与⊙O 2交于P 、Q 两点,⊙A 的弦以与⊙O 2相切,⊙O 2的弦PB 与⊙O 1相切,直线PQ 与△P AB 的外接圆⊙O 交于另一点R .证明:PQ =QR .16.设函数f(x)=lnx +a(1x−1)(a ∈R ), 且f (x )的最小值为0.(1)求a 的值;(2)若数列{a n }满足a 1=1,a n +l =f (a n )+2(n ∈Z +),记S n =[a 1]+[a 2]+…+[a n ],[m ]表示不超过实数m 的最大整数,求S n .17.记“∑”表示轮换对称和.设a 、b 、c 为正实数,且满足abc =1.对任意整数n ≥2,证明:∑√b+cn≥2n.参考答案1.C【解析】1.注意到,元素和为8的子集A有{8}、{1,7}、{2,6}、{3,5}、{1,2,5}、{1,3,4},共6个.选C.2.B【解析】2.由不等式组绘制可行域如图所示,则A(−2,0),B(1,√3),不等式组表示的平面区域的面积是S=12×2×√3=√3 .本题选择B选项.3.A【解析】3.由a⊥b,|a|=|b|=|c|=1,知a·b=0,|a+b|=√2.设向量c与a+b的夹角为θ.则 (c-a)·(c-b)=c2-c·(a+b)+a·b=|c|2-|c||a+b|cosθ=1-√2cosθ≤1+√2,当且仅当cosθ=-1,即0=π时,上式等号成立.故(c-a)·(c-b)的最大值为1+√2.选A.4.D【解析】4.从这20个数中任取三个数,可构成的数列共有A 203个. 若取出的三个数a 、b 、c 成等差数列,则a +c =2b . 故a 与c 的奇偶性相同,且a 、c 确定后,b 随之而定. 从而,所求概率为p =2A 102A 203=138. 选D.5.C【解析】5.因为点A 、B 关于直线x +y =0对称,所以,设点A (a ,b ),B (-b ,-a ). 又点A 、B 在抛物线y =3-x 2上,则{b =3−a 2,−a =3−b2⇒{a =−2,b =−1 或{a =1,b =2.不妨设点A (-2,-1),B (1,2).则|AB |=3√2. 选C. 6.D【解析】6.设g (x )=f (x )-x 3=ax 2+bx +c . 由f (a )=a 3,f (b )=b 3⇒ g (a )=g (b )=0.则a 、b 为方程g (x )=0的两个根⇒a +b =−ba ,ab =ca⇒ c =−a 4a+1=−(a 2+1)(a −1)−1a+1.因为c 为整数,所以,a +1=±1⇒a =0(舍去)或-2. 故c =16. 选D. 7.B【解析】7.因为G 为正△BCD 的重心,所以,AG ⊥平面BCD ⇒AG ⊥BG . 在Rt △AGB 中, AB =1,BG =23×√32=√33⇒AG =√AB 2−BG 2=√63⇒MG = 12AG =√66. 在Rt △MGB 中,MB =√MG 1+BG2=√22⇒MC =MB =√22.则MB 2+MC 2=12=BC 2⇒MB ⊥MC .类似地⊥Ml ),MD ⊥MB .于是,三棱锥M -BCD 的外接球的直径等于以MB 、MC 、MD 为棱的正方体的体对角线长. 设三棱锥M -BCD 的外接球半径为R . 则2R =√3MB =√62.故外接球的表面积S =4πR 2=3π2. 选B. 8.A【解析】8.不妨设a ≥b ≥c .由均值不等式得(a+b +c)(√ab +√bc +√ca)≥(a +b)√ab +(b +c)√bc +(c +a)√ca ≥2√ab √ab +2√bc √bc +2√ca √ca =2(ab +bc +ca),当且仅当c =0且a =b 时,上式等号成立.又ab +bc +ca =a +b +c >0,则√ab +√bc +√ca ≥2. 由c =0,a =b ,ab +bc +ca =a +b +c ,得a =b =2.故当a 、b 、c 中有两个为2、一个为0时,√ab +√bc +√ca 取得最小值为2. 选A. 9.5【解析】9.依题意,对任意n ∈Z +,有a n +a n +1+a n +2=a n +1+a n +2+a n +3=15⇒a n +3=a n . 则a 1=a 4=1,a 2=a 11=9,a 3=15-a 1-a 2=5. 故a 2016=a 3×672=a 3=5. 10.54【解析】10.由n 4=24m =23×3m ,知m min =2×33=54. 11.[−176,+∞)【解析】11. 由f (x )+g (x )=2x ①⇒ f (-x )+g (-x )=2-x⇒-f (x )+g (x )=2-x . ②由式①、②得,g (x )=2x +2−x 2 ,f (x )=2x −2−x2.由af (x )+g (2x )≥0⇒a (2x -2-x )+22x +2-2x ≥0. ③令t =2x -2 –x ,由x [1,2],得t ∈[32,154] ,且22x +2-2x =t 2+2.则对t ∈[32,154]由式③得−a ≤t +2t.因为函数t +2t在区间[32,154]内单调递增,所以t =√32时,(t +2t)min=176. 故−a ≤176,即a ≥−176.12.1【解析】12. 注意到,f(x)=2|x −12|+3|x −23|+4|x −34|+5|x −25|=2(|x −1|+|x −4|)+3(|x −2|+|x −4|+4|x −3|)≥2|(x −12)−(x −45)|+3|(x −23)−(x −45)| =2|45−12|+3|45−23|=1当且仅当(x −12)(x −45)≤0,(x −23)(x −45)≤0,x −34=0,即x =34时,等号成立. 故f (x )min=f(34)=113.(Ⅰ)1;(Ⅱ)23.【解析】13.(Ⅰ)先对已知条件左右两边同除以x ,得到tan95tan 201tan 5yx y x πππ+=-,再令tan y x θ=,即可得到9tan()tan520ππθ+=,从而得到θ的表达式,进而可求出yx的值;(Ⅱ)由(Ⅰ)可求出C 的值,从而可得到)(B A +的值,用B 表示A ,代入到sin 22cos A B +中,最终式子变成了一个二次函数的形式,利用三角函数的有界性可求出最值.试题分析:(Ⅰ)由已知得tan95tan 201tan 5yx y x πππ+=-,令θtan =xy ,则tan tan 95tan201tan tan 5πθππθ+=-,即9tan()tan 520ππθ+= 所以9520k ππθπ+=+,即()4k k Z πθπ=+∈. 故tan tan()14y k x πθπ==+=.(Ⅱ)由(Ⅰ)得tan 1C =,因为0C π<<, 所以4C π=,从而34A B π+=, 则3222A Bπ=-.所以3sin 22cos sin(2)2cos 2A B B Bπ+=-+2cos 22cos 2cos 2cos 1B B B B =-+=-++2132(cos )22B =--+故当1cos 2B =,即3B π=时,sin 22cos A B +取得最大值为32. 14.(0,3√32)∪(2√32,6√3)【解析】14.因为菱形ABCD 有一个内角为60°,所以,△ACD 或△BCD 为等边三角形,不妨设为等边三角形,如图3.因为圆心O 到直线l 的距离为2>r ,所以,直线l 与⊙O 相离. 设l CD :y =√3x -b .则直线l 与CD 的距离d =|b−4|2.又圆心O 到直线CD 的距离为|b|2,故|CD|=2√r 2−(|b|2)2=√4r 2−b 2.由d=√32|CD|⇒|b−4|2=√32√4r 2−b 2⇒b 2−2b +4=3r 2.因为1<r <2,所以,3<b 2-2b +4<12⇒-2<b <1或1<b <4. 又S=2S ΔACD =2×√34|CD|2=2×√34(√3)2d 2=√36(b −4)2,而函数S 在区间(-2,1)、区间(1,4)内分别单调递减,故菱形ABCD 的面积S 的取值范围是(0,3√32)∪(2√32,6√3).15.见解析【解析】15.联结O 1O 2,分别与PQ 、PO 交于点M 、N ,则O 1O 2⊥PQ ,且M 为PQ 的中点.联结PO 1、PO 2、OO l 、OO 2、OQ 、OR . 因为P A 与⊙O 2相切,所以,P A ⊥PO 2. 又P A 为⊙O 1与⊙O 的公共弦,则P A ⊥O 1O . 于是,PO 2∥O 1O . 类似地,PO 1∥O 2O .所以,四边形PO 1OO 2为平行四边形. 从而,N 为PO 的中点.由M 为PQ 的中点,知MN ∥OQ ,即O 1O 2∥OQ . 因为O 1O 2⊥OQ ,所以,OQ ⊥PR .又OP =OR ,故Q 为PR 的中点,即PQ =QR . 16.(1) 当a =1时,f (x )取得最小值0. (2) S n =2n -1【解析】16. (1)f ′(x)=1x −a 2=x−a 2(x >0).当a ≤0时,f ′(x)>0,则f (x )在区间(0,+∞)内单调递增,无最小值,不符合题意. 当a >0时,若0<x <a ,则f ′(x)<0; 若x >a ,则f ′(x)>0.所以,函数f (x )在区间(0,a )内单调递减,在区间(a ,+∞)内单调递增. 故f (x )min =f (a )=ln a -a +1.设g (a )=ln a -a +1(a >0).则g ′(a)=1a −1=1−aa . 若0<a <1,则g ′(a)>0; 若a >1,则g ′(a)<0.所以,函数g (a )在区间(0,1)内单调递增,在区间(1,+∞)内单调递减. 故g (a )≤g (1)=0.当且仅当a =1时,上式等号成立. 从而,当a =1时,f (x )取得最小值0. (2)由(1)知f(x)=lnx +1x−1.则a n +1=f (a n )+2=lna n +1a n+1.由a 1=1,得a 2=2. 从而,a 3=ln 2+32.因为12<ln 2<1,所以,2<a 3<3.下面用数学归纳法证明:当n ≥3时,2<a n <3. 当n =3时,结论已成立. 假设n =k (k ≥3)时,2<a k <3. 当n =k +1时,有a k+1=lna k +1a k+1.由(1)知 h (x )=f (x )+2=lnx +1x+1 在区间(2,3)内单调递增. 所以,h (2)<h (a k )<h (3),即ln2+32<ℎ(a k )<ln3+13+1.由ln 2>12,ln 3<53⇒2<h (a k )<3⇒2<a k +1<3, 即当n =k +1时,结论也成立.由归纳假设,知对一切整数n ≥3,均有2<a n <3. 于是,[a 1]=1,[a n ]=2(n ≥2).故S n =[ a 1]+[a 2]+…+[a n ] =1+2(n -1)-2n -1. 17.见解析【解析】17.不妨设a ≤b ≤c .则√b +c n ≥√c +b n ≥√a +b n ,b+c n ≤√c+a n ≤a+bn . 由切比雪夫不等式得∑a =∑(√b +c n ·√b+c n)≤13(∑√b +c n )(∑√b+c n ). 又由幂平均不等式得13∑√b +c n ≤√13∑(b +c)n =√23∑a n . 故∑a ≤√23∑a n (∑√b+c n ) ⇒√b+c n≥√23∑a n =√32(∑a)n−1n 由已知及均值不等式得∑a≥3√abc 3=3. 故√b+c n ≥√2n .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档