照相物镜设计(小视场小口径)

合集下载

照相物镜设计

照相物镜设计

到1866年,像差理论的发展,使人们认识到对称的胶 合透镜可以把像差校正得很好,设计出了右图所示的物 镜,其相对孔径为1:8,视场为50度,物镜的球差、 色差和慧差都有很好的校正,畸变和倍率色差也因结构 对称而不大。
重钡冕玻璃的出现使得在1890年设计出了普罗塔物镜,该物 镜以其校正了匹兹堡和及像散而优于之前的所有物镜,它的 相对孔径在1:4.5-1:18之间,视场为40-90度,由它拍摄的 整张照片都是清晰的。
1902年出现的天塞物镜,可看作是三式的后面一块正透镜改为二 块玻璃胶合的结果,它在高级像差方面要比三片式好。天塞的光 学结构简单,实用,它的解像力高,反差适中,畸变小,获得了 “鹰眼”的美誉,当年被蔡司公司尊为头号镜头,一切蔡司公司 所生产的顶级相机全部配备天塞镜头
将三片式中的单透镜改为双胶合的设计比较多,海里亚物镜就 是其中的一种,是美国在二战中用得最多的夜航摄物镜,它利 用二胶合面把高级慧差和带球差校正得很好。 5. 双高斯物镜(Planar) 双高斯与达岗等对称物镜不同,它是用薄透镜加厚透镜的结 构。由于具有小半径的厚透镜处在薄透镜后的会聚光中,近 于不晕位置,因此它的像差和带像差都有所缩小,相对孔径 比较大。它是现在1:2物镜的主要结构,在视场缩小时, 可得到1:1.4的结果,稍复杂化后,可得到更大的相对孔径, 达1:0.85,这一类型的物镜是目前普遍使用的物镜,也是 最受欢迎的物镜。
7. 反摄远物镜 在电影摄影中,常常用到短焦距物镜,为了在物镜后面能 安装取景棱镜,因而要求有长的像方顶焦距。这就需要使 用所谓的反摄远物镜,其是由正负透镜组分离组成,负透 镜位于正透镜之前,从而使主平面后移至物镜后方,达到 像方顶焦距大于焦距的目的。 8. 广角物镜 广角物镜是以海里的全天照相物镜出发的,其视场很大。

照相物镜光学设计 (f=50mm)

照相物镜光学设计 (f=50mm)

照相物镜光学设计(f’=50mm)The Optical Design of Objective Lens in Photographic Camera(f’=50mm)摘要人们早就有长期保存各种影像的愿望。

在摄影技术尚未发明前的公元四世纪时,人们按投影来描画人物轮廓像的方法达到了全盛时代,至今这种方法仍然作为剪纸艺术流传着。

后来,人们让光线通过小孔形成倒立像,进而将小孔改为镜片,并加装一只暗箱。

只要在暗箱底板上放一张纸,不仅可以画出轮廓,还可以画出像上的各个部分。

这就形成了照相机的机构雏形。

随着科学技术的发展,照相机的发展日益迅速,有着显著的飞跃。

照相物镜是照相机的眼睛,它的精度和分辨率直接影响到照相机的精度与成像质量。

要保证所设计的照相物镜达到较高的技术要求,在设计时就必须达到更高的精度与分辨率。

本文所讨论的照相物镜,它主要采用五片透镜包含一个双胶合透镜的形式,精度高、分辨率高,像质好,能够满足设计的要求。

关键字:照相机物镜设计2ABSTRACTThe people already have the long-term preserved each kind of phantom desires. Not yet invents before when the photographic technology the A.D. four centuries, the people drew the character outline alike method according to the projection to achieve the most flourishing time, this method still was spreading until now as the paper-cut art. Afterwards, the people let the light form through the eyelet stand upside down the elephant, then changed the eyelet the lens, and installed a camera. So long as puts a paper on the camera ledger wall, not only may draw the outline, but also may draw likely on each part. This has formed the photographic camera organization embryonic form.Along with the science and technology development, the photographic camera development is day by day rapid, has the remarkable leap. The photographic objective is the photographic camera eye, its precision and the resolution affect directly the photographic camera precision and the image formation quality. Must guarantee designs the photographic objective achieved high specification, when design must achieve a higher precision and the resolution .This article discusses the photographic objective, it mainly uses five piece of lens to contain double agglutination lens high the form, the precision, the resolution is high, looks like the nature to be good, can satisfy the design the request.Key words: Photographic cameraObjective lens Design3目录第一章绪论 (5)1.1照相机的发展简史 (5)1.2照相机的用途 (6)1.3照相机的结构 (7)第二章照相机知识 (11)2.1照相机的原理 (11)2.2照相机的分类 (11)2.3照相机的发展 (12)2.4传统照相机与数码相机的比较 (13)第三章像差理论知识 (15)3.1清晰成像的原理 (15)3.2像质评价的方法 (15)3.3摄影物镜的分类 (16)第四章照相物镜原始数据 (17)4.1原始数据一 (17)4.2原始数据二 (19)4.3原始数据三 (22)第五章照相物镜中间数据及设计过程 (25)5.1设计过程 (25)5.2中间数据 (26)第六章照相物镜最终数据 (31)结论 (33)致谢...................................................................................错误!未定义书签。

光学设计照相物镜的设计

光学设计照相物镜的设计

2014-2015学年第二学期《现代光学设计》考核——照相物镜设计班级:******** 学号:************* 姓名:***一、系统设计要求:1、焦距:f’=15mm;2、相对孔径:1/2.8;3、在可见光波段设计(取d、F、C三种色光)4、视场角2w=74°二、设计过程1,在光学技术手册查询后选定初始结构为后置光阑的三片物镜,初始参数为:1输入初始参数2,优化设计过程将参数输入zemax:其中第六面设为光阑面,厚度设为marginal ray height,移动光标到STO光阑面的“无穷(Infinity)”之上,按INSERT键。

这将会在那一行插入一个新的面,并将STO光阑面往下移。

新的面被标为第2面。

再按按INSERT键两次。

移动光标到IMA像平面,按INSERT键两次。

在LDE曲率半径(Radius)列,顺序输入上表1中的镜片焦距(注意OBJ面不做任何操作);在镜片厚度(Thickness)列顺序输入表1中的镜片厚度;在第七个面厚度处单击右键,选择面型为Marginal Ray Height。

在镜片类型(Class)列输入镜片参数,方法是:在表中点右键对话框Solve Type选中Model,Index nd中输入n值Abbe Vd 中输入v值。

结果如下在system-general-aperture中输入相对孔径值 2.8,在system-wavelength中输入波段,然后在tools-make focus中该改焦距为15mm进行缩放。

3,设置相对孔径值和波长输入焦距15mm进行缩放:4,定义视场如下此时得到初始结构及参数如下图5,优化设计过程利用ZEMAX得到初始结构的M TF 曲线可看出成像质量很差, 因此需要校正像差。

该结构可以用作优化变量的的数据有:6个曲率半径,2个空气间隔,3个玻璃厚度。

首先使用Default Merit Function建立缺省评价函数进行优化,选择Editors-Merit Function,在第一行中先输入EFFL,目标值设为15,权重设为1。

照相物镜设计报告实例

照相物镜设计报告实例

照相物镜镜头设计与像差分析设计一个成像物镜透镜组,照相物镜的技术指标要求:1、焦距:f’=12mm;2、相对孔径D/f’不小于1/2.8;3、图像传感器为1/2.5英寸的CCD,成像面大小为4.29mm×5.76mm;4、后工作距>6mm5、在可见光波段设计(取d、F、C三种色光,d为主波长);6、成像质量,MTF 轴上>40% @100 lp/mm,轴外0.707 >35%@100 lp/mm。

7、最大畸变<1%照相物镜的简介照相物镜的基本光学性能主要由三个参数表征。

即焦距f ’、相对孔径D/f ’和视场角2w 。

照相物镜的焦距决定所成像的大小Ⅰ)当物体处于有限远时,像高为y ’=(1-ωβtan ')f (1-1)式中,β为垂轴放大率,ll y y ''==β。

对一般的照相机来说,物距l 都比较大,一般l >1米,f ’为几十毫米,因此像平面靠近焦面,''f l ≈,所以lf '=β Ⅱ)当物体处于无限远时,β→∞像高为y ’=ωtan 'f (1-2) 因此半视场角ω=atan''f y (1-3) 表1-1中列出了照相物镜的焦距标准:表1-1相对孔径决定其受衍射限制的最高分辨率和像面光照度,在此的分辨率亦即通常所说的截止频Nλλu f D N ==(1-4) 照相物镜中只有很少几种如微缩物镜和制版物镜追求高分辨率,多数照相物镜因其本身的分辨率不高,相对孔径的作用是为了提高像面光照度E ’=1/4πL τ(D/f ’)2 (1-5)照相物镜的视场角决定其在接受器上成清晰像的空间范围。

按视场角的大小,照相物镜又分为a)小视场物镜:视场角在30°以下;b)中视场物镜:视场角在30°~60°之间;c)广角物镜:视场角在60°~90°之间;d)超广角物镜:视场角在90°以上。

照相物镜的设计

照相物镜的设计

一、选择初始结构
首先根据设计要求, 焦距:f’=9.6mm; FNo.<=2.8; 像高:y’=sqrt(5.76^2+4.32^2)/2=3.6mm 视场角:atan(y’/f’)=20.55度 取d、F、C三种色光,d为主波长 我们通过查资料法选择Tessar物镜的结构形式。

标*号处为光阑STO的位置
优化前
优化后
对面型进行优化

我们发现第四面和第五面的光阑交错了,因此加大第四 面的权重再优化。
优化前
优化后
最大畸变<1%
Spot diagram
二、输入初始结构,孔径,波长
输入焦距,视场
Tools—— 以0.707视场为例,
Make Focal
y’=0.707*3.6=2.5452
三、像质评价
引入评价函数Merit Function,选择Default Merit Function,插入一行,用来控制焦距 f’=9.6
接下来除了虚设的光阑平面以外的7个面的曲率都作 为变量加入校正,透镜的厚度和间隔作适当选择,只 把厚透镜的厚度和大的空气间隔作为自变量。
焦距决定成像的大小,相对孔径决定像面照 度,视场决定成像的范围。
照相������ 焦距:f’=9.6mm; ������ 相对孔径D/f’不小于1/2.8; ������ CCD成像面大小为4.32mm×5.76mm; ������ 在可见光波段设计(取d、F、C,d为主波长); ������ MTF :轴上>40%@100 lp/mm 轴外0.707 >35%@100 lp/mm ������ 最大畸变<1%
玻璃光学常数不 作自变量使用
输入边缘厚度
由于系统比较复杂,而且不少厚度,间隔作为自变 量使用,因此要加入透镜厚度的边界条件。

设计实例zemax设计照相物镜详细过程

设计实例zemax设计照相物镜详细过程

照相物镜设计实例
照相物镜的技术指标要求:
焦距:f’=9.6mm; 焦距:f’=9.6mm; 相对孔径D/f’不小于1/2.8; 图像传感器为1/2.5英寸的CCD, 成像面大小为4.32mm×5.76mm; 后工作距>5mm 在可见光波段设计(取d、F、C三种色光,d为主波 长); 1m成像质量,MTF 轴上>40% @100 lp/mm 轴外0.707 >35%@100 lp/mm ������ 最大畸变<1%

在镜片厚度(Thickness)列顺序输入表1-2中的 镜片厚度;在第七个面厚度处单击右键,选择面 型为Marginal Ray Height。在镜片类型(Glass) 列输入镜片参数,方法是:在表中点右键对话框 Solve Type选中Model,Index nd中输入n值, Abbe Vd中输入v值。结果如下图2-1在systemgeneral-aperture中输入相对孔径值2.8,在 system-wavelength中输入所选波段,根据要求选 d光为主波长。然后在tools-make focus中改焦距 为12mm进行缩放。
照相物镜镜头设计与像差
分析
设计实例
光学设计流程
光学设计初始结构方法
1、计算法
2、计算结合经验法
3、经验法
4、查资料法(孔径、视场、波长、 焦距,整体缩放)
查资料法:确定初始结构
查资料法
E.F.L----Effective Focus Length (有效焦距) B.F.L----Back Focus Length (后工作距) FNo.----F Number (相对孔径) F.A.----Field Angle (视场角)

该镜头不仅体积小, 结构紧凑, 而且像质较 好。在此次设计中,发现光阑面使用非球 面能够很好的平衡像差,只进行了对玻璃 厚度和曲率的简单优化,查阅相关资料后 设想如果将第一面的透镜换为鼓形透镜, 第二面换为弯月透镜或换成折射率更高的 玻璃,还可以进一步做出深度优化,使之 获得更好的性能 。

照相物镜设计

照相物镜设计

F光圈只标明物镜的名义相对孔径,称为光阑指数,如考虑到光学系统的透过率的影响,那么 标明实际相对孔径的有效光阑指数则为
F
(3)视场角:2ω
T
T为光圈
照相机物镜的视场角决定了被摄景物的范围。在画面大小一定的条件下,视场角直接和物镜 的焦距有关。根据无限远物体的理想像高公式:
y f tan
现代中等复杂程度的照相物镜,随着相对孔径的减小,视场角增加的情况如下表(焦距为 100mm时):
总体来看,照相物镜的突出特点是视场和相对孔径都比较大的光学系统,因此在设计照相物镜 时,一般来说七类像差都需要校正,同时照相物镜还要求在一定程度上校正高级像差。
5.3塞洛(Celor)物镜的设计
塞洛物镜是由一对对称的双分离消色差物镜构成,采用双分离型式,可以提 供更多的自变量,便于像差的校正。 对于一个结构完全对称,放大率为-1的系统,其慧差、畸变和垂轴色差左右 两个半部大小相等、符号相反而自动抵消,而球差、像散、场曲和轴向色差 则是左右两个半部相互叠加。 设计一个对称系统可从后半部开始。对于塞洛物镜,后半部有五个变量,四个曲 率半径,一个空气间隔,可以校正系统的焦距、球差、像散、场曲及轴向色差。 光焦度的一般公式 对于二组元系统,其光焦度公式为:
5. 双高斯物镜(Planar) 双高斯与达岗等对称物镜不同,它是用薄透镜加厚透镜的结 构。由于具有小半径的厚透镜处在薄透镜后的会聚光中,近 于不晕位置,因此它的像差和带像差都有所缩小,相对孔径 比较大。它是现在1:2物镜的主要结构,在视场缩小时, 可得到1:1.4的结果,稍复杂化后,可得到更大的相对孔径, 达1:0.85,这一类型的物镜是目前普遍使用的物镜,也是 最受欢迎的物镜。
更一般地:

1 yii y1 i

光学设计-第18章--摄影和投影物镜设计

光学设计-第18章--摄影和投影物镜设计

第十八章 摄影和投影物镜设计摄影物镜通常是指照相机、电影和电视摄像机中的镜头。

摄影物镜的作用是把外界的景物成像在感光胶片、电荷耦合器件(CCD)等接收器上。

胶片、CCD 以及其他接收器的尺寸通常比外界景物小得多,因此,摄影物镜是使物体缩小成像的。

另外,摄影物镜的焦距通常在几毫米到几百毫米之间,而要拍摄的外界景物与摄影物镜的距离跟物镜的焦距相比是相当大的。

当物距大于焦距的⨯30以上时就可视为无穷远成像。

在绝大多数情况下,外界景物是大于这个距离的,因此摄影物镜可视为对无穷远目标成像。

还有一类物镜,它与摄影物镜相反,是把记录在胶片或其他介质中的图样或图像放大成像到屏幕上,这类物镜称之为投影物镜或放映物镜,电影放映物镜就是其中典型的例子。

除普通照相物镜外,摄影物镜还包括用于航空测量和空中侦察的航空照相物镜、把实物和画面用照相腐蚀方法制成印刷用版的制版物镜等。

§1 摄影物镜的光学性能决定摄影物镜光学特性的参数有三个:焦距/f ,相对孔径/f D ,视场ω2。

1 焦距摄影物镜的焦距/f ,决定了物体所成像的大小,或者说决定了照片上的像与实际物体之间的比例。

用不同焦距的摄影物镜对同一位置的某物体进行摄影,焦距大者,所拍摄得的像也大。

这可以从放大率公式看出, xf x f y y //=-==β 可知当/f 大时,垂轴放大率大,即得到比较大的像。

实际上由于摄影物镜的物距一般情况下都很大,可按物在无限远考虑,此时成像于焦面上,则有: ωtg f y ⋅-=//可见,对一定大小的物体,像的大小和物镜的焦距成正比,对于远距离摄影和航空摄影,若利用普通短焦距照相物镜,由于成像比例小,所成像太小,难以辨认目标,这时需用长焦距物镜,焦距可达1米以上。

由于摄影物镜用途不同,焦距范围也不一致。

普通用照相机焦距多在mm 100以下。

#135相机的常用镜头焦距为mm 35,#120相机常用镜头焦距为mm 75。

2 视场摄影物镜的视场ω2,决定了所拍摄的物空间范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小视场小口径照相物镜设计1 原始系统
图1 原始系统
2 图形测绘
N1=1.636,N2=1.612,N3=1.562,在”草稿.dwg”查出半径,厚度,口径得到ZEMAX文件“1-初态.ZMX”。

3 验证非球面实体化操作集
在CODE V与ZEMAX中往返优化,得“2-非球面系统.ZMX”,用于0.20英寸CCD场合(实际是0.21英寸,多于的0.1英寸,用于补偿装配偏差):
由于上系统透镜较薄,其初级像差应与理想系统用PWC法计算出的结果接近,故可用于非球面实体化操作集的校验。

(1)赛特和数
(1)架构
据此建立架构文件,并值入非球面实体化操作集,见“3-架构.ZMX”。

(2)非球面操作集的优化及校验
计算结果也较接近。

说明球面系统PWC计算操作集部分正确。

查半径PWC计算值: R1=2.81,R2=-46; 半径原来值:R1=3.18,R2=-14.77。

如果使PWC半径计算值等于原来值:R1=3.22,R2=-14.77。

那么:
是初级量)。

半径调整后的文件见“4-非球面镜PWC校验2.ZMX”
优化后R1=-4.029,R2=2.89(原镜:R1=-4.0648,R2=-2.957),E12=--1.032163,
的(见“4-非球面镜PWC校验3.ZMX”)。

优化后R1=7.22,R2=-11.18(原镜:R1=平面,R2=-4.3875),E12=0.0007877,
的(见“4-非球面镜PWC校验4.ZMX”)。

4 实体化结果
载入“2-非球面系统.ZMX”,用“4-非球面镜PWC校验4.ZMX”优化出的R,E值置换,得“5-非球面系统2.ZMX”:
这个结果表面上看,似乎不好,实际上应观察初级像差(赛特和)是否小
,见下表:
由表看各面初级像差都不大,系统的初级像差也不大,因此高级量不大,校正潜力大。

对上结果进行优化覆盖同名文件,这时系统象质如下:
这个结果的成像质量已很好了,说明非球面实体化操作集优化出来的初始结构,其校正像差的潜力是很大的。

相关文档
最新文档