地球物理勘探方法
石油勘探中的地球物理方法

石油勘探中的地球物理方法石油勘探是指通过一系列的地质、地球物理、地球化学和工程技术手段,寻找和确定地下存在的石油和天然气资源。
地球物理方法在石油勘探中起着重要的作用,它通过测量和分析地下的物理现象,为勘探人员提供了宝贵的信息。
本文将重点介绍石油勘探中常用的地球物理方法。
一、重力法重力法是石油勘探中最早应用的地球物理方法之一。
它利用地球上的重力场差异来确定地下的密度变化情况,从而推测出潜在的石油和天然气储集区域。
勘探人员会在勘探区域进行测量,记录地面上不同点的重力数值,并进行分析和解释。
重力法对于勘探深度较浅、密度差异较大的油气藏具有较好的适应性。
二、磁法磁法是通过测量地球磁场的方向和大小变化,来寻找地下油气储藏的一种方法。
它基于地球上不同岩石的磁性差异,通过测量地面上的磁场数值,推测出可能存在石油或天然气的区域。
磁法主要用于勘探深度较浅、岩石磁性差异较大的地区。
三、电法电法是通过测量地下电阻率变化来判断地下是否存在石油或天然气储藏的方法。
电法利用地下岩石或含油气层的电导率不同,从而在地面上进行电阻率测量,得到电阻率分布图,推测出可能存在油气的区域。
电法适用于勘探深度较深、岩石导电性有明显差异的地区。
四、地震法地震法是石油勘探中最常用的地球物理方法之一。
它通过人工产生地震波,并观测和分析地下岩石中的波传播情况,以确定地下是否存在石油或天然气储藏。
地震方法适用于勘探深度较大、岩石孔隙性和速度变化较大的地区。
勘探人员会在勘探区域进行地震勘探,收集和处理地震数据,并利用地震剖面图来解释和定位潜在的油气藏。
综上所述,地球物理方法在石油勘探中具有不可替代的作用。
重力法、磁法、电法和地震法都是常用的地球物理勘探手段,通过测量和分析地下的物理现象,为勘探人员提供重要的信息。
在实际勘探中,常常会综合运用多种地球物理方法,以提高勘探效果。
地球物理方法的不断发展和创新,为石油勘探带来了更高的效率和准确性,为石油行业的发展做出了重要贡献。
地球物理勘探方法

地球物理勘探方法地球物理勘探方法是一种通过测量、分析和解释地球物理场的方法,用于探测和研究地下结构和地下资源。
它在石油、矿产、水资源等领域具有广泛的应用。
地球物理勘探方法主要包括地震勘探、重力勘探、磁力勘探和电磁勘探等。
地震勘探是一种利用地震波在地下传播的特性来研究地球内部结构和地下资源的方法。
通过在地表或井孔中布设地震仪器,记录地震波的传播速度、振幅和方向等信息,可以推断地下构造的分布和性质。
地震勘探被广泛应用于石油勘探中,可以帮助确定油气藏的位置、形态和大小。
重力勘探是一种利用地球重力场的变化来研究地下结构和地下资源的方法。
通过测量地球重力场的微小变化,可以推断地下岩石密度的变化,从而研究地下构造的分布和性质。
重力勘探在矿产勘探中有广泛的应用,可以帮助确定矿床的位置、规模和品位。
磁力勘探是一种利用地球磁场的变化来研究地下结构和地下资源的方法。
地球磁场的强度和方向的变化与地下岩石的磁性有关,通过测量地球磁场的变化,可以推断地下岩石的磁性特征,从而研究地下构造的分布和性质。
磁力勘探在矿产勘探和地下水资源勘探中具有重要的应用价值。
电磁勘探是一种利用地球电磁场的变化来研究地下结构和地下资源的方法。
地球电磁场的强度和频率的变化与地下岩石的电性特征有关,通过测量地球电磁场的变化,可以推断地下岩石的电性特征,从而研究地下构造的分布和性质。
电磁勘探在矿产勘探和地下水资源勘探中被广泛应用。
除了以上几种常见的地球物理勘探方法,还有一些其他的方法,如地电勘探、测井等。
地电勘探是一种利用地下电阻率的变化来研究地下结构和地下资源的方法。
通过测量地下电阻率的变化,可以推断地下岩石的含水性和岩性,从而研究地下构造的分布和性质。
测井是一种利用井下仪器测量地下岩石物性参数的方法,可以帮助确定油气藏的性质和储量。
地球物理勘探方法是一种通过测量、分析和解释地球物理场的方法,用于探测和研究地下结构和地下资源。
地震勘探、重力勘探、磁力勘探、电磁勘探、地电勘探和测井等方法在不同领域具有广泛的应用,为资源勘探和环境研究提供了重要的技术手段。
勘探地球物理电磁法

地球物理勘探是一种通过对地球内部各种物理参数的测量来揭示地下物质结构和性质的方法。
其中,电磁法是一种常用的测量方法之一,它通过在地表放置发射线圈和接收线圈,利用交变电流在地下产生的感应电场或磁场进行测量,从而获得地下介质的电性或磁性信息。
本文将从电磁法的原理、仪器设备、数据处理和应用四个方面进行介绍。
一、电磁法的原理电磁法是基于麦克斯韦方程组的电磁感应定律和安培环路定理。
当地下存在电性或磁性异质性时,交变电流在地下会产生感应电场或磁场。
与此同时,这些感应场又会影响到地面上的发射线圈和接收线圈,从而形成测量信号。
根据不同的场强和频率范围,电磁法可以分为低频电磁法、中频电磁法和高频电磁法等多种类型。
二、电磁法的仪器设备电磁法的仪器设备主要包括发射线圈、接收线圈、控制器和数据采集系统等。
发射线圈是用来产生电流场或磁场的装置,可以分为单极子、双极子和多极子等多种类型;接收线圈则是用来接收地下感应电场或磁场信号的设备,一般采用同轴线圈或磁芯线圈;控制器主要用来控制发射线圈的电流强度和频率等参数;数据采集系统则用来采集和记录接收线圈接收到的信号,并进行后续的数据处理。
三、电磁法的数据处理电磁法的数据处理过程通常包括数据校正、滤波去噪、反演和图像重建等多个步骤。
数据校正主要是对采集到的原始数据进行校正,使其符合物理规律和实际测量要求;滤波去噪则是用来去除数据中的噪声和干扰信号,提高数据的信噪比;反演则是利用数学模型对采集到的数据进行拟合和反演,从而得到地下介质的电性或磁性信息;图像重建则是将反演得到的数据以可视化的形式呈现出来,便于分析和解释。
四、电磁法的应用电磁法在地质勘探、环境监测、资源开发等领域都有着广泛的应用。
在地质勘探中,电磁法可以较为准确地探测到地下岩层、矿体、水文地质构造以及地下溶洞等信息;在环境监测中,电磁法可以用来检测地下水位、污染物扩散范围以及地下沉降等问题;在资源开发中,电磁法可以用来寻找地下油气藏、矿产资源和地热资源等。
地球物理勘探电法电磁法

Hale Waihona Puke (4)固体电解质:离子导电,绝大多数造岩矿物,
如石英、云母、方解石、长石等,电阻率高
4、主要岩矿石电阻率及其变化范围
● ρ沉 < ρ变 < ρ火
● 沉积岩: 10 ~102Ω · m
● 火成岩: 102 ~106Ω · m
● 变质岩:介于两者之间。
5、影响电阻率的主要因素 (1)矿物成分、含量及结构 金属矿物含量↑,电阻率↓ 结构:侵染状 > 细脉状 (2)岩矿石的孔隙度、湿度 孔隙度↑,含水量↑,电阻率↓ 风化带、破碎带,含水量↑,电阻率↓ (3)水溶液矿化度 矿化度↑,电阻率↓
电化学活动性(η) 介电性(ε) 导磁性(μ)
直流电(稳定场) 人工场源
②利用场源多 天然场源
交电流(交变场)
传导类电法勘探(直 流电法)研究稳定电 流场 ③方法
电阻率法* 充电法
自然电场法 激发极化法 低频电磁法
种类多
感应类电法勘探(交 频率测深法 流电法)研究交变电 甚低频法 流场 电磁波法 大地电磁法
U MN s k I
ρ3
ρ1 ρ2
※ 视电阻率 —— 在电场有效作用范围内 各种地质体电阻率的综合影响值。
(3)影响视电阻率的因素
电极装置—供电电极(A、B)及测量电极(M、N) 的排列形式和移动方式 ① 电极装置类型及电极距的大小 ② 测点相对于地质体的位置; ③ 电场有效作用范围内各种地质体的真电阻率; ④ 各地质体的分布状态(即形状、大小、埋深及相 对位置)
地球物理勘探 电法、电磁法
什么是电法勘探:
它是以岩、矿石的电学性质(如导电性)差异为基 础,通过观测和研究与这些电性差异有关的(天然或 人工)电场或电磁场分布规律来查明地下地质构造及 有用矿产的一种物探方法,称为“电法”。
地球物理勘探方法简介

地球物理勘探方法简介地球物理勘探作为地球科学领域中的重要分支,通过测量地球的物理特征,以及地下介质的物理属性,来获取地下资源的信息。
本文将对地球物理勘探方法进行简要介绍。
一、重力勘探法重力勘探法是利用地球重力场的变化来推测地下物质的分布情况。
勘探人员通过测量不同地点的重力值,分析地球物质的密度分布。
这种方法在石油、地质灾害等领域有较广泛应用。
二、磁法勘探法磁法勘探法是测量地球表面垂直指向的磁场强度和方向,推测地下物质的磁性变化。
勘探人员通过磁力仪器测量地磁场的强度和方向变化,进而得出地下磁性物质的大致分布情况。
磁法勘探法在寻找矿藏、勘探地下管道等方面具有重要意义。
三、电法勘探法电法勘探法是利用电磁场的特性来推断地下物质的电性变化。
勘探人员通过在地下埋设电极,在地表上施加电流,测量地下电势分布和电阻率变化,从而推测地下物质的导电性差异。
电法勘探法在矿产资源勘探和地下水资源调查中具有广泛应用。
四、地震勘探法地震勘探法是通过分析地震波在地下介质传播的速度和幅度变化,来推断地下介质的结构和组成。
勘探人员通过放置震源和接收器,记录地震波传播的信息,并进行数据处理和解释。
地震勘探法在石油勘探、地质灾害预测等领域有着重要应用。
五、测井技术测井技术是通过在钻井过程中使用各种物理测量手段,获取地下岩石的物理特性和储量分布信息。
测井仪器可以测量地层电阻率、自然伽马辐射、声波速度等参数,帮助勘探人员判断地层岩性、含油气性质等重要信息。
六、地电磁勘探法地电磁勘探法是通过测量地下介质中电磁场的变化,推测地下物质的分布情况。
勘探人员通过放置电磁发射器和接收器,记录电磁场的变化情况。
地电磁勘探法在矿产资源调查、地质工程勘察等方面起到了重要作用。
七、地热勘探法地热勘探法是通过测量地壳中的温度分布,推测地下热流和地热资源的分布情况。
测温井、测温孔等技术手段可以帮助勘探人员获取地温数据,并进行数据处理与解释。
地热勘探法在地热能利用和环境地质研究中有着重要应用。
地球物理方法在资源勘探中的应用

地球物理方法在资源勘探中的应用地球物理方法是一种通过对地球内部和地表物理现象的观测和测量,从而获得地球内部结构、资源分布以及地质构造等信息的科学技术。
在资源勘探中,地球物理方法具有重要的应用价值,可以帮助人们更好地了解地质条件,寻找矿产资源、地下水等。
一、重力方法重力方法是地球物理方法中最早被应用于资源勘探的一种方法。
通过测量地球表面上的重力场变化,可以推断出地下岩石密度的分布情况,从而找到可能的矿床。
例如,通过重力方法可以检测地下含铀矿床的存在。
铀矿石的密度相对较大,因此在地下矿床富含铀的区域,重力场会出现异常。
利用重力测量仪测量这些变化,可以确定铀矿床的可能位置,为矿产资源勘探提供指导。
二、磁力方法磁力方法是另一种常用的地球物理勘探方法。
通过测量地球表面上的磁场变化,可以推断出地下岩石的磁性,从而找到可能的矿床。
例如,磁力方法在石油和天然气勘探中有着广泛应用。
石油和天然气藏主要由含油、含气层构成,这些层具有一定的磁性。
利用磁力仪测量地球表面上的磁场变化,可以确定地下含矿层的位置和可能的分布区域,为石油和天然气勘探提供重要参考。
三、地震方法地震方法是一种通过测量地球上发生的地震波传播情况,推断地下岩石结构和地质构造的方法。
地震波的传播受到地下岩石的物理特性的影响,通过分析地震波在地下的传播速度和幅度变化,可以了解地质构造、岩石密度和地下裂隙等信息。
例如,地震方法在石油勘探中有着重要的应用。
石油藏多位于地下构造复杂的地区,地震方法可以帮助勘探者确定地下构造的分布情况,并推断该区域是否有可能存在石油储藏。
四、电磁方法电磁方法是通过测量地球上电磁场的变化,推断地下地质构造和岩石分布的方法。
通过测量地球上的电磁感应信号,可以了解地下岩石的电导率和磁导率等物理特性信息。
例如,电磁方法在矿物勘探中有着广泛应用。
不同矿石具有不同的电导率和磁导率,利用电磁仪器测量这些变化,可以推断地下矿床的可能位置和规模,为矿产勘探提供重要依据。
地球物理勘探技术与方法

地球物理勘探技术与方法地球物理勘探技术与方法是一门研究地球内部结构和地下资源分布的学科,广泛应用于石油、矿产、水资源等领域。
本文将介绍几种常见的地球物理勘探技术与方法。
一、重力勘探法重力勘探法是通过测量地球表面上某一点的重力值来了解地下物质分布的一种方法。
在勘探中,常用重力仪器测量重力值,并根据不同地区的重力差异绘制重力异常图,从而推断地下物质的分布情况。
重力勘探法在油气勘探中得到广泛应用,可以帮助勘探人员找到滞留的油气储层。
二、磁力勘探法磁力勘探法是通过测量地球磁场的变化来了解地下岩石磁性的一种方法。
勘探人员通常使用磁力仪器测量地磁场的强度和方向,并将数据绘制成磁异常图,以识别地下岩石体的边界和构造特征。
磁力勘探法在矿产勘探和地质调查中具有重要地位,可以帮助勘探人员确定矿产资源的分布。
三、地电勘探法地电勘探法是通过测量地下电阻率的变化来了解地下岩石和水的分布情况的一种方法。
勘探人员通常使用电极将电流输入地下,然后测量地表上的电势差,从而计算得出地下电阻率。
地电勘探法在水文勘探、矿产勘探和工程勘察中有广泛的应用,可以帮助勘探人员确定地下水位和地下岩层的性质。
四、地震勘探法地震勘探法是通过测量地下地震波传播的速度和衰减程度来了解地下岩石层的构造和性质。
勘探人员通常利用震源激发地震波,然后通过地震仪器测量地震波在地表的到达时间和振幅变化,从而绘制地震剖面图以获取地下的构造信息。
地震勘探法在石油勘探和地质灾害预测中得到广泛应用,可以帮助勘探人员确定潜在的油气储层和地震活动区域。
总结:地球物理勘探技术与方法是通过测量地球的物理场参数,如重力、磁场、电场和地震波等,来了解地下的构造和性质。
不同的勘探方法适用于不同的地质环境和勘探目标,通过综合应用这些技术和方法,可以提高勘探的效率和准确性,为资源勘探与开发提供重要的科学依据。
地球物理勘探的方法

地球物理勘探的方法嘿,咱今儿就来说说地球物理勘探的那些事儿!你知道吗,地球就像一个超级大的神秘宝库,而地球物理勘探呢,就是我们打开这个宝库的一把神奇钥匙。
咱先来讲讲重力勘探。
这就好比是给地球称体重!通过测量地球的重力场变化,来发现地下的秘密。
想象一下,地球的每一处都有它独特的重力特征,就像每个人都有自己独特的性格一样。
我们通过精细的测量和分析,就能找出那些隐藏在地下的异常,说不定就藏着珍贵的矿产资源呢!然后是磁法勘探。
嘿,这就像是给地球做个“磁共振”!地球本身就有磁场,而地下的不同物质会对磁场产生不同的影响。
我们就利用这个特点,去探寻那些隐藏的宝藏。
是不是很神奇呀?就好像我们能透过地球的“磁场外衣”,看到它里面藏着的宝贝。
地震勘探呢,那可就更有意思啦!就像是给地球敲敲打打,听它的“回声”。
我们制造地震波,让它们在地下传播,然后接收反射回来的波。
这就像我们和地球玩一个超级有趣的游戏,通过这些波的反馈,我们就能了解地下的结构和物质分布。
电法勘探呢,就像是给地球通上电,看看电流的走向和变化。
不同的地质结构和物质对电流的反应可不一样哦,我们就根据这些来发现地下的奥秘。
这些地球物理勘探的方法,每一个都有自己独特的魅力和用处。
它们就像是一群身怀绝技的高手,各自发挥着自己的优势,为我们探索地球的秘密立下汗马功劳。
你说,要是没有这些方法,我们怎么能知道地球里面藏着这么多神奇的东西呢?它们就像是黑暗中的明灯,照亮我们探索地球的道路。
想象一下,如果我们没有重力勘探,那怎么能发现那些深埋地下的大油田呢?没有磁法勘探,那些隐藏的铁矿、铜矿不就一直被埋没了吗?没有地震勘探,我们怎么能清楚地了解地下的地质结构呢?没有电法勘探,那些和电有关的特性不就无从知晓了吗?所以啊,地球物理勘探的方法可真是太重要啦!它们让我们对地球有了更深入的了解,也为我们的生活带来了诸多好处。
我们开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地球物理探矿法一、地球物理探矿法的基本原理物探的基本特点是研究地球物理场或某些物理现象。
如地磁场、地电场、放射性场等,而不是直接研究岩石或矿石,它与地质学方法有着本质上的不同。
通过场的研究可以了解掩盖区的地质构造和产状。
它的理论基础是物理学或地球物理学,系把物理学上的理论(地电学、地磁学等)应用于地质找矿。
因此具有下列特点和工作前提:(一)物探的特点1.必须实行两个转化才能完成找矿任务。
先将地质问题转化成地球物理探矿的问题,才能使用物探方法去观测。
在观测取得数据之后(所得异常),只能推断具有某种或某些物理性质的地质体,然后通过综合研究,并根据地质体与物理现象间存在的特定关系,把物探的结果转化为地质的语言和图示,从而去推断矿产的埋藏情况与成矿有关的地质问题,最后通过探矿工程验证,肯定其地质效果。
2.物探异常具有多解性。
产生物探异常的原因,往往是多种多样的。
这是由于不同的地质体可以有相同的物理场,故造成物探异常推断的多解性。
如磁铁矿、磁黄铁矿、超基性岩,都可以引起磁异常。
所以工作中采用单一的物探方法,往往不易得到较肯定的地质结论。
一般情况应合理地综合运用几种物探方法,并与地质研究紧密结合,才能得到较为肯定的结论。
3.每种物探方法都有要求严格的应用条件和使用范围。
因为矿床地质、地球物理特征及自然地理条件因地而异,从而影响物探方法的有效性。
(二)物探工作的前提在确定物探任务时,除地质研究的需要外,还必须具备物探工作前提,才能达到预期的目的。
物探工作的前提主要有下列几方面:1.物性差异,即被调查研究的地质体与周围地质体之间,要有某种物理性质上的差异。
2.被调查的地质体要具有一定的规模和合适的深度,用现有的技术方法能发现它所引起的异常。
若规模很小、埋藏又深的矿体,则不能发现其异常;有时虽然地质体埋藏较深,但规模很大,也可能发现异常。
故找矿效果应根据具体情况而定。
3.能区分异常,即从各种干扰因素的异常中,区分所调查的地质体的异常。
如铬铁矿和纯橄榄岩都可引起重力异常,蛇纹石化等岩性变化也可引起异常,能否从干扰异常中找出矿异常,是方法应用的重要条件之一。
二、地球物理探矿法的应用及其地质效果(一)应用物探找矿的有利条件与不利条件1.物探找矿有利条件:地形平坦,因物理场是以水平面做基面,越平坦越好;矿体形态规则;具有相当的规模,矿物成分较稳定;干扰因素少;有较详细的地质资料。
最好附近有勘探矿区或开采矿山,有已知的地质资料便于对比。
2.物探找矿的不利条件:物性差异不明显或物理性质不稳定的地质体;寻找的地质体或矿体过小过深,地质条件复杂;干扰因素多,不易区分矿与非矿异常等。
(二)物探方法的种类、应用条件及地质效果简要列于表4—5。
物探方法的选择,一般是依据工作区的下列三方面情况,结合各种物探方法的特点进行选择:一是地质特点,即矿体产出部位、矿石类型(是决定物探方法的依据)、矿体的形态和产状(是确定测网大小、测线方向、电极距离大小与排列方式等决定因素);二是地球物理特性,即岩矿物性参数,利用物性统计参数分析地质构造和探测地质体所产生的各种物理场的变化特点。
如磁铁矿的粒度、品位、矿石结构等对磁化率的影响,采用方法的有效性等;三是自然地理条件,即地形、覆盖物的性质和厚度及分布情况、气候和植被土壤情况等物探方法的种类、应用条件及地质效果简要表表4.5续表三、地球物理探矿法的图件及异常解释评价举例例一:在内蒙古某地玄武岩上发现了极大值为11000γ的Z。
异常,由于玄武岩有磁性,因此人们起初认为该异常由玄武岩引起。
但用公式Z。
max=2对:计算,玄武岩至多只能引起4300y的异常。
露头测定进一步表明,玄武岩的异常不过±500~600y。
再从异常形态比较规整以及测区外围曾发现铁矿点来推断,剩余异常很可能由玄武岩下面的磁铁引起。
钻探结果证实,该异常对应着一个规模较大的鞍山式铁矿(图4—14)。
这个例子说明,对异常性质的判断要做过细的工作,否则就会造成较大的失误。
图4-14内蒙古某地铁矿磁异常一第四系;2一第三系玄武岩;3一第三系砂质黏土;4一五台群片麻岩类;5一磁铁矿体例二:我国某热液交代型铜矿位于变质岩系分布区,地表出露为元古界大理岩、云母片岩及变粒岩。
断裂发育。
矿石以黄铜矿、闪锌矿、黄铁矿为主,一般呈星散状,细脉状,局部富集成斑块状。
虽然本区铜矿及其矿化岩石的极化率高,但区内石墨化和黄铁矿化岩石布比较广泛,对激电法形成了严重干扰。
图4.15为该区第12号异常的剖面曲线。
叩。
值一般在14%以上,最高可达26%。
叩。
曲线梯度较缓,宽度约200多米。
其叩。
平面等值线较规则,沿走向长约1000m。
该异常位于河漫滩上,地表全为第四纪覆盖。
由于本区矿石多呈星散状或细脉状,硅化程度较高时,矿化较好。
故一般矿体对应高极化率和高电阻率。
而富含石墨和黄铁矿的矿化岩石,虽然极化率也高,但电阻率仅几十欧姆。
米。
据此推断12号异常为矿异常。
并在叩。
异常较高处布置了ZKl号钻孔,见到了多层矿体。
以后又沿矿带倾斜方向布置了三个钻孔,均打到多层厚度较大的矿体,有的孔内见矿总厚度达46m。
12号异常的见矿使整个矿区储量扩大了一倍。
例三:滇南岩盐产于白垩系上统勐野井组,密度为2.18g/cm3。
上覆的第四系、第三系地层密度为2.07~2.24g/cm3;下伏的侏罗、白垩系地层密度为2.6~2.7 0g/cm3。
岩盐与其下地层有0.42~0.52 g/cm3的密度差,是利用重力找盐的良好条件。
通过比例尺为1:100000的重力普查工作,发现勐野井区的布格重力异常,为一近于等轴状的重力低,幅度达一7mgal异常。
北侧重力梯度大,推测北侧含盐盆地陡,异常外围向西南和东南方向突出,反映矿体由中心向四周变薄(图4—16)。
将重力异常与根据钻井资料绘制的岩盐视厚度图和顶板深度图对比表明,矿体等视厚度线与重力异常图形态非常相似,但岩盐厚度最大地段与负异常中心略有偏移。
囹l冒2圉囤囹囹图4-15我国某铜矿床的综合剖面图1一第四纪浮土;2一云母石英片岩;3一硅化石墨大理岩;4一变粒岩;5一铜矿体;6一仉曲线,7一P。
曲线固l臣蠹2圜3圉4圈5囹6囹7综合剖面图:3一硅化石墨大理。
曲线,7一P。
曲线图4—16勐野井布格重力异常图根据钻井已揭示的矿层厚度及含盐盆地形态进行了重力剖面正演计算,结果如图4-17所示。
计算理论曲线与实测曲线大体符合,尤其在岩盐厚度最大部位吻合甚好,说明引起重力异常的岩盐体已被钻井所控制。
曰t圈z回。
田“回s国s固,图4—17赌咒山一勐野江地质剖面重力正演计算结果与实测重力异常曲线对比图 1一正演计算重力异常曲线;2一实测重力异常曲线;3一断裂编号;4一上第三系;5一白垩系上统曼岗组;6一白垩系上统勐野井组;7一白垩系下统扒沙河组第六节找矿方法的综合应用各种找矿方法不仅有自己的使用条件和应用范围,而且都存在一定的局限性。
因此在矿产勘查中,应根据工作地区的具体条件,选择一些行之有效的找矿方法互相配合、互相补充和互相验证,以便提高找矿效果。
一、选择找矿方法的依据选择找矿方法,主要是依据工作区的地质条件和自然地理条件。
有时找矿的任务、人员配置和仪器设备等情况,对选择找矿方法也有一定的影响。
(一)地质矿产条件地质矿产条件主要包括:区域和矿区地质特征、矿产种类、矿床类型、矿床和矿体地质特征、矿石的物质成分和结构构造、矿石和围岩的物理化学性质以及有用组分的赋存状态等。
一定的区域地质条件,决定了区内可能存在的矿产种类及其矿床类型;不同矿产、不同矿床类型,决定了自己特有的成矿地质特征、矿体的外部形态和内部结构、矿石的物质成分和结构构造等;矿石和围岩的物理化学性质,决定了各种分散晕的形成和发育程度以及地球物理异常场的存在等。
(二)自然地理条件自然地理条件主要包括:地貌地形特征、水系分布和发育情况、气候特征、各种成因的松散沉积物和植被的分布、发育情况等。
地貌地形控制了基岩出露情况、松散沉积物和植被的分布、各种次生晕的形成和发育程度以及通行条件等。
气候控制了土壤和植被的发育程度、地表水和地下水运动情况以及各种次生晕的形成和发育程度等。
松散沉积物和植被的发育程度是基岩掩盖程度的标志,厚度较大的松散沉积层可贫化或掩盖次生晕,植物的生长发育过程可强化或扩大次生晕等。
二、找矿方法的综合应用各种找矿方法,实质上都是从某个方面来研究找矿地质条件或找矿标志的。
因此在矿产勘查中,要想尽快地找到预期的矿床,并且不漏掉有工业价值的矿体,就必须合理地综合应用找矿方法。
综合应用找矿方法应以地质为基础。
这是因为选择找矿方法,必须依据要完成的地质任务和具体的地质条件,而且各种找矿方法所取得的成果必须结合地质条件和地质理论进行解释和评价。
综合应用找矿方法,并不意味着选用的方法越多越好,必须因地制宜,合理地选用最有效的找矿方法。
所选用的各种找矿方法既要有合理的分工,充分地发挥各自作用,又要紧密地配合,相互补充,验证和对比。
此外,综合应用找矿方法还要制定正确的工作步骤和程序。
例如:遥感地质方法、航空物探方法,水系沉积物测量和重砂测量等,不仅具有效率高、受地形和通行条件限制较少,并且能够较快地圈出成矿远景区等优点。
一般来说,这些方法都是在矿产勘查初期,先于其他方法在全区内开展工作。
各种地面物化探方法、工程揭露法等,虽然具有较高的精度,但是工作效率相对较低,所受限制条件也较多,故这些方法多用于已知的成矿远景区,以便直接发现矿床和圈定矿体。