计量经济学之线性回归模型的扩展

合集下载

计量经济学-多元线性回归模型

计量经济学-多元线性回归模型
多元线性回归模型的表达式
Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断

计量经济学第三章-回归模型的扩展

计量经济学第三章-回归模型的扩展
验的结果,或直接取成 1/|ei|、1/ei2
第二节 自相关性
一Байду номын сангаас自相关性的概念及其产生原因:
1.定义:随机误差项的各期值之间存在相关性 COV(t, s)0, ts
例:投资函数、生产函数
2.产生原因: 1)模型遗漏了自相关的解释变量; 2)模型函数形式的设定误差; 3)经济惯性; 4)随机因素影响; (注:自相关性更易产生于时序数据)
原理:辅助回归检验 命令:View\ResidualTest \SerialCorrelation LM
Test
四、自相关性的修正方法
1.利用广义差分变换消除自相关性:
步骤: 实质:GLS估计
2.的估计方法:
1)近似估计; 2)迭代估计;
3.Eviews软件的实现:
1)检验自相关性的阶数; 2)在LS命令中增加AR项;
二、异方差的影响
1.OLS估计不再是最佳估计量; 2.T检验可靠性降低; 3.增大预测误差; 三、异方差的检验 ★1.图形分析: (1)观察Y、X相关图:SCAT Y X (2)残差分析:观察回归方程的残差图
在方程窗口直接点击Residual按钮; 或:点击View\Actual,Fitted,Residual\Table
1. 调整季节波动
y a bx 1D1 2D2 3D3
2. 检验模型结构的稳定性(P141)
y a bx D XD
3. 混合回归
例8.教材P132
第五节 滞后变量模型
一、滞后效应与滞后变量的作用 1、产生滞后效应的原因:
1)心理因素:消费习惯、消费心理(如价格、利率) 2)技术原因:农民收入、农产品价格、天气条件 3)制度原因:

计量经济学回归分析模型

计量经济学回归分析模型

计量经济学回归分析模型计量经济学是经济学中的一个分支,通过运用数理统计和经济理论的工具,研究经济现象。

其中回归分析模型是计量经济学中最为常见的分析方法之一、回归分析模型主要用于确定自变量与因变量之间的关系,并通过统计推断来解释这种关系。

回归分析模型中的关系可以是线性的,也可以是非线性的。

线性回归模型是回归分析中最为常见和基础的模型。

它可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε其中,Y代表因变量,X1,X2,...,Xk代表自变量,β0,β1,β2,...,βk代表回归系数,ε代表随机误差项。

回归模型的核心是确定回归系数。

通过最小二乘法估计回归系数,使得预测值与实际观测值之间的差异最小化。

最小二乘法通过使得误差的平方和最小化来估计回归系数。

通过对数据进行拟合,我们可以得到回归系数的估计值。

回归分析模型的应用范围非常广泛。

它可以用于解释和预测经济现象,比如价格与需求的关系、生产力与劳动力的关系等。

此外,回归分析模型还可以用于政策评估和决策制定。

通过分析回归系数的显著性,可以判断自变量对因变量的影响程度,并进行政策建议和决策制定。

在实施回归分析模型时,有几个重要的假设需要满足。

首先,线性回归模型要求因变量和自变量之间存在线性关系。

其次,回归模型要求自变量之间不存在多重共线性,即自变量之间没有高度相关性。

此外,回归模型要求误差项具有同方差性和独立性。

在解释回归分析模型的结果时,可以通过回归系数的显著性来判断自变量对因变量的影响程度。

显著性水平一般为0.05或0.01,如果回归系数的p值小于显著性水平,则说明该自变量对因变量具有显著影响。

此外,还可以通过确定系数R^2来评估模型的拟合程度。

R^2可以解释因变量变异的百分比,值越接近1,说明模型的拟合程度越好。

总之,回归分析模型是计量经济学中非常重要的工具之一、它通过分析自变量和因变量之间的关系,能够解释经济现象和预测未来走势。

在应用回归分析模型时,需要满足一定的假设条件,并通过回归系数和拟合优度来解释结果。

庞浩计量经济学第二章简单线性回归模型

庞浩计量经济学第二章简单线性回归模型

最小二乘法的应用
在统计学和计量经济学中,最 小二乘法广泛应用于估计线性 回归模型,以探索解释变量与 被解释变量之间的关系。
通过最小二乘法,可以估计出 解释变量的系数,从而了解各 解释变量对被解释变量的影响 程度。
最小二乘法还可以用于时间序 列分析、预测和数据拟合等场 景。
最小二乘法的局限性
最小二乘法假设误差项是独立同分布 的,且服从正态分布,这在实际应用 中可能不成立。
最小二乘法无法处理多重共线性问题, 当解释变量之间存在高度相关关系时, 最小二乘法的估计结果可能不准确。
最小二乘法对异常值比较敏感,异常 值的存在可能导致参数估计的不稳定。
04
模型的评估与选择
R-squared
总结词
衡量模型拟合优度的指标
详细描述
R-squared,也称为确定系数,用于衡量模型对数据的拟合程度。它的值在0到1之间,越接近1表示模型拟合越 好。R-squared的计算公式为(SSreg/SStot)=(y-ybar)2 / (y-ybar)2 + (y-ybar)2,其中SSreg是回归平方和, SStot是总平方和,y是因变量,ybar是因变量的均值。
数据来源
本案例的数据来源于某大型电商 平台的销售数据,包括商品的销 售量、价格、评价等。
数据处理
对原始数据进行清洗和预处理, 包括处理缺失值、异常值和重复 值,对分类变量进行编码,对连 续变量进行必要的缩放和转换。
模型建立与评估
模型建立
基于处理后的数据,使用简单线性回 归模型进行建模,以商品销售量作为 因变量,价格和评价作为自变量。
线性回归模型是一种数学模型, 用于描述因变量与一个或多个 自变量之间的线性关系。它通 常表示为:Y = β0 + β1X1 + β2X2 + ... + ε

计量经济学-3多元线性回归模型

计量经济学-3多元线性回归模型
计量经济学-3多元线性 回归模型
2020/12/8
计量经济学-3多元线性回归模型
•第一节 概念和基本假定
•一、基本概念: • 设某经济变量Y 与P个解释变量:X1,X2,…,XP存在线性依
存关系。 • 1.总体回归模型:
•其中0为常数项, 1 ~ P 为解释变量X1 ~ XP 的系数,u为随机扰动项。 • 总体回归函数PRF给出的是给定解释变量X1 ~ XP 的值时,Y的期 望值:E ( Y | X1,X2,…,XP )。 • 假定有n组观测值,则可写成矩阵形式:
计量经济学-3多元线性回归模型
•2.样本回归模型的SRF
计量经济学-3多元线性回归模型
•二、基本假定: • 1、u零均值。所有的ui均值为0,E(ui)=0。 • 2、u同方差。Var(ui)=δ2,i=1,2,…,n
计量经济学-3多元线性回归模型

计量经济学-3多元线性回归模型

•第二节 参数的最小二乘估 计
•五、预测
•(一)点预测 •点预测的两种解释:
计量经济学-3多元线性回归模型
•(二)区间预测
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
•例5,在例1中,若X01=10,X02=10,求总体均值E(Y0|X0) 和总体个别值Y0的区间预测。

Yi=β0+β1Xi1+β2Xi2+ui
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
•三、最小二乘估计的性质
计量经济学-3多元线性回归模型

5、计量经济学【多元线性回归模型】

5、计量经济学【多元线性回归模型】

二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。

计量经济学第五章(新)

计量经济学第五章(新)

利用Eviews得回归方程为:
ˆ ln y 1.6524 0.3397 ln x1 0.9460 ln x2
t = (-2.73) p= (0.0144*) R2=0.995 (1.83) (0.085) (9.06) (0.000**)
对回归方程解释如下:斜率系数0.3397表示 产出对劳动投入的弹性,即表明在资本投入保持 不变的条件下,劳动投入每增加一个百分点,平 均产出将增加0.3397个百分点。同样地,在劳动 投入保持不变的条件下,资本投入每增加一个百 分点,产出将平均增加0.8640个百分点。两个弹 性系数相加为规模报酬参数,其数值等于1.1857 ,表明墨西哥经济的特征是规模报酬递增的(如 果数值等于1,属于规模报酬不变;小于1,则属 于规模报酬递减)。
20.5879 z 1 20.5879 x (4.6794 ) (4.3996 ** )
3、半对数模型和双对数模型
形式为:
ln y 0 1 x u y 0 1 ln x u
的模型称为半对数模型。 把形式为:
ln y 0 1 ln x u
即可利用多元线性回归分析的方法处理了。
例如,描述税收与税率关系的拉弗曲线:抛物线 t = a + b r + c r2 c<0
t:税收;
r:税率
设 z1 = r, z 2 = r2, 则原方程变换为 s = a + b z1 + c z 2 c<0
例 某生产企业在1981-1995年间每年的产量和总成本如下 表,试用回归分析法确定其成本函数。
表5-1 墨西哥的实际GDP、就业人数和实际固定资本
年份 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 GDP 114043 120410 129187 134705 139960 150511 157897 165286 178491 199457 212323 226977 241194 260881 277498 296530 306712 329030 354057 374977 就业人数 8310 8529 8738 8952 9171 9569 9527 9662 10334 10981 11746 11521 11540 12066 12297 12955 13338 13738 15924 14154 固定资产 182113 193749 205192 215130 225021 237026 248897 260661 275466 295378 315715 337642 363599 391847 422382 455049 484677 520533 561531 609825

第四章 多元线性回归模型(计量经济学,潘省初)

第四章 多元线性回归模型(计量经济学,潘省初)

Y1 β 0 β 1 X 11 β 2 X 21 β 3 X 31 ... β K X K 1 u1 Y2 β 0 β 1 X 12 β 2 X 22 β 3 X 32 ... β K X K 2 u2 ...... Yn β 0 β 1 X 1n β 2 X 2 n β 3 X 3n ... β K X Kn un
ˆ 116.7 0.112 X 0.739 P Y (9.6) (0.003) (0.114)
R 2 0.99
Y和X的计量单位为10亿美元 (按1972不变价格计算).
食品价格平减指数 P 100,( 1972 100) 总消费支出价格平减指数
3
多元线性回归模型中斜率系数的含义
上述假设条件可用矩阵表示为以下四个条件:
9
(1) E(u)=0 (2)
由于
E (uu) 2 I n
u1 u2 uu u1 u2 ... u n
2
u12 u1u2 ...... u1un 2 u2u1 u2 ...... u2un ... un ................................. 2 unu1 unu2 ...... un
一.假设条件 (1)E(ut)=0, t=1,2,…,n (2)E(ui uj)=0, i≠j (3)E(ut2)=σ2, t=1,2,…,n (4)Xjt是非随机量, j=1,2, … k
t=1,2, … n
8
除上面4条外,在多个解释变量的情况下,还有 两个条件需要满足: (5)(K+1)< n; 即观测值的数目要大于待估计的参数的个数 (要有足够数量的数据来拟合回归线)。 (6)各解释变量之间不存在严格的线性关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于j
1, ,k,有Var(
j
)
2
TSS j
(
1
1
R
2 j
),
定义方差膨胀因子: VIFj
1
1
R
2 j
易知,如果
X
与其他解释变量的多重
j
共线性程度越高,
则R
2 j
越大,从而
VIF
j
越大
多重共线性的影响
例题4.2
Rj VIFj Var( j ) SE( j )
0.00 1.00
A
A
Var(
j
)
2
2) 容许度(tolerance):定义容许度TOL如下,一般认为如 果TOL小于0.1,说明该变量与其他变量存在高度共线性
TOLj
1
R
2 j
1 VIFj
3) 条件指数(condition index, CI):一般认为,如果条件指 数在10到30之间,存在较强的多重共线性,如果大于30,则 存在严重的多重共线性
R2
0.9635,
2
R
0.9531
Collinearity diagnostics :
VIF1 VIF2 482.13 TOL1 TOL2 0.02 CI 166.25
例题:p209-211
多重共线性的诊断
几点说明
o 多重共线性是一个程度问题而不是存在与否的问题
o 多重共线性是关于样本的一种特征
n 18, k 1, R2 0.2220
nR 2
3.996
2 0.05
(1)
Байду номын сангаас
3.84
所以可以拒绝误差项同 方差的假设
异方差性的诊断
怀特检验(White test)
对于Yi 0 1 X1i 2 X 2i 3 X 3i ui ,
a.根据模型用OLS方法估计出每个 ui2
b.做以下模型的 OLS回归,得到 Ru2
对于Yi 0 1 X1i 2 X 2i k X ki ui
a .完全共线性:存在一组 不同时为0的1、、k,
令1 X1i 2 X 2i k X ki 0
或:X 1i
2 1
X 2i
k 1
X ki
( 1 0 )
b.多重共线性:存在一组 不同时为0的1、、k,
令1 X1i 2 X 2i k X ki ei 0
4) 无法根据回归结果进行预测
异方差性的诊断
1) 图解法 2) 布罗施-培甘检验(Breusch-Pagan test) 3) 怀特检验(White test) 4) 帕克检验(Park test) 5) Glesjer test 6) 戈德菲尔德-匡特检验(Goldfeld-Quandt test )
什么是异方差性
o 异方差性(heteroscedasticity):回归模型误差项的方 差不相同
o 同方差性(homoscedasticity):回归模型误差项的方差 不相同
对于Yi 0 1 X1i 2 X 2i k X ki ui
异方差性: Var (
ui
)
E(
ui2
|
X1i
o 任意两个解释变量之间的相关系数较大,比如大于0.9 o 解释变量之间的偏相关系数较大
简单方法一般来说不很精确
多重共线性的诊断
运用回归分析进行诊断
o 逐步分析法:先引入经济意义明显,并且在统计上最显著的 解释变量,然后逐步引入其他解释变量。如果新引入的解释 变量使原有解释变量的系数估计值发生明显变化,或t统计量 明显变小,则说明新引入的解释变量与原有解释变量之间存 在多重共线性,可以去掉新引入的解释变量
第四讲 线性回归分析的扩展 Linear Regression Analysis: Extension
一、引言:放宽经典模型的假设 二、多重共线性 三、异方差性 四、序列相关 五、设定误差
一、引言:放宽经典模型的假设
引言:放宽经典模型的假设
经典正态线性回归模型(CNLRM)的假定
(一)关于模型的假定 1. 回归模型对参数而言是线性的 2. 模型是正确设定的
同方差性
概 率 密 度
X:受教育年限 Y:工资
Y
X
什么是异方差性
异方差性
X:收入
概 率
Y:消费支出


Y
X
什么是异方差性
异方差性
X:时间
概 率
Y:打字错误


Y
例题:p220-224
X
什么是异方差性
产生异方差性的原因
原因 解释变量与误差项相关
解释变量:收入 被解释变量:消费支出 随着收入的增加,支出差异性更大
假定10对于大样 本数据不是必需的 假定。
本讲主要考虑放 宽了其余假定后面 临的问题
引言:放宽经典模型的假设
微数缺测性
o 从理论上讲,样本容量n和解释变量数目k必须满足n>k+2 ,才能进行OLS估计和假设检验。但事实上,即便n满足 上述条件,但如果样本很小,那么虽然能够进行估计和检 验,也很难通过t检验。
异方差性的诊断
图解法
在同方差假定下作回归分析,用残差项平方与解释变量做散点图
u2
X
异方差性的诊断
图解法:简便处理
o 用残差项平方与因变量拟合值做散点图
u2
Y
异方差性的诊断
例题4.4(p222)
o 1988年美国公司销售额与研发支出的关系
RDi 192.993 0.032salei
se (990.985) (0.008)
TSS
j
VIFj
0.50 1.33 1.33A 1.15 A
2 0.90 5.76 5.76A 2.40 A A
TSS j
0.95 10.26 10.26A 3.20 A
0.99 50.25 50.25A 7.09 A
多重共线性的诊断
简单诊断方法
o R2高而单个系数的t值小,换言之,F检验显著,但显著的 t值少
260 2686
Yi 24.775 0.942 X1i 0.042 X 2i
se (6.752) (0.823) (0.081)
t (3.669) (1.144) (0.526)
p (0.008) (0.290) (0.615)
n 10, df 7, F 92.4019
r12
0.9990,
t (0.195) (3.830)
p (0.848) (0.001)
n 18, df
17, F
14.669, R2
2
0.4783, R
0.4457
异方差性的诊断
例题4.4
RES1_SQ
60000000 50000000 40000000 30000000 20000000 10000000
有重要的解释变量未被 包含在回归模型中
异常值(outliers)
物价也是影响支出的因素,物价上 涨时,高收入者有可能拿出更多的 钱来消费,因而支出差异性更大
异方差性的影响
1) 回归系数的OLS估计量虽然是无偏的、一致的,但不再 是有效的
2) 回归标准差的估计不再是无偏的
3) 回归系数OLS估计量的方差估计不再是无偏的,因而t 统计量不再服从t分布,F统计量不再服从F分布,从而 无法进行区间估计和假设检验
Var( j
)
2
TSS j
1
(
1
R
2 j
);SE( j
)
Var( j )
对于给定的样本,可以
计算出
2
和TSS

j
这样,如果
X
与其他自变量的线性关
j
联程度越强,
则R
2 j
越大,从而
Var
(
j
)越大。
特别地,若
R
2 j
1,则Var(
j
)
例题:p202-203
多重共线性的影响
影响程度的度量:方差膨胀因子(variance-inflation factor)
ui2 0 1 X1i k X ki vi
c.构造统计量p nRu2 ~ 2 (k )
d .对于H0
:
2
1
2 i
2,如果p统计量是显著的,
说明可以拒绝原假设, 即存在异方差性
异方差性的诊断
例题4.4 :BP Test
ui2 974469 86.232salei
p (0.842) (0.048)
o 如果研究是为了估计斜率系数和预测,多重共线性不是一个 严重的问题;但如果研究的主要目的是假设检验,则高度多 重共线性的危害就很大
多重共线性的处理
1) 剔除共线性变量中不太重要的解释变量 2) 补充新数据 3) 重新设定模型
o 练习题:p216-217,习题10.14-10.19
三、异方差性
1. 什么是异方差性 2. 异方差性的影响 3. 异方差性的诊断 4. 异方差性的处理
多重共线性的诊断
例题4.3(p218)
Y Consumption
70 65 90 95 110 115 120 140 155 150
X1
X2
Income Wealth
80 810
100 1009
120 1273
140 1425
160 1633
180 1876
200 2052
220 2201
240 2435
(二)关于解释变量的假定 3. 解释变量X是确定性变量 4. 若X是随机的,则误差项与X不相关 5. 解释变量的取值有足够变异 6. 解释变量之间不存在完全的线性关系
相关文档
最新文档