成都七中2016-2017学年度(上)期末考试高一数学试题(含答案)

合集下载

2016-2017学年四川省成都七中高一(上)期末数学试卷

2016-2017学年四川省成都七中高一(上)期末数学试卷

2016-2017学年四川省成都七中高一(上)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2,1,0=A ,{}3,2=B ,则=B A ( )A .{}3,2,1,0B .{}3,1,0C .{}1,0D .{}2【答案】A【解析】∵集合{}2,1,0=A ,{}3,2=B ,=B A {}3,2,1,0故选:A . 【考点】并集及其运算. 【难度】★★★2.下列函数中,为偶函数的是( )A .2log y x =B .12y x =C .2x y -=D .2y x -=【答案】D【解析】对于A ,为对数函数,定义域为+R ,为非奇非偶函数;对于B .为幂函数,定义域为[)+∞,0,则为非奇非偶函数; 对于C .定义域为R ,为指数函数,则为非奇非偶函数;对于D .定义域为{}R x x x ∈≠,0,()()x f x f =-,则为偶函数.故选D .【考点】函数奇偶性的判断. 【难度】★★★3.已知扇形的弧长为6,圆心角弧度数为3,则其面积为( )A .3B .6C .9D .12【答案】B【解析】由弧长公式可得r 36=,解得2=r .∴扇形的面积62621=⨯⨯=s . 故选B .【考点】扇形的弧长和面积公式 【难度】★★★4.已知点()1,0A ,()1,2-B ,向量()0,1=,则在e 方向上的投影为( )A .2B .1C .1-D .2-【答案】D【解析】解:()0,2-=,则在方向上的投影.212-=-== 故选:D .【考点】平面向量数量积的运算. 【难度】★★★5.设α是第三象限角,化简:=+•αα2tan 1cos ( )A .1B .0C .1-D .2 【答案】C【解析】解:α 是第三象限角,可得:0cos <α,cos α∴=.1sin cos cos sin cos cos tan cos cos 222222222=+=⋅+=+ααααααααα.1tan 1cos 2-=+⋅∴αα故选:C .【考点】三角函数的化简求值. 【难度】★★★6.已知a 为常数,幂函数()a x x f =满足231=⎪⎭⎫ ⎝⎛f ,则()=3f ( )A .2B .21C .21- D .2-【答案】B【解析】解:a 为常数,幂函数()ax x f =满足231=⎪⎭⎫ ⎝⎛f ,23131=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∴af解得13log 2a =,所以 13log 2()f x x= ,()13log 2133.2f ∴== 故选:B .【考点】幂函数的概念+解析式+定义域+值域. 【难度】★★★7.已知()x x f 4cos sin =,则=⎪⎭⎫ ⎝⎛21f ( )A .23 B .21 C .21- D .23- 【答案】C【解析】解:()x x f 4cos sin = ,().2160cos 120cos 30sin 21-=-===⎪⎭⎫⎝⎛∴f f故选:C .【考点】函数表达式及求值. 【难度】★★★8.要得到函数()12log 2+=x y 的图象,只需将x y 2log 1+=的图象( )A .向左移动21个单位 B .向右移动21个单位 C .向左移动1个单位D .向右移动1个单位【答案】A 【解析】解:()221log 21log 22y x x ⎛⎫=+=+ ⎪⎝⎭,,2log log 122x x y =+=∴由函数图象的变换可知:将x y 2log 2=向左移动21个单位即可得 ()⎪⎭⎫ ⎝⎛+=+=212log 12log 22x x y 的图象.故选:A .【考点】函数()ϕϖ+=x A y sin 的图象变换. 【难度】★★★9.向高为h 的水瓶(形状如图)中注水,注满为止,则水深h 与注水量v 的函数关系的大致图象是( )A .B .C .D .【答案】D【解析】解:从水瓶的构造形状上看,从底部到顶部的变化关系为:开始宽,逐渐细小,再变宽.则注入的水量v 随水深h 的变化关系为:先慢再快,最后又变慢,那么从函数的图象上看,C 对应的图象变化为先快再慢,最后又变快,不符合;A 、B 对应的图象中间没有变化,只有D 符合条件。

2016-2017学年成都XX学校高一(上)期末数学试卷((有答案))AlPnqK

 2016-2017学年成都XX学校高一(上)期末数学试卷((有答案))AlPnqK

2016-2017学年四川省成都高一(上)期末数学试卷一、选择题:本大题共11小题,每小题5分共60分,在每小题所给出的四个选项中,只有一项是符合题目要求的,并将正确选项的序号填涂在答题卷.1.(5分)已知集合M={x|x2﹣1≤0},N={x|<2x+1<4,x∈Z},则M∩N=()A.{﹣1,0}B.{1}C.{﹣1,0,1}D.∅2.(5分)下列函数图象与x轴均有公共点,其中能用二分法求零点的是()A.B.C.D.3.(5分)已知f(x)=ax2+bx+3a+b是偶函数,定义域为[a﹣1,2a],则a+b=()A.B.1 C.0 D.4.(5分)下列说法中正确的是()A.若,则B.若,则或C.若不平行的两个非零向量满足,则D.若与平行,则5.(5分)若角θ是第四象限的角,则角是()A.第一、三象限角 B.第二、四象限角C.第二、三象限角 D.第一、四象限角6.(5分)已知函数f(x+1)的定义域为[﹣2,3],则f(3﹣2x)的定义域为()A.[﹣5,5]B.[﹣1,9]C.D.7.(5分)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变8.(5分)已知奇函数f(x)满足f(x+2)=f(x),当x∈(0,1)时,函数f(x)=2x,则=()A.B.C.D.9.(5分)在△ABC中,若,,,O为△ABC的内心,且,则λ+μ=()A.B.C.D.10.(5分)若实数a,b,c满足log a3<log b3<log c3,则下列关系中不可能成立的()A.a<b<c B.b<a<c C.c<b<a D.a<c<b11.(5分)已知f(x)=2sinx+cosx,若函数g(x)=f(x)﹣m在x∈(0,π)上有两个不同零点α、β,则cos(α+β)=()A.B.C.D.二、填空题(本大题共4个小题,每小题5分,共20分)12.(5分)在二分法求方程f(x)=0在[0,4]上的近似解时,最多经过次计算精确度可以达到0.001.13.(5分)若=(λ,2),=(3,4),且与的夹角为锐角,则λ的取值范围是.14.(5分)已知函数f(x)=ln(2x+a2﹣4)的定义域、值域都为R,则a取值的集合为.15.(5分)已知m∈R,函数f(x)=,g(x)=x2﹣2x+2m2﹣1,若函数y=f (g(x))﹣m有6个零点则实数m的取值范围是.三、解答题:解答应写出文字说明,证明过程或演算步骤16.(10分)化简求值.(1)(2)(lg2)2+lg20×lg5+log92•log43.17.(12分)求值.(1)已知,求1+sin2α+cos2α的值;(2)求:的值.18.(12分)已知函数sin(π﹣2x)(1)若,求f(x)的取值范围;(2)求函数f(x)的单调增区间.19.(12分)已知、是两个不共线的向量,且=(cosα,s inα),=(cosβ,sinβ).(1)求证:+与﹣垂直;(2)若α∈(﹣,),β=,且|+|=,求sinα.20.(12分)函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③.(1)求证:f(x)在R上是单调增函数;(2)若f(4x+a•2x+1﹣a2+2)≥1对任意x∈R恒成立,求实数a的取值范围.21.(12分)若在定义域内存在实数x0使得f(x0+1)=f(x0)+f(1)成立则称函数f(x)有“溜点x0”(1)若函数在(0,1)上有“溜点”,求实数m的取值范围;(2)若函数f(x)=lg()在(0,1)上有“溜点”,求实数a的取值范围.2016-2017学年四川省成都高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共11小题,每小题5分共60分,在每小题所给出的四个选项中,只有一项是符合题目要求的,并将正确选项的序号填涂在答题卷.1.(5分)已知集合M={x|x2﹣1≤0},N={x|<2x+1<4,x∈Z},则M∩N=()A.{﹣1,0}B.{1}C.{﹣1,0,1}D.∅【解答】解:集合M={x|x2﹣1≤0}={x|﹣1≤x≤1},N={x|<2x+1<4,x∈Z}={x|﹣2<x<1,x∈Z}={﹣1,0},则M∩N={﹣1,0}故选:A2.(5分)下列函数图象与x轴均有公共点,其中能用二分法求零点的是()A.B.C.D.【解答】解:能用二分法求零点的函数必须在给定区间[a,b]上连续不断,并且有f(a)•f (b)<0A、B中不存在f(x)<0,D中函数不连续.故选C.3.(5分)已知f(x)=ax2+bx+3a+b是偶函数,定义域为[a﹣1,2a],则a+b=()A.B.1 C.0 D.【解答】解:∵函数f(x)=ax2+bx+3a+b是定义域为[a﹣1,2a]的偶函数,∴a﹣1=﹣2a,b=0,解得a=,b=0,∴a+b=.故选D.4.(5分)下列说法中正确的是()A.若,则B.若,则或C.若不平行的两个非零向量满足,则D.若与平行,则【解答】解:对于A,,如果=,则,也可能,所以A不正确;对于B,若,则或,或,所以B不正确;对于C,若不平行的两个非零向量满足,==0,则,正确;对于D,若与平行,则或=﹣,所以D不正确.故选:C,5.(5分)若角θ是第四象限的角,则角是()A.第一、三象限角 B.第二、四象限角C.第二、三象限角 D.第一、四象限角【解答】解:∵角θ是第四象限的角,∴,则,k∈Z,∴,k∈Z.则角是第一、三象限角.故选:A.6.(5分)已知函数f(x+1)的定义域为[﹣2,3],则f(3﹣2x)的定义域为()A.[﹣5,5]B.[﹣1,9]C.D.【解答】解:由函数f(x+1)的定义域为[﹣2,3],即﹣2≤x≤3,得﹣1≤x+1≤4,∴函数f(x)的定义域为[﹣1,4],由﹣1≤3﹣2x≤4,解得≤x≤2.∴f(3﹣2x)的定义域为[﹣,2].故选:C.7.(5分)图是函数y=Asin(ωx+φ)(x∈R)在区间上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【解答】解:由图象可知函数的周期为π,振幅为1,所以函数的表达式可以是y=sin(2x+φ).代入(﹣,0)可得φ的一个值为,故图象中函数的一个表达式是y=sin(2x+),即y=sin2(x+),所以只需将y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变.故选A.8.(5分)已知奇函数f(x)满足f(x+2)=f(x),当x∈(0,1)时,函数f(x)=2x,则=()A.B.C.D.23;【解答】解:根据对数函数的图象可知<0,且=﹣log奇函数f(x)满足f(x+2)=f(x)和f(﹣x)=﹣f(x)则=f(﹣log 223)=﹣f(log223)=﹣f(log223﹣4)=﹣f(),因为∈(0,1)∴﹣f()==,故选:B9.(5分)在△ABC中,若,,,O为△ABC的内心,且,则λ+μ=()A.B.C.D.【解答】解:∵O为△ABC的内心,∴O为△ABC内角平分线的交点,令|AB|=c,|AC|=b,|BC|=a,则有a+b+c=,∴a+b(+)+c(++)=,∴(a+b+c)=(b+c)+c,∴=+,∴λ+μ=+==.故选C.10.(5分)若实数a,b,c满足log a3<log b3<log c3,则下列关系中不可能成立的()A.a<b<c B.b<a<c C.c<b<a D.a<c<b【解答】解:∵实数a,b,c满足log a3<log b3<log c3,y=log m3(0<m<1)是减函数,y=log m3(m>1)是增函数,∴当a,b,c均大于1时,a>b>c>1;当a,b,c均小于1时,1>a>b>c>0;当a,b,c中有1个大于1,两个小于1时,c>1>a>b>0;当a,b,c中有1 个小于1,两个大于1时,b>c>1>a>0.故选:A.11.(5分)已知f(x)=2sinx+cosx,若函数g(x)=f(x)﹣m在x∈(0,π)上有两个不同零点α、β,则cos(α+β)=()A.B.C.D.【解答】解:∵α、β是函数g(x)=2sinx+cosx﹣m在(0,π)内的两个零点,即α、β是方程2sinx+cosx=m在(0,π)内的两个解,∴m=2sinα+cosα=2sinβ+cosβ,即2sinα﹣2sinβ=cosβ﹣cosα,∴2×2×cos sin=﹣2sin sin,∴2cos=sin,∴tan=2,∴cos(α+β)===﹣,故选:D.二、填空题(本大题共4个小题,每小题5分,共20分)12.(5分)在二分法求方程f(x)=0在[0,4]上的近似解时,最多经过12次计算精确度可以达到0.001.【解答】解:初始区间是[0,4],精确度要求是0.001,需要计算的次数n满足<0.001,即2n>4000,而210=1024,211=2048,212=4096>4000,故需要计算的次数是12.故答案为:1213.(5分)若=(λ,2),=(3,4),且与的夹角为锐角,则λ的取值范围是.【解答】解:=(λ,2),=(3,4),且与的夹角为锐角,cosθ>0且cosθ≠1,而cosθ==,∴λ>﹣且8+3λ≠5×,即λ>﹣且λ≠.故答案为:.14.(5分)已知函数f(x)=ln(2x+a2﹣4)的定义域、值域都为R,则a取值的集合为{﹣2,2} .【解答】解:由题意,函数f(x)=ln(2x+a2﹣4)的定义域、值域都为R,即2x+a2﹣4>0在x ∈R上恒成立.∵x∈R,2x>0,要使2x+a2﹣4值域为R,∴只需4﹣a2=0得:a=±2.∴得a取值的集合为{﹣2,2}.故答案为{﹣2,2}.15.(5分)已知m∈R,函数f(x)=,g(x)=x2﹣2x+2m2﹣1,若函数y=f(g(x))﹣m有6个零点则实数m的取值范围是.【解答】解:函数f(x)=的图象如图所示,令g(x)=t,y=f(t)与y=m的图象最多有3个零点,当有3个零点,则0<m<3,从左到右交点的横坐标依次t1<t2<t3,由于函数y=f(g(x))﹣m有6个零点,t=x2﹣2x+2m2﹣1,则每一个t的值对应2个x的值,则t的值不能取最小值,函数t=x2﹣2x+2m2﹣1的对称轴x=1,则t的最小值为1﹣2+2m2﹣1=2m2﹣2,由图可知,2t1+1=﹣m,则,由于t1是交点横坐标中最小的,满足>2m2﹣2①,又0<m<3②,联立①②得0<m<.∴实数m的取值范围是(0,).故答案为:.三、解答题:解答应写出文字说明,证明过程或演算步骤16.(10分)化简求值.(1)(2)(lg2)2+lg20×lg5+log92•log43.【解答】解:(1)(2)(lg2)2+lg20×lg5+log92•log4317.(12分)求值.(1)已知,求1+sin2α+cos2α的值;(2)求:的值.【解答】解:(1)∵已知,∴1+sin2α+cos2α===.(2)=====2,18.(12分)已知函数sin(π﹣2x)(1)若,求f(x)的取值范围;(2)求函数f(x)的单调增区间.【解答】解:(1)函数sin(π﹣2x)=2cos2x+sin2x=cos2x+sin2x+1=2sin(2x+)+1,当时,,故,,所以f(x)的取值范围是[0,3];(2)由题意有,解得,即+2kπ≤2x+<+2kπ,k∈Z,所以+kπ≤x<+kπ,k∈Z;所以函数的单调增区间为[+kπ,+kπ),k∈Z.19.(12分)已知、是两个不共线的向量,且=(cosα,sinα),=(cosβ,sinβ).(1)求证:+与﹣垂直;(2)若α∈(﹣,),β=,且|+|=,求sinα.【解答】解:(1)证明:、是两个不共线的向量,且=(cosα,sinα),=(cosβ,sinβ),.∴+=(cosα+cosβ,sinα+sinβ),﹣=(cosα﹣cosβ,sinα﹣sinβ),∴(+)•(﹣)=(cos2﹣cos2β)+(sin2α﹣sin2β)=(cos2α+sin2α)﹣(cos2β+sin2β)=1﹣1=0,∴+与﹣垂直;(2)∵=(cosα+cosβ)2+(sinα+sinβ)2=2+2(cosαcosβ+sinαsinβ)=2+2cos(α﹣β),且β=,|+|=,∴2+2cos(α﹣)=,解得cos(α﹣)=;又α∈(﹣,),∴α﹣∈(﹣,0),∴sin(α﹣)=﹣=﹣,∴sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=﹣×+×=﹣.20.(12分)函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③.(1)求证:f(x)在R上是单调增函数;(2)若f(4x+a•2x+1﹣a2+2)≥1对任意x∈R恒成立,求实数a的取值范围.【解答】解:(1)证明:令x=,y=3得f(1)=[f()]3,∵.∴所以f(1)>1.令x=1,则f(xy)=f(y)=[f(1)]y,即f(x)=[f(1)]x,为底数大于1的指数函数,所以函数f(x)在R上单调递增.(2)f(xy)=[f(x)]y中令x=0,y=2有f(0)=[f(0)]2,对任意x∈R,有f(x)>0,故f(0)=1,f(4x+a•2x+1﹣a2+2)≥1即f(4x+a•2x+1﹣a2+2)≥f(0),由(1)有f(x)在R上是单调增函数,即:4x+a•2x+1﹣a2+2≥0任意x∈R恒成立令2x=t,t>0则t2+2at﹣a2+2≥0在(0,+∞)上恒成立.i)△≤0即4a2﹣4(2﹣a2)≤0得﹣1≤a≤1;ii)得.综上可知.21.(12分)若在定义域内存在实数x0使得f(x0+1)=f(x0)+f(1)成立则称函数f(x)有“溜点x0”(1)若函数在(0,1)上有“溜点”,求实数m的取值范围;(2)若函数f(x)=lg()在(0,1)上有“溜点”,求实数a的取值范围.【解答】(本题满分12分)解:(1)在(0,1)上有“溜点”,即f(x+1)=f(x)+f(1)在(0,1)上有解,即在(0,1)上有解,整理得在(0,1)上有解,从而h(x)=4mx﹣1与的图象在(0,1)上有交点,故h(1)>g(1),即,得,(2)由题已知a>0,且在(0,1)上有解,整理得,又.设,令t=2x+1,由x∈(0,1)则t∈(1,3).于是则.从而.故实数a的取值范围是.。

数学---四川省成都市武侯区2016-2017学年高一(上)期末试卷(解析版)

数学---四川省成都市武侯区2016-2017学年高一(上)期末试卷(解析版)

四川省成都市武侯区2016-2017学年高一(上)期末数学试卷一、选择题(共12小题,每小题5分,满分60分)1.(5分)满足条件{0,1}∪A={0,1}的所有集合A的个数是()A.1个B.2个C.3个D.4个2.(5分)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|3.(5分)下列函数中,与函数y=有相同定义域的是()A.f(x)=ln x B.C.f(x)=|x| D.f(x)=e x4.(5分)若tanα=3,则的值等于()A.2 B.3 C.4 D.65.(5分)将甲桶中的a升水缓慢注入空桶乙中,t分钟后甲桶中剩余的水符合指数衰减曲线y=ae nt,假设过5分钟后甲桶和乙桶的水量相等,若再过m分钟甲桶中的水只有升,则m的值为()A.7 B.8 C.9 D.106.(5分)函数y=cos2x+8cos x﹣1的最小值是()A.0 B.﹣1 C.﹣8 D.﹣107.(5分)函数y=f(x)与y=g(x)的图象如图,则函数y=f(x)•g(x)的图象为()A.B.C.D.8.(5分)将函数y=sin x的图象向左平移φ(0≤φ<2π)个单位后,得到函数y=sin(x﹣)的图象,则φ等于()A.B. C. D.9.(5分)定义在R上的函数f(x)满足f(x)=,则f(2009)的值为()A.﹣1 B.0 C.1 D.210.(5分)已知cos(α﹣)+sinα=,则sin(α+)的值是()A.B.C.D.11.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=()A.B. C.4 D.1212.(5分)设a,b,c均为正数,且2a=,,,则()A.a<b<c B.c<b<a C.c<a<b D.b<a<c二、填空题(共4小题,每小题5分,满分20分)13.(5分)求值sin60°•cos160°(tan340°+)=.14.(5分)若函数y=x2﹣8x在区间(a,10)上为单调函数,则a的取值范围为.15.(5分)已知点A(0,0),B(6,﹣4),N是线段AB上的一点,且3AN=2AB,则N点的坐标是.16.(5分)函数f(x)的定义域为A,若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如f(x)=2x+1(x∈R)是单函数,下列命题:①函数f(x)=x2(x∈R)是单函数;②函数f(x)=2x(x∈R)是单函数,③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);④在定义域上具有单调性的函数一定是单函数其中的真命题是(写出所有真命题的编号)三、解答题(共6小题,满分70分)17.(12分)如图,=(6,1),=(x,y),=(﹣2,3),(1)若∥,试求x与y之间的表达式;(2)若⊥,且,求x,y的值.18.(12分)函数f1(x)=lg(﹣x﹣1)的定义域与函数f2(x)=lg(x﹣3)的定义域的并集为集合A,函数g(x)=2x﹣a(x≤2,a∈R)的值域为集合B.(1)求集合A,B(2)若集合A,B满足A∩B=B,求实数a的取值范围.19.(12分)已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(﹣3,).(1)求sin2α﹣tanα的值;(2)若函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函数y=f(﹣2x)﹣2f2(x)在区间[0,]上的取值范围.20.(12分)设f(x)=mx2+3(m﹣4)x﹣9(m∈R),(1)试判断函数f(x)零点的个数;(2)若满足f(1﹣x)=f(1+x),求m的值;(3)若m=1时,存在x∈[0,2]使得f(x)﹣a>0(a∈R)成立,求a的取值范围.21.(12分)已知O为坐标原点,=(2sin2x,1),=(1,﹣2sin x cos x+1),f(x)=•+m(m∈R),(1)若f(x)的定义域为[﹣,π],求y=f(x)的单调递增区间;(2)若f(x)的定义域为[,π],值域为[2,5],求m的值.22.(10分)(1)计算:log2.56.25+lg+ln+2(2)已知x+x﹣1=3,求x2﹣x﹣2.【参考答案】一、选择题(共12小题,每小题5分,满分60分)1.D【解析】由{0,1}∪A={0,1}易知:集合A⊆{0,1}而集合{0,1}的子集个数为22=4故选D.2.B【解析】逐一考查所给的选项:A.y=x3是奇函数,在区间(0,+∞)上单调递增,不合题意;B.y=|x|+1是偶函数,在区间(0,+∞)上单调递增;C.y=﹣x2+1是偶函数,在区间(0,+∞)上单调递减,不合题意;D.y=2﹣|x|是偶函数,在区间(0,+∞)上单调递减,不合题意.故选B.3.A【解析】函数的定义域是{x|x>0},对于A:定义域是{x|x>0},对于B:定义域是{x|x≠0},对于C:定义域是R,对于A:定义域是R,故选A.4.D【解析】==2tanα=6,故选D.5.D【解析】令a=a e nt,即=e nt,∵=e5n,∴=e15n,比较知t=15,m=15﹣5=10.故选D.6.C【解析】函数y=cos2x+8cos x﹣1=2cos2x+8cos x﹣2=2(cos x+2)2﹣10,因为cos x∈[﹣1,1],所以cos x=﹣1时,函数取得最小值:﹣8.故选C.7.A【解析】由图象可知,y=f(x)为偶函数,其定义域为R,y=g(x)为奇函数,其定义域为{x|x≠0}∴f(﹣x)•g(x)=﹣f(x)•g(x),∴y=f(x)•g(x)为奇函数,且定义域为{x|x≠0}∴f(x)•g(x)的图象关于原点对称,故选A.8.D【解析】将函数y=sin x向左平移φ(0≤φ<2π)个单位得到函数y=sin(x+φ).根据诱导公式知当φ=π时有:y=sin(x+π)=sin(x﹣).故选D.9.C【解析】∵当x>3时满足f(x)=﹣f(x﹣3)=f(x﹣6),周期为6,∴f(2009)=f(334×6+5)=f(5)=f(﹣1)当x≤0时f(x)=1﹣x)∴f(﹣1)=1∴f(2009)=f(﹣1)=log22=1故选C.10.C【解析】∵,∴,∴.故选C.11.B【解析】由已知|a|=2,|a+2b|2=a2+4a•b+4b2=4+4×2×1×cos60°+4=12,∴|a+2b|=.故选B.12.A【解析】分别作出四个函数y=,y=2x,y=log2x的图象,观察它们的交点情况.由图象知:∴a<b<c.故选A.二、填空题(共4小题,每小题5分,满分20分)13.1【解析】原式=sin320°(tan340°+)=﹣sin40°(﹣tan20°﹣)=sin40°(tan20°+)=•=1.故答案为1.14.[4,10)【解析】函数y=x2﹣8x的对称轴为:x=4,由函数y=x2﹣8x在区间(a,10)上为单调函数,可得:4≤a,即a∈[4,10).故答案为[4,10).15.(4,﹣)【解析】设N的坐标为:(x、y),∵点A(0,0),B(6,﹣4),∴=(x,y),=(6,﹣4),∵3AN=2AB,∴3(x,y)=2(6,﹣4),∴,解得x=4,y=﹣,故答案为(4,﹣)16.②③④【解析】∵若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数,∴①函数f(x)=x2不是单函数,∵f(﹣1)=f(1),显然﹣1≠1,∴函数f(x)=x2(x∈R)不是单函数;②∵函数f(x)=2x(x∈R)是增函数,∴f(x1)=f(x2)时总有x1=x2,即②正确;③∵f(x)为单函数,且x1≠x2,若f(x1)=f(x2),则x1=x2,与x1≠x2矛盾∴③正确;④同②;故答案为②③④.三、解答题(共6小题,满分70分)17.解:(1)∵=(6,1),=(x,y),=(﹣2,3)∴=﹣()=﹣(4+x,4+y)=(﹣4﹣x,﹣4﹣y),∵∥,∴,解得x=y.(2)∵=(6,1),=(x,y),=(﹣2,3),∴=(6+x,1+y),=(x﹣2,y+3),=﹣()=﹣(4+x,4+y)=(﹣4﹣x,﹣4﹣y),⊥,且,∴,解得x=y=.18.解:(1)由题意可得M={x|﹣x﹣1>0}={x|x<﹣1},N={x|x﹣3>0}={x|x>3},∴A=N∪M={x|x<﹣1,或x>3}.由于x≤2,可得2x∈(0,4],故函数g(x)=2x﹣a(x≤2)的值域为B=(﹣a,4﹣a].(2)若函数A∩B=B,则B⊆A,∴B=∅,或B≠∅.当B=∅时,﹣a≥4﹣a,a无解.当B≠∅,则有4﹣a<﹣1,或﹣a≥3,求得a>5,或a≤﹣3,综合可得,a>5或a≤﹣3.19.解:(1)∵角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(﹣3,),∴x=﹣3,y=,r=|OP|==2,∴sinα==,cosα==﹣,tanα==﹣,∴sin2α﹣tanα=2sinαcosα﹣tanα=﹣+=﹣.(2)函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα=cos[(x﹣α)+α]=cos x,∴函数y=f(﹣2x)﹣2f2(x)=cos(﹣2x)﹣2cos2x=sin2x﹣cos2x﹣1=2(sin2x﹣cos2x)﹣1=2sin(2x﹣)﹣1,在区间[0,]上,2x﹣∈[﹣,],故当2x﹣=﹣或时,函数y取得最小值为﹣2;当2x﹣=时,函数y取得最大值为1,故函数y在区间[0,]上的取值范围为[﹣2,1].20.解:(1)①当m=0时,f(x)=﹣12x﹣9为一次函数,有唯一零点;②当m≠0时,由△=9(m﹣4)2+36m=9(m﹣2)2+108>0故f(x)必有两个零点;(2)由条件可得f(x)的图象关于直线x=1对称,∴﹣=1,且m≠0,解得:m=;(3)依题原命题等价于f(x)﹣a>0有解,即f(x)>a有解,∴a<f(x)max,∵f(x)在[0,2]上递减,∴f(x)max=f(0)=﹣9,故a的取值范围为a<﹣9.21.解:(1)=(2sin2x,1),=(1,﹣2sin x cos x+1),f(x)=•+m=2sin2x﹣2sin x cos x+1+m=2+m﹣cos2x﹣sin2x=2+m﹣2sin(2x+),由+2kπ≤2x+≤2kπ+(k∈Z),即为+kπ≤x≤kπ+,k∈Z,得y=f(x)在R上的单调递增区间为[+kπ,kπ+],k∈Z,又f(x)的定义域为[﹣,π],∴y=f(x)的增区间为:[﹣,﹣],[,].(2)当≤x≤π时,≤,∴﹣1≤sin(2x+)≤,即有1+m≤2+m﹣2sin(2x+)≤4+m,∴1+m≤f(x)≤4+m,由题意可得,解得m=1.22.解:(1)log2.56.25+lg+ln+2=2+0﹣2++6=.(2)x+x﹣1=3,可得:x2+x﹣2+2=9,x2+x﹣2﹣2=5,x﹣x﹣1=,x2﹣x﹣2=(x+x﹣1)(x﹣x﹣1)=.。

2016-2017学年四川省成都市第七中学高一下学期期末考试数学试题(解析版)

2016-2017学年四川省成都市第七中学高一下学期期末考试数学试题(解析版)

四川省成都市第七中学2016-2017学年高一下学期期末考试数学试题评卷人得分一、选择题1.已知等差数列{}n a 的前n 项和为n S ,若4518a a =-,则8S =( ) A. 18 B. 36 C. 54 D. 72 【答案】D【解析】试题分析: 184********a a a aS ++=⋅=⋅=. 【考点】等差数列的基本性质.2.已知点(),P x y 的坐标满足条件4{ 1x y y x x +≤≥≥,则22x y +的最大值为( )A.10 B. 8 C. 10 D. 16【答案】C【解析】可行域如图, 22x y +表示可行域内点到原点距离的平方,所以22x y +的最大值为2||10OA = ,选C.点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围. 3.已知等比数列{}n a 为递增数列,且()251021,25n n n a a a a a ++=+=,则数列{}n a 的通项公式n a =( )A. 2nB. 3nC. 2n- D. 3n-【答案】A【解析】由()2125n n n a a a +++=得()2121522q q q +=⇒=或(舍) ,由2510a a =得()22491112a qa q a q =⇒== ,所以111222n n n n a a q --==⨯= ,选A.4.如图0,,,45AB AC BAD CAD αβαβ⊥⊂⊂∠=∠=,则BAC ∠=( )A. 90°B. 60°C. 45°D. 30° 【答案】B 【解析】由三余弦定理得001πcos cos cos cos45cos4523BAC BAD CAD BAC ∠=∠∠==⇒∠= 选B.5.若直线()()2130a x a y ++--=与直线()()12320a x a y -+++=互相垂直,则a 的值为( )A. 1B. -1C. 1±D. 32- 【答案】C【解析】由两直线11112222:0;:0l A x B y C l A x B y C ++=++=垂直充要条件12120A A B B +=得: ()()()()22112301,1a a a a a a +-+-+=⇒==± ,选C.6.若ABC ∆的内角A B C、、的对边分别为a b c 、、,且sin sin 2sin sin a A c C a C b B +=,则B 等于( )A.6π B. 4π C. 3πD. 34π【答案】B【解析】试题分析:针对sin sin 2sin sin a A c C a C b B +=利用正弦定理边角互化可得2222a c ac b +=,即2222a c b ac+-=,所以22222cos 2a c b ac B ac +-===4B π=.【考点】本小题主要考查解三角形,正弦定理、余弦定理.7.直线10ax y ++=与连接()()2,33,2A B -、的线段相交,则a 的取值范围是( ) A. []1,2- B. [)(]2,,1+∞⋃-∞- C. []2,1- D. (][),21,-∞-⋃+∞ 【答案】D【解析】由题意得()()2,33,2A B -、在直线10ax y ++=上或异侧,所以()()231321012a a a a ++-++≤⇒≥≤-或 ,选D.8.已知某几何体的三视图中,正视图、侧视图均由直角三角形与半圆构成,俯视图由圆与其内接直角三角形构成,如图所示,根据图中的数据可得几何体的体积为( )A.212π+ B. 4136π+ C. 216π+ D. 2132π+ 【答案】C【解析】试题分析:该几何体是一个半球和一个三棱锥,故体积为32212132666ππ⎛+=+ ⎝⎭. 【考点】三视图.9.()()001tan171tan28++的值是( ) A. -1 B. 0 C. 1 D. 2【答案】D 【解析】()()01tan171tan28++()()00000000001tan17tan28tan17tan281tan 17281tan17tan28tan17tan28=+++=++-+()000001tan451tan17tan28tan17tan282=+-+=,选D.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.10.设000020132tan151cos50cos2,,221tan 152a b c -=-==+ ) A. c a b << B. a b c << C. b c a << D. a c b <<【答案】A【解析】()000sin 302sin28,a =-=0000tan215tan30sin30sin28=,b a =⨯=>>2000sin 25sin25sin28c a b a c ===∴>,选A.11.若sin cos24παα⎛⎫-=- ⎪⎝⎭,则sin2α的值可以为( ) A. 12-或1 B. 12 C. 34 D. 34- 【答案】A 【解析】sin cos24παα⎛⎫-=- ⎪⎝⎭()()()2sin cos cos sin cos sin 2αααααα⇒-=--+ 2sin cos 0cos sin =αααα⇒-=+或 111sin201+sin2=sin2122ααα⇒-=⇒=-或或 ,选A. 点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.12.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且2EF =,则下列结论中错误的是( )A. AC BE ⊥B. //EF 平面ABCDC. 三棱锥B AEF -的体积为定值D. 异面直线,AE BF 所成的角为定值【答案】D【解析】试题分析:因为在正方体中, ,AC BD AC ⊥∴⊥面11,B D DB BE ⊂面11,B D DB AC BE ∴⊥,故A 正确;因为平面ABCD P 平面1111A B C D , EF ⊂平面1111A B C D ,所以EF P 面ABCD ,故B 正确;因为2EF BEF =V 的面积为定值112EF ⨯=又AC ⊥面11B D DB , AO ∴为棱锥A BEF -的高,所以三棱锥A BEF -的体积为定值,故C 正确;因为利用图形设异面直线所成的角为α,当E 与1D重合1sin ,302αα==︒;当F 与1B 重合时tan α=,所以异面直线,AE BF 所成的角不是定值,故D 错误;故选D .【考点】棱柱的结构特征评卷人得分二、填空题13.如图,正方体1111ABCD A B C D-中,直线1AB与1BC所成角大小为__________.【答案】3π【解析】因为11//AD BC,所以直线1AB与1BC所成角为11B AD∠因为1111AD B D AB==,所以11π3B AD∠=,即直线1AB与1BC所成角大小为3π14.过点()1,3且与原点的距离为1的直线共有__________条.【答案】2【解析】显然1x=过点()1,3且与原点的距离为1;再设()31y k x-=- ,由234131kkk-+=⇒=+,所以满足条件的直线有两条15.已知关于x的不等式()2110ax a x+-->的解集为11,2⎛⎫--⎪⎝⎭,则a=__________.【答案】-2【解析】()211101,2ax a x⎛⎫+-->--⎪⎝⎭的解集为11,2⇒--为方程()2110ax a x+--=两根,因此11122aa⎛⎫-⨯-=-⇒=-⎪⎝⎭16.数列{}n a满足,123231111212222nna a a a n++++=+L,写出数列{}n a的通项公式__________.【答案】16,1{2,2n nnan+==≥【解析】因为123231111212222nna a a a n++++=+L,所以()12312311111121122222n n n n a a a a a n +++++++=++L ,两式相减得11122n n a ++=,即12,2n n a n +=≥,又1132a =,所以16a =,因此16,1{ 2,2n n n a n +==≥ 点睛:给出n S 与n a 的递推关系求n a ,常用思路是:一是利用1,2n n n a S S n -=-≥转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a . 应用关系式11,1{,2n n n S n a S S n -==-≥时,一定要注意分1,2n n =≥两种情况,在求出结果后,看看这两种情况能否整合在一起.17.已知直线():120l kx y k k R -++=∈,直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B .(1)记ABO ∆的面积为S ,求S 的最小值并求此时直线l 的方程; (2)直线l 过定点M ,求MA MB 的最小值.【答案】(1)S 最小值为4,直线l 方程为240x y -+=(2)4【解析】试题分析:(1)分别求出直线与坐标轴的交点,根据直角三角形面积公式可得()1111·12?24422S k k k k ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,再根据基本不等式求最值,并确定k 的值,即得直线l 的方程;(2)利用向量数量积得2··24MA MB MA MB k k=-=-+≥u u u v u u u v u u u v u u u v ,再根据基本不等式求最值试题解析:解:由题意,分别令0x =, 0y =解得 ()10,12,2,0B k A k ⎛⎫+--⎪⎝⎭且0k >.(1)()1111·12?244,022S k k k k k ⎛⎫⎛⎫=++=++> ⎪ ⎪⎝⎭⎝⎭时144k k +≥=,当且仅当12k =时取等.所以S 的最小值为4,此时直线l 的方程为240x y -+=. (2)易得()2,1M -,∴()1,1,2,2MA MB k k ⎛⎫=--= ⎪⎝⎭u u u v u u uv ,2··24MA MB MA MB k k =-=-+≥u u u v u u u v u u u v u u u v ,当且仅当1k =时取到, MA MB u u u v u u u v的最小值为4.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.评卷人 得分三、解答题18.如图所示,在直三棱柱111ABC A B C -中, 13,4,5,4AC BC AB AA ====,点D 是AB 的中点.(1)在棱11A B 上找一点1D ,当1D 在何处时可使平面11//AC D 平面1CDB ,并证明你的结论;(2)求二面角1B CD B --大小的正切值.【答案】(1) 1D 在棱11A B 中点(2)53【解析】试题分析:(1)先寻找线线平行,所以取1D 为棱11A B 中点,再根据线面平行判定定理得线面平行,最后根据线面平行证面面平行(2)过点B 作直线CD 的垂线B E ,再由三垂线定理可得1B E 也与直线CD 垂直,即1B EB ∠为二面角1B CD B --的平面角.再结合勾股定理解三角形得二面角1B CD B --大小的正切值试题解析:解:(1)当1D 在棱11A B 中点时,可使平面11//AC D 平面1CDB ,证明:易得1111//,A //C D CD D B D .因此平面11//AC D 平面1CDB .(2)在平面ABC 内,过点B 作直线CD 的垂线,记垂足为E ,连接1B E , 1B EB ∠即为二面角1B CD B --的平面角.由已知,结合勾股定理得ABC ∆为直角三角形,125?345BE BE =⨯⇒=,从而1145tan 123BB B EB BE ∠===. 二面角1B CD B --大小的正切值为53.点睛:(1)探索性问题通常用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法. 19.如图,已知PA ⊥矩形ABCD 所在的平面, M N 、分别为AB PC 、的中点,045,2,1PDA AB AD ∠===.(1)求证: //MN 平面PAD ;(2)求PC 与面PAD 所成角大小的正弦值; (3)求证: MN ⊥面PCD .【答案】(1)见解析(2)6(3)见解析 【解析】试题分析:(1)取PD 的中点E ,利用平几知识证四边形AMNE 是平行四边形.即得//MN AE .再根据线面平行判定定理得//MN 平面PAD ;(2)由PA ⊥矩形ABCD 得CPD ∠即为PC 与面PAD 所成角,再解直角三角形得PC 与面PAD 所成角的正弦值(3)由等腰三角形性质得AE PD ⊥,再根据PA ⊥矩形ABCD 得,PA CD ⊥而CD AD ⊥,所以根据线面垂直判定定理得CD ⊥平面PAD ,即得CD AE ⊥,因此AE ⊥平面PCD .最后根据//MN AE ,得MN ⊥面PCD . 试题解析:解:记PD 中点为E ,易得EN 平行且等于AM ,(1)证明:如图,取PD 的中点E ,连结AE EN 、, 则有////EN CD AM ,且1122EN CD AB MA ===, ∴四边形AMNE 是平行四边形.∴//MN AE .∵AE ⊂平面PAD , MN ⊄平面PAD , ∴//MN 平面PAD ;(2)易得CPD ∠即为PC 与面PAD 所成角, 6sin CD CPD PC ∠==,所以, PC 与面PAD 6; (3)证明:∵PA ⊥平面,ABCD CD ⊂平面,ABCD ADC ⊂平面ABCD . ∴,PA CD PA AD ⊥⊥, ∵,CD AD PA AD A ⊥⋂=, ∴CD ⊥平面PAD ,又∵AE ⊂平面PAD ,∴CD AE ⊥, ∵045PDA ∠=, E 为PD 中点, ∴AE PD ⊥,又∵PD CD D ⋂=, ∴AE ⊥平面PCD . ∵//MN AE ,∴MN ⊥平面PCD .20.已知)1sin ,,sin ,12a x b x x ⎛⎫=-=+ ⎪⎝⎭v v ,函数()·f x a b =vv , ABC ∆的内角,,A B C 所对的边长分别为,,a b c .(1)若1,12B C f a b +⎛⎫===⎪⎝⎭,求ABC ∆的面积S ;(2)若()30,45f παα<<=,求cos2α的值. 【答案】(1)=2S (2)3cos210α= 【解析】试题分析:(1)先根据向量数量积坐标表示得()21·cos sin 2f x a b x x x ==+-vv ,再根据二倍角公式及配角公式得()sin 26f x x π⎛⎫=- ⎪⎝⎭,根据1,2B C f +⎛⎫= ⎪⎝⎭可解得2,33B C A ππ+==,由正弦定理可得,6B π=即得2C π=,最后根据直角三角形面积公式求面积(2)由()35f α=得3sin 2,65πα⎛⎫-= ⎪⎝⎭利用同角三角函数关系得4cos 265πα⎛⎫-= ⎪⎝⎭,最后根据2266ππαα⎛⎫=-+ ⎪⎝⎭,利用两角和余弦公式展开得cos2α的值.试题解析:解:()211·cos sin cos2sin 22226f x a b x x x x x x π⎛⎫==+-=-=- ⎪⎝⎭v v ,(1)由12B C f +⎛⎫=⎪⎝⎭,结合,,A B C 为三角形内角得2,33B C A ππ+==而1a b ==.由正弦定理得,62B C ππ==,所以12S ab ==. (2)由()3sin 2,0654f ππααα⎛⎫=-=<< ⎪⎝⎭时, 2663πππα-<-<,∴4cos 265πα⎛⎫-= ⎪⎝⎭,cos2cos 2cos 2cos sin 2sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫⎛⎫=-+=---=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21.设ABC ∆的内角,,A B C 所对的边长分别为,,a b c ,且3cos cos 5a Bb Ac -=. (1)求tan :tan A B 的值; (2)若4b =,求ABC S ∆的最大值.【答案】(1)tan :tan 4A B =(2)20解析:(1)由正弦定理,结合三角形中和差角公式得:()3sin cos sin cos sin cos sin cos 5A B B A A B B A -=+, 从而sin cos 4sin cos A B B A =,即tan :tan 4A B =;(2)由(1)知内角A B 、均为锐角,如图所示过C 作CD 垂直于AB 垂足为D . 设,CD m AD n ==,由题意结合tan :tan 4A B =得4BD n =,且22216m n b +==,所以m n ==2255516··2022222ABCm n S mn ∆+=≤==. 【解析】试题分析:(1)由正弦定理将边化为角: 3sin cos sin cos sinC 5A B B A -=,再根据三角形内角关系及诱导公式得()3sin cos sin cos sin cos sin cos 5A B B A A B B A -=+,即得sin cos 4sin cos A B B A =,因此tan :tan 4A B =;(2)过C 作CD 垂直于AB 垂足为D ,利用底乘高的一半表示三角形面积:设,CD m AD n ==,则由比例关系4BD n =,因此52ABC S mn ∆=,又22216m n b +==,所以可利用基本不等式求最值试题解析:(1)由正弦定理,结合三角形中和差角公式得:()3sin cos sin cos sin cos sin cos 5A B B A A B B A -=+, 从而sin cos 4sin cos A B B A =,即tan :tan 4A B =;(2)由(1)知内角A B 、均为锐角,过C 作CD 垂直于AB 垂足为D . 设,CD m AD n ==,由题意结合tan :tan 4A B =得4BD n =,且22216m n b +==,所以m n ==2255516··2022222ABCm n S mn ∆+=≤==.22.已知数列{}n a 满足1112,22n n n a a a ++==+.(1)设2nn n a b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T .【答案】(1)n b n =(2)()1122n n S n +=-+(3)()()()11412331?2n n n n +++---+ 【解析】试题分析:(1)对条件1122n n n a a ++=+两边同除以12n +得11n n b b +=+,即得数列{}n b 为首项及公差均为1的等差数列,再根据等差数列通项公式求数列{}n b 的通项公式;(2)因为·2n n a n =,所以利用错位相减法求和得数列{}n a 的前n 项和n S ;(3)对n c 裂项处理: ()()()11111122?21?2n n n n n n c n n ++⎛⎫--⎛⎫ ⎪=-+-⎪ ⎪+⎝⎭⎝⎭,再根据分组求和以及裂项相消法求和得数列{}n c 的前n 项和n T .试题解析:(1)由1122n n n a a ++=+得11n n b b +=+,得n b n =;(2)易得·2nn a n =,1223112222,212222,n n n n S n S n +=⨯+⨯++⨯=⨯+⨯++⨯L L错位相减得12111222222212nnn n n S n n ++--=+++-⨯=⨯-⨯-L所以其前n 项和()1122n n S n +=-+; (3)()()()()()()()()()()2221111422142121·2?12?12?12nnnnn n n n n nn nn nn n nc n n n n n n +++-++-++-++++===+++()()()()()()1111111111112?21?222?21?2nn n n nn n n n n n n n n ++++⎛⎫⎛⎫---⎛⎫ ⎪=+-+=-+- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, ()()()()()()2231212231111111*********?22?22?23?2?21?2n n n n n n T n n ++⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤------⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪=-+-++-+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦L L ()()1112113621?2n nn n ++-⎛⎫=-+-- ⎪+⎝⎭或写成()()()11412331?2n n n n +++---+. 点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.。

成都七中17届高一理科数学上期半期考试试卷答案

成都七中17届高一理科数学上期半期考试试卷答案

成都七中2014-2015学年上期 2017届半期考试数学试卷考试时间:120分钟 总分:150分命题人:张世永 审题人:杜利超 吴雪 龙家娱一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求.把答案凃在答题卷上。

){}{}{}MD MC MB MA x x M ≠⊂-∈∅∈-∈=-=1,1..1.1.)(,01|.12则以下正确的是已知集合)是(的只可能满足示的函数下列选项对应的图象表)2()3()41(),(.2f f fx f>>A B C D{}{}{}{}{}{}{}8,7,2,1.8,7.8,7,6,5,4.3.)(6,5,4,33,2,1,9|.3D C B A Venn B A x x U 集合为图中阴影部分所表示的则,,的正整数是小于已知===[][][]1.2.4.8.)()84(121,,)(,)(.423D C B A f x x Zx x f Z x x x f ==⎪⎩⎪⎨⎧∉∈=..则,的最大整数,如表示不大于其中若函数 []2.51.1.50.3,012)(.5D C B A x x x f ..)的最大值为(在函数∈+= {}()()[)()[)[)2,2.2,10,2.1,0.1,0.)(,01|,4|,.62--=⎭⎬⎫⎩⎨⎧≤-=<==D C B A B C A x x x B x x A R U U 则集合已知全集()()()552512525.44.1924log .21ln ..76432572-=÷--=-=⨯=D C B e A ππ)(以下运算错误的是)1ln()(.)1ln()(.)ln()(.)ln()(.)(ln )(.8xx g D xx g C x x g B x x g A x x x f -==--=-==轴对称的函数为关于函数()()(][)(][]2,1.2,1.,1.2,.2,12log )(.922D C B A a a ax x x f +∞∞-++-=)(是的取值范围上是减函数,则实数在已知函数()()()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∈=--⊗-=⎩⎨⎧>-≤-+-=⊗⊗0,2732.0,2724.0,2720.0,2716.,,,0)(,121)(,,,12,.103213212D C B A x x x x x x R m m x f x x x x f b a ab ba ab a b a b a )的取值范围是(则恒有三个不等实根的方程且关于设”;定义运算“和对于实数二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

2016-2017学年四川省高一上学期期末考试数学试题(解析版)7

2016-2017学年四川省高一上学期期末考试数学试题(解析版)7

高一上学期期末考试数学试题一、选择题1.已知集合{}1,0,1,2A =-, {|1}B x x =≤,则A B ⋂等于( ) A. {}1,0,1- B. {}0,1,2 C. {}0,1 D. {}1,2 【答案】A【解析】依题意, []=1,1B -,故{}1,0,1A B ⋂=-.点睛:集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是定义域还是值域,是实数还是点的坐标还是其他的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间是包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.2.cos585︒的值为( )A.B. -C.D. 【答案】D 【解析】()()cos58=+=3.已知函数()()221,1{log 4,1x f x x x x <=+≥,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A. 2 B. 3 C. 4 D. 8 【答案】B【解析】()214,4log 832f f ⎛⎫=== ⎪⎝⎭.4.函数()3log 3f x x x =+-的零点所在的区间是( ) A. ()0,2 B. ()1,2 C. ()2,3 D. ()3,4 【答案】C【解析】由于()()32log 210,310f f =-=,故选C .5.已知集合2{|20}A x x x =+<, {|1}B x a x a =<<+,且B A ⊆,则实数a 的取值范围是( )A. 2a <-或1a >-B. 21a -<<-C. 2a ≤-或1a ≥-D. 21a -≤≤- 【答案】D【解析】依题意()2,0A =-,由于B 是A 的子集,所以2{10a a ≥-+≤,解得[]2,1a ∈--.6.已知函数()()sin (0,)2f x A x A πωϕϕ=+><的图象(部分)如图所示,则12f ⎛⎫-= ⎪⎝⎭( )A. B. C. D. 【答案】C【解析】根据图象的最高点得到2A =,由于511,2,π4632T T ω=-===,故()()2sin f x x πϕ=+,而1ππ2s i n 2,336f ϕϕ⎛⎫⎛⎫=+==⎪ ⎪⎝⎭⎝⎭,所以1ππ2s i n 322f ⎛⎫⎛-=-=- ⎪ ⎝⎭⎝. 7.下列函数中为奇函数的是( )A. cos y x x =B. sin y x x =C. 1n y x =D. 2x y -= 【答案】A【解析】A 为奇函数, B 为偶函数, C,D 为非奇非偶函数。

2017学年四川省成都七中高二上学期期末数学试卷及参考答案(理科)

2017学年四川省成都七中高二上学期期末数学试卷及参考答案(理科)

2017学年四川省成都七中高二上学期期末数学试卷及参考答案(理科)2016-2017学年XXX(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)命题p:“a=-2”是命题q:“直线ax+3y-1=0与直线6x+4y-3=0垂直”成立的()A。

充要条件 B。

充分非必要条件C。

必要非充分条件 D。

既不充分也不必要条件2.(5分)XXX为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大。

在下面的抽样方法中,最合理的抽样方法是()A。

简单随机抽样 B。

按性别分层抽样C。

按年级分层抽样 D。

系统抽样3.(5分)圆(x+2)²+y²=4与圆(x-2)²+(y-1)²=9的位置关系为()A。

内切 B。

相交 C。

外切 D。

相离4.(5分)已知双曲线的离心率为2,那么双曲线的渐近线方程为()A。

B。

x±y=0C。

2x±y=0 D。

5.(5分)函数f(x)=x²-x-2,x∈[-5,5],在定义域内任取一点x,使f(x)≤0的概率是()A。

B。

C。

D。

6.(5分)设实数x,y满足,则μ=的取值范围是()A。

[,2] B。

[,]C。

[,2] D。

[2,]7.(5分)有5名高中优秀毕业生回母校成都7中参加高2015级励志成才活动,到3个班去做研究经验交流,则每个班至少去一名的不同分派方法种数为()A。

200 B。

180C。

150 D。

2808.(5分)柜子里有3双不同的鞋,随机地取2只,下列叙述错误的是()A。

取出的鞋不成对的概率是0B。

取出的鞋都是左脚的概率是0C。

取出的鞋都是同一只脚的概率是0D。

取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是1/39.(5分)执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是()A。

2016-2017学年四川省成都市第七中学高一下学期期末考试数学试题(解析版)

2016-2017学年四川省成都市第七中学高一下学期期末考试数学试题(解析版)

四川省成都市第七中学2016-2017学年高一下学期期末考试数学试题一、选择题1.已知等差数列{}n a 的前n 项和为n S ,若4518a a =-,则8S =( ) A. 18 B. 36 C. 54 D. 72 【答案】D【解析】试题分析: 18458887222a a a a S ++=⋅=⋅=. 【考点】等差数列的基本性质.2.已知点(),P x y 的坐标满足条件4{ 1x y y x x +≤≥≥,则22x y +的最大值为( )A.B. 8C. 10D.16【答案】C【解析】可行域如图, 22x y +表示可行域内点到原点距离的平方,所以22x y +的最大值为2||10OA = ,选C.点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围. 3.已知等比数列{}n a 为递增数列,且()251021,25n n n a a a a a ++=+=,则数列{}n a 的通项公式n a =( )A. 2nB. 3nC. 2n- D. 3n -【答案】A【解析】由()2125n n n a a a +++=得()2121522q q q +=⇒=或(舍) ,由2510a a =得()22491112a qa q a q =⇒== ,所以111222n n n n a a q --==⨯= ,选A.4.如图0,,,45AB AC BAD CAD αβαβ⊥⊂⊂∠=∠=,则BAC ∠=( )A. 90°B. 60°C. 45°D. 30° 【答案】B 【解析】由三余弦定理得001πcos cos cos cos45cos4523BAC BAD CAD BAC ∠=∠∠==⇒∠= 选B.5.若直线()()2130a x a y ++--=与直线()()12320a x a y -+++=互相垂直,则a 的值为( )A. 1B. -1C. 1±D. 32- 【答案】C【解析】由两直线11112222:0;:l A xB yC l A xB yC ++=++=垂直充要条件12120A A B B +=得: ()()()()22112301,1a a a a a a +-+-+=⇒==± ,选C. 6.若ABC ∆的内角A B C 、、的对边分别为a b c 、、,且s i ns 2s i n s i n a A c a C b B +=,则B 等于( )A.6π B. 4π C. 3π D. 34π【答案】B【解析】试题分析:针对sin sin sin sin a A c C C b B +=利用正弦定理边角互化可得222a cb +=,即222a c a c +-=,所以222cos 2a c b B ac +-===4B π=. 【考点】本小题主要考查解三角形,正弦定理、余弦定理.7.直线10ax y ++=与连接()()2,33,2A B -、的线段相交,则a 的取值范围是( ) A. []1,2- B. [)(]2,,1+∞⋃-∞- C. []2,1- D. (][),21,-∞-⋃+∞ 【答案】D【解析】由题意得()()2,33,2A B -、在直线10ax y ++=上或异侧,所以()()231321012a a a a ++-++≤⇒≥≤-或 ,选D.8.已知某几何体的三视图中,正视图、侧视图均由直角三角形与半圆构成,俯视图由圆与其内接直角三角形构成,如图所示,根据图中的数据可得几何体的体积为( )A.132+ B.4136π+ C. 166+ D.2132π+ 【答案】C【解析】试题分析:该几何体是一个半球和一个三棱锥,故体积为3211366π+=+⎝⎭. 【考点】三视图.9.()()01tan171tan28++的值是( )A. -1B. 0C. 1D. 2 【答案】D 【解析】()()01tan171tan28++()()00000000001tan17tan28tan17tan281tan 17281tan17tan28tan17tan28=+++=++-+()000001tan451tan17tan28tan17tan282=+-+=,选D.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.10.设0002012tan15cos2,,221tan 15a b c =-==+ ) A. c a b << B. a b c << C. b c a << D. a c b <<【答案】A【解析】()000sin 302sin28,a =-=0000tan215tan30sin30sin28=,b a =⨯=>>00sin25sin28c a b a c ===∴>,选A.11.若sin cos24παα⎛⎫-=- ⎪⎝⎭,则sin2α的值可以为( ) A. 12-或1 B. 12 C. 34 D. 34- 【答案】A 【解析】s i n4παα⎛⎫-=-⎪⎝⎭)()()sin cos cos sin cos sin αααααα⇒-=--+sin cos 0cos sin αααα⇒-=+或111sin201+sin2=sin2122ααα⇒-=⇒=-或或 ,选A. 点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.12.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且EF =)A. AC BE ⊥B. //EF 平面ABCDC. 三棱锥B AEF -的体积为定值D. 异面直线,AE BF 所成的角为定值【答案】D【解析】试题分析:因为在正方体中, ,AC BD AC ⊥∴⊥面11,B D DB BE ⊂面11,B D DB AC BE ∴⊥,故A 正确;因为平面ABCD 平面1111A B C D , EF ⊂平面1111A B C D ,所以EF 面ABCD ,故B 正确;因为EF BEF =的面积为定值112EF ⨯=又AC ⊥面11B D DB , AO ∴为棱锥A BEF -的高,所以三棱锥A BEF -的体积为定值,故C 正确;因为利用图形设异面直线所成的角为α,当E 与1D重合1sin ,302αα==︒;当F 与1B 重合时tan α=,所以异面直线,AE BF 所成的角不是定值,故D 错误;故选D .【考点】棱柱的结构特征二、填空题13.如图,正方体1111ABCD A BC D -中,直线1AB 与1BC 所成角大小为__________.【答案】3π【解析】因为11//AD BC ,所以直线1AB 与1BC 所成角为11B AD ∠ 因为1111AD B D AB == ,所以11π3B AD ∠=,即直线1AB 与1BC 所成角大小为3π 14.过点()1,3且与原点的距离为1的直线共有__________条. 【答案】2【解析】显然1x =过点()1,3且与原点的距离为1;再设()31y k x -=- ,由413k =⇒=,所以满足条件的直线有两条 15.已知关于x 的不等式()2110ax a x +-->的解集为11,2⎛⎫-- ⎪⎝⎭,则a =__________. 【答案】-2【解析】()211101,2ax a x ⎛⎫+-->--⎪⎝⎭的解集为 11,2⇒-- 为方程()2110a x a x +--=两根,因此11122a a ⎛⎫-⨯-=-⇒=- ⎪⎝⎭16.数列{}n a 满足, 123231111212222n n a a a a n ++++=+ ,写出数列{}n a 的通项公式__________. 【答案】16,1{ 2,2n n n a n +==≥ 【解析】因为123231111212222n n a a a a n ++++=+ ,所以()12312311111121122222n n n n a a a a a n +++++++=++ ,两式相减得11122n n a ++=,即12,2n n a n +=≥,又1132a =,所以16a =,因此16,1{ 2,2n n n a n +==≥ 点睛:给出n S 与n a 的递推关系求n a ,常用思路是:一是利用1,2n n n a S S n -=-≥转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a . 应用关系式11,1{,2n n n S n a S S n -==-≥时,一定要注意分1,2n n =≥两种情况,在求出结果后,看看这两种情况能否整合在一起.17.已知直线():120l kx y k k R -++=∈,直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B .(1)记ABO ∆的面积为S ,求S 的最小值并求此时直线l 的方程; (2)直线l 过定点M ,求MA MB 的最小值.【答案】(1)S 最小值为4,直线l 方程为240x y -+=(2)4【解析】试题分析:(1)分别求出直线与坐标轴的交点,根据直角三角形面积公式可得()1111·12?24422S k k k k ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,再根据基本不等式求最值,并确定k 的值,即得直线l 的方程;(2)利用向量数量积得2··24MA MB MA MB k k=-=-+≥ ,再根据基本不等式求最值试题解析:解:由题意,分别令0x =, 0y =解得 ()10,12,2,0B k A k ⎛⎫+--⎪⎝⎭且0k >.(1)()1111·12?244,022S k k k k k ⎛⎫⎛⎫=++=++> ⎪ ⎪⎝⎭⎝⎭时144k k +≥=,当且仅当12k =时取等.所以S 的最小值为4,此时直线l 的方程为240x y -+=. (2)易得()2,1M -,∴()1,1,2,2MA MB k k ⎛⎫=--= ⎪⎝⎭,2··24MA MB MA MB k k=-=-+≥ ,当且仅当1k =时取到, MA MB的最小值为4.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.三、解答题18.如图所示,在直三棱柱111ABC A B C -中, 13,4,5,4AC BC AB AA ====,点D 是AB 的中点.(1)在棱11A B 上找一点1D ,当1D 在何处时可使平面11//AC D 平面1CDB ,并证明你的结论;(2)求二面角1B CD B --大小的正切值.【答案】(1) 1D 在棱11A B 中点(2)53【解析】试题分析:(1)先寻找线线平行,所以取1D 为棱11A B 中点,再根据线面平行判定定理得线面平行,最后根据线面平行证面面平行(2)过点B 作直线CD 的垂线B E ,再由三垂线定理可得1B E 也与直线CD 垂直,即1B EB ∠为二面角1B CD B --的平面角.再结合勾股定理解三角形得二面角1B CD B --大小的正切值试题解析:解:(1)当1D 在棱11A B 中点时,可使平面11//AC D 平面1CDB ,证明:易得1111//,A //C D CD D B D .因此平面11//AC D 平面1CDB .(2)在平面ABC 内,过点B 作直线CD 的垂线,记垂足为E ,连接1B E , 1B EB ∠即为二面角1B CD B --的平面角.由已知,结合勾股定理得ABC ∆为直角三角形,125?345BE BE =⨯⇒=,从而1145tan 123BB B EB BE ∠===. 二面角1B CD B --大小的正切值为53.点睛:(1)探索性问题通常用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.19.如图,已知PA ⊥矩形ABCD 所在的平面, M N 、分别为AB PC 、的中点,045,2,1PDA AB AD ∠===.(1)求证: //MN 平面PAD ;(2)求PC 与面PAD 所成角大小的正弦值; (3)求证: MN ⊥面PCD .【答案】(1)见解析(2(3)见解析 【解析】试题分析:(1)取PD 的中点E ,利用平几知识证四边形AMNE 是平行四边形.即得//MN AE .再根据线面平行判定定理得//MN 平面PAD ;(2)由PA ⊥矩形ABCD 得CPD ∠即为PC 与面PAD 所成角,再解直角三角形得PC 与面PAD 所成角的正弦值(3)由等腰三角形性质得AE PD ⊥,再根据PA ⊥矩形ABCD 得,PA CD ⊥而CD AD ⊥,所以根据线面垂直判定定理得CD ⊥平面PAD ,即得CD AE ⊥,因此AE ⊥平面PCD .最后根据//MN AE ,得MN ⊥面PCD . 试题解析:解:记PD 中点为E ,易得EN 平行且等于AM ,(1)证明:如图,取PD 的中点E ,连结AE EN 、, 则有////EN CD AM ,且1122EN CD AB MA ===, ∴四边形AMNE 是平行四边形.∴//MN AE .∵AE ⊂平面PAD , MN ⊄平面PAD , ∴//MN 平面PAD ;(2)易得CPD ∠即为PC 与面PAD 所成角, sin CD CPD PC ∠==,所以, PC与面PAD ; (3)证明:∵PA ⊥平面,ABCD CD ⊂平面,ABCD ADC ⊂平面ABCD . ∴,PA CD PA AD ⊥⊥, ∵,CD AD PA AD A ⊥⋂=, ∴CD ⊥平面PAD ,又∵AE ⊂平面PAD ,∴CD AE ⊥, ∵045PDA ∠=, E 为PD 中点, ∴AE PD ⊥,又∵PD CD D ⋂=, ∴AE ⊥平面PCD . ∵//MN AE ,∴MN ⊥平面PCD .20.已知)1sin ,,sin ,12a x b x x ⎛⎫=-=+ ⎪⎝⎭ ,函数()·f x a b =, ABC ∆的内角,,A B C 所对的边长分别为,,a b c .(1)若1,12B C f a b +⎛⎫===⎪⎝⎭,求ABC ∆的面积S ;(2)若()30,45f παα<<=,求cos2α的值. 【答案】(1)S 2)cos2α=【解析】试题分析:(1)先根据向量数量积坐标表示得()21·cos sin 2f x a b x x x ==+-,再根据二倍角公式及配角公式得()sin 26f x x π⎛⎫=- ⎪⎝⎭,根据1,2B C f +⎛⎫= ⎪⎝⎭可解得2,33B C A ππ+==,由正弦定理可得,6B π=即得2C π=,最后根据直角三角形面积公式求面积(2)由()35f α=得3sin 2,65πα⎛⎫-= ⎪⎝⎭利用同角三角函数关系得4cos 265πα⎛⎫-= ⎪⎝⎭,最后根据2266ππαα⎛⎫=-+ ⎪⎝⎭,利用两角和余弦公式展开得cos2α的值.试题解析:解:()211·cos sin cos2sin 2226f x a b x x x x x x π⎛⎫==+-=-=- ⎪⎝⎭ ,(1)由12B C f +⎛⎫=⎪⎝⎭,结合,,A B C 为三角形内角得2,33B C A ππ+==而1a b ==.由正弦定理得,62B C ππ==,所以122S ab ==. (2)由()3s i n 2,0654f ππααα⎛⎫=-=<< ⎪⎝⎭时, 2663πππα-<-<,∴4cos 265πα⎛⎫-= ⎪⎝⎭,cos2cos 2cos 2cos sin 2sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫⎛⎫=-+=---=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21.设ABC ∆的内角,,A B C 所对的边长分别为,,a b c ,且3cos cos 5a Bb Ac -=. (1)求tan :tan A B 的值; (2)若4b =,求ABC S ∆的最大值.【答案】(1)tan :tan 4A B =(2)20解析:(1)由正弦定理,结合三角形中和差角公式得:()3sin cos sin cos sin cos sin cos 5A B B A A B B A -=+, 从而sin cos 4sin cos A B B A =,即tan :tan 4A B =;(2)由(1)知内角A B 、均为锐角,如图所示过C 作CD 垂直于AB 垂足为D . 设,CD m AD n ==,由题意结合tan :tan 4A B =得4BD n =,且22216m n b +==,所以m n ==2255516··2022222ABCm n S mn ∆+=≤==. 【解析】试题分析:(1)由正弦定理将边化为角: 3sin cos sin cos sinC 5A B B A -=,再根据三角形内角关系及诱导公式得()3s in co s s i n c o s s i n c o s s i n5A B B A AB B A -=+,即得sin cos 4sin cos A B B A =,因此tan :tan 4A B =;(2)过C 作CD 垂直于AB 垂足为D ,利用底乘高的一半表示三角形面积:设,CD m AD n ==,则由比例关系4BD n =,因此52ABC S mn ∆=,又22216m n b +==,所以可利用基本不等式求最值试题解析:(1)由正弦定理,结合三角形中和差角公式得:()3sin cos sin cos sin cos sin cos 5A B B A A B B A -=+, 从而sin cos 4sin cos A B B A =,即tan :tan 4A B =;(2)由(1)知内角A B 、均为锐角,过C 作CD 垂直于AB 垂足为D . 设,CD m AD n ==,由题意结合tan :tan 4A B =得4BD n =,且22216m n b +==,所以m n ==2255516··2022222ABCm n S mn ∆+=≤==.22.已知数列{}n a 满足1112,22n n n a a a ++==+. (1)设2nn n a b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T .【答案】(1)n b n =(2)()1122n n S n +=-+(3)()()()11412331?2n n n n +++---+ 【解析】试题分析:(1)对条件1122n n n a a ++=+两边同除以12n +得11n n b b +=+,即得数列{}n b 为首项及公差均为1的等差数列,再根据等差数列通项公式求数列{}n b 的通项公式;(2)因为·2n n a n =,所以利用错位相减法求和得数列{}n a 的前n 项和n S ;(3)对n c 裂项处理: ()()()11111122?21?2n n n n n n c n n ++⎛⎫--⎛⎫⎪=-+- ⎪ ⎪+⎝⎭⎝⎭,再根据分组求和以及裂项相消法求和得数列{}n c 的前n 项和n T .试题解析:(1)由1122n n n a a ++=+得11n n b b +=+,得n b n =; (2)易得·2nn a n =,1223112222,212222,n n n n S n S n +=⨯+⨯++⨯=⨯+⨯++⨯错位相减得12111222222212nnn n n S n n ++--=+++-⨯=⨯-⨯-所以其前n 项和()1122n n S n +=-+; (3)()()()()()()()()()()2221111422142121·2?12?12?12nnnnn n n n n nn nn nn n nc n n n n n n +++-++-++-++++===+++()()()()()()1111111111112?21?222?21?2nn n n nn n n n n n n n n ++++⎛⎫⎛⎫---⎛⎫ ⎪=+-+=-+- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, ()()()()()()2231212231111111*********?22?22?23?2?21?2n n n n n n T n n ++⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤------⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪=-+-++-+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ ()()1112113621?2n nn n ++-⎛⎫=-+-- ⎪+⎝⎭或写成()()()11412331?2n n n n +++---+. 点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中2016-2017学年高一上期期末考试
数学试题
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 设集合{0,1,2}A =,{2,3}B =,则A B ⋃=( )
A .{0,1,2,3}
B .{0,1,3}
C .{0,1}
D .{2}
2. 下列函数中,为偶函数的是( )
A .2log y x =
B .12
y x = C . 2x y -= D .2y x -=
3. 已知扇形的弧长为6,圆心角弧度数为3,则其面积为( )
A . 3
B . 6
C . 9
D . 12 4. 已知点A (0,1) , B (-2,1),向量(1,0)e = ,则AB 在e 方向上的投影为( )
A . 2
B . 1 C. -1 D .-2
5. 设α是第三象限角,化简:cos α= ( )
A . 1
B . 0 C. -1 D . 2
6. 已知α为常数,幂函数()f x x α=满足1
()23
f =,则(3)f =( ) A . 2 B .
12 C. 12
- D . -2 7. 已知(sin )cos4f x x =,则1()=2f ( )
A . 2
B . 12 C. 12- D. 2
8. 要得到函数2log (21)y x =+的图象,只需将21log y x =+的图象( )
A .向左移动12个单位
B .向右移动12
个单位 C. 向左移动1个单位 D .向右移动1个单位
9. 向高为H 的水瓶(形状如图)中注水,注满为止,则水深h 与注水量v 的函数关系的大致图象是( )
10. 已知函数1
2log ,1()13,1
x x f x x x ≥⎧⎪=⎨⎪-<⎩,若0[()]2f f x =-,则0x 的值为( )
A . -1
B . 0 C. 1 D .2
11. 已知函数21tan ()log 1tan x f x x -=+,若()12f a π+=,则()2
f a π-= ( ) A .1 B . 0 C. -1 D .-2
12. 已知平面向量a ,b ,c 满足3a b ⋅= ,2a b -= ,且()()0a c b c -⋅-= ,则c 的取
值范围是( )
A .[0,2]
B .[1,3] C. [2,4] D .[3,5]
第Ⅱ卷(非选择题,共90分)
二、填空题(本大题4小题,每小题5分,共20分,答案写在答题卡相应横线上)
13. 设向量1e ,2e 不共线,若1212(2)//(4)e e e e λ-+ ,则实数λ的值为 .
14.
函数tan y x =的定义域是 .
15. 已知函数()sin()(0,0,)
f x A x A ωϕωϕπ=+>><的部分图象(如图所示),则()f x 的解析式为 .
16. 设e 为自然对数的底数,若函数2()(2)(2)1x x x f x e e a e a =-++⋅--存在三个零点,
则实数a 的取值范围是 .
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17. (本小题满分10分)
设向量(,4)a x = , (7,1)b =- ,已知a b a += .
(I)求实数x 的值;
(II)求a 与b 的夹角的大小.。

相关文档
最新文档