MATLAB 实现数字图像锐化处理

合集下载

MATLAB实现数字图像锐化处理

MATLAB实现数字图像锐化处理

MATLAB实现数字图像锐化处理作者:金献珍吴艳来源:《商场现代化》2008年第36期[摘要] 讨论了数字图像增强技术中空域图像锐化的四种算法及其用MATLAB的实现;同时给出了利用四种算法进行图像锐化后的对照图像。

[关键词] MATLAB 线性锐化非线性锐化 sobel算子 prewitt算子 log 算子MATLAB全称是MatrixLaboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。

实际运用中MATLAB 中的绝大多数的运算都是通过矩阵这一形式进行的,这一特点决定了MATLAB在处理数字图像上的独特优势。

理论上讲,图像是一种二维的连续函数,然而计算机对图像进行数字处理时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。

二维图像均匀采样,可得到一幅离散化成M×N样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的。

而MATLAB的长处就是处理矩阵运算,因此用MATLAB处理数字图像非常的方便。

MATLAB支持五种图像类型,即索引图像、灰度图像、二值图像、RGB图像和多帧图像阵列;支持BMP,GIF,HDF,JPEG,PCX,PNG, XWD,CUR,ICO等图像文件格式的读、写和显示。

MATLAB对图像的处理功能主要集中在它的图像处理工具箱(Image Processing Toolbox)中。

图像处理工具箱是由一系列支持图像处理操作的函数组成,可以进行诸如几何操作、线性滤波和滤波器设计、图像变换、图像分析与图像增强、二值图像操作以及形态学处理等图像处理操作口。

数字图像处理中图像锐化的目的有两个:一是增强图像的边缘,使模糊的图像变得清晰起来;这种模糊不是由于错误操作,就是特殊图像获取方法的固有影响。

二是提取目标物体的边界,对图像进行分割,便于目标区域的识别等。

利用Matlab进行图像处理的常用方法

利用Matlab进行图像处理的常用方法

利用Matlab进行图像处理的常用方法概述:图像处理是数字信号处理的一个重要分支,也是计算机视觉领域的核心内容之一。

随着计算机技术的不断发展,利用Matlab进行图像处理的方法变得越来越重要。

本文将介绍一些常用的Matlab图像处理方法,包括图像的读取与显示、图像的预处理、图像的滤波处理、基本的图像增强方法以及图像的分割与检测等。

一、图像的读取与显示在Matlab中,可以使用imread函数直接读取图像。

通过指定图像的路径,我们可以将图像读取为一个矩阵,并且可以选择性地将其转换为灰度图像或彩色图像。

对于灰度图像,可以使用imshow函数将其显示出来,也可以使用imwrite函数将其保存为指定格式的图像文件。

对于彩色图像,可以使用imshow函数直接显示,也可以使用imwrite函数保存为指定格式的图像文件。

此外,还可以使用impixel函数获取图像中指定像素点的RGB值。

二、图像的预处理图像的预处理是指在进一步处理之前对图像进行调整和修复以消除图像中的噪声和不良的影响。

常用的图像预处理方法包括图像的平滑处理、图像增强和图像修复等。

1. 图像平滑处理:常用的图像平滑方法有均值滤波、中值滤波和高斯滤波等。

其中,均值滤波将每个像素点的值替换为其周围像素点的平均值,中值滤波将每个像素点的值替换为其周围像素点的中值,高斯滤波则通过加权平均的方式平滑图像。

2. 图像增强:图像增强是指通过一些方法提高图像的质量和信息内容。

常用的图像增强方法包括直方图均衡化、对比度拉伸和锐化等。

直方图均衡化通过调整图像的灰度分布,以提高图像的对比度和细节。

对比度拉伸是通过将图像的像素值线性拉伸到整个灰度范围内,以增强图像的对比度。

锐化则是通过增强图像的边缘和细节,使图像更加清晰。

三、图像的滤波处理图像的滤波处理是指通过对图像进行一系列滤波操作,来提取图像中的特征和信息。

常用的图像滤波方法包括模板滤波、频域滤波和小波变换等。

1. 模板滤波:模板滤波是基于局部像素邻域的滤波方法,通过定义一个滤波模板,将其与图像进行卷积操作,从而实现图像的滤波。

Matlab中的图像增强技术与应用

Matlab中的图像增强技术与应用

Matlab中的图像增强技术与应用图像增强技术是数字图像处理领域中的重要方向之一。

通过增强图像的亮度、对比度、锐度以及去除噪声、伪彩色等方法,可以使图像更加清晰、具有更好的可视化效果。

Matlab作为一种常用的图像处理工具,提供了丰富的图像增强函数和工具箱,可以帮助我们实现各种图像增强技术的应用。

本文将介绍一些常用的图像增强技术,并结合Matlab来演示它们的应用。

一、灰度变换与直方图均衡化灰度变换是最基础的图像增强技术之一,它通过调整图像中像素的灰度值来改变图像的亮度和对比度。

在Matlab中,我们可以使用imadjust函数来实现灰度变换。

imadjust函数可以根据输入的灰度范围,将图像像素的灰度值进行线性映射,从而改变图像的亮度。

直方图均衡化是一种改善图像对比度的方法,它通过对图像中像素的灰度分布进行调整,使得图像中的灰度级尽可能均匀分布。

在Matlab中,我们可以使用histeq函数来实现直方图均衡化。

该函数会自动计算图像的累积直方图,并将其映射为均匀分布的灰度级。

二、滤波器与空域增强滤波器是一种常见的图像增强工具,它可以通过删去或者增强图像中的某些频率成分,从而实现图像的去噪和锐化。

在Matlab中,我们可以使用imfilter函数来实现各种滤波操作。

常见的滤波器包括均值滤波器、中值滤波器以及高斯滤波器等。

均值滤波器可以平滑图像,减少图像中的噪声;中值滤波器可以有效抑制椒盐噪声等随机噪声;高斯滤波器可以平滑图像并增强图像的边缘。

除了滤波器,空域增强也是一种常用的图像增强技术。

通过对图像进行锐化、增强边缘等操作,可以使图像更加清晰和鲜明。

在Matlab中,我们可以使用imsharpen函数来实现图像的锐化操作。

该函数可以增强图像的高频信息,使得图像的细节更加突出。

三、变换域增强变换域增强是一种通过将图像从空域转换到频域,进行增强操作的方法。

其中最常用的变换是傅里叶变换和小波变换。

在Matlab中,我们可以使用fft2函数和dwt2函数来实现傅里叶变换和小波变换。

数字图像的锐化

数字图像的锐化

实验名称:数字图像的锐化(LAPLACE 运算)一、实验目的1、了解锐化的算法和用途,学习利用拉普拉斯锐化运算的程序设计 方法。

2、通过对锐化前后图象的观察深刻了解锐化的实质。

二、实验设备PC 兼容机一台,操作系统为Windows XP ,安装Code Composer Studio 2.2.1和MATLAB 6.5.1软件。

三、实验内容数字图象的的锐化1、实验要求:常用的拉普拉斯锐化模板还有另一种形式修改参考例程,完成以上算子的锐化运算。

2、对设计要求的理解(1)图像的锐化所需要的输入图象为80*80黑白自定义图象,我们这里选取电脑中自带的bmp 格式的图象。

不需要使用硬件采集图象。

(2)输入黑白图片的是由80*80个像素组成,每个像素值都是由0~255中的某一数字表示,代表其灰度值。

其中0代表图像为黑色的,255代表白色。

(3)锐化的实质是对图象灰度值比较接近的地方进行处理,提升两者之间的灰度差别,使得图象便于人眼观察。

(4)对某一点像素的处理采用拉普拉斯锐化模板,锐化后的像素值是以一点为中心的相邻的九个像素值的函数。

特别的是对于图象的边缘的处理:赋值为0。

四、实验原理1、数字图像的锐化原理图象锐化的目的是使模糊地图象变得更加清晰起来。

图象的模糊实质就是图象平均和积分运算造成的,因此可以对图象进行逆运算如微分运算来使图象清晰化。

从频谱的角度来分析,图象模糊地是知识其高频分量被衰减,因而可以通过高通滤波器作来清晰图象。

图像锐化常采用算法是拉普拉斯算法,他是微分锐化的方法的一种。

拉普拉斯运算是偏导数运算的线性组合,而且是一种各向同性(旋转不变)的线性运算.设2∇为拉普拉斯算子,则:y f x f f 22222∂∂+∂∂=∇对于离散数字图像),(j I f ,其一阶偏导数为:),1(),(),(),(j i f j i f j i f xj i f x --=∆=∂∂ )1,(),(),(),(--=∆=∂∂j i f j i f j i f yj i f y 其二阶偏导数为:),(2),1(),1(),(),1(),(22j i f j i f j i f j i f j i f x j i f x x --++=∆-+∆=∂∂ ),(2)1,()1,(),(),1(),(22j i f j i f j i f j i f j i f yj i f y y --++=∆-+∆=∂∂ 所以,拉普拉斯算子f 2∇为:),(4)1,()1,(),1(),1(22222j i f j i f j i f j i f j i f y f x f f --+++++-=∂∂+∂∂=∇ 对于扩散现象引起的图象模糊,可以用下式进行锐化:),(),(),(2j i f k j i f j i g ∇-=ττk 是与扩散效应有关系数,该系数取值合理,锐化效果才会更好。

matlab 边缘锐化算法

matlab 边缘锐化算法

matlab 边缘锐化算法Matlab边缘锐化算法是一种用于图像处理和计算机视觉领域的重要技术。

边缘锐化算法可以提取图像中的边缘信息,使图像更加清晰和有层次感。

在本文中,我们将介绍Matlab中常用的边缘锐化算法,并详细解释其原理和应用。

我们来了解一下什么是图像的边缘。

在图像中,边缘是指图像中颜色、亮度或纹理等特征发生较大变化的区域。

边缘可以提供图像的形状和结构信息,因此在图像处理和计算机视觉中具有重要的作用。

边缘锐化算法的目标是增强图像中的边缘信息,使其更加清晰和明显。

在Matlab中,常用的边缘锐化算法包括Sobel算子、Prewitt 算子、Roberts算子和Canny算子等。

我们来介绍Sobel算子。

Sobel算子是一种基于梯度的边缘检测算法,它通过计算图像中每个像素点的梯度值来检测边缘。

Sobel算子分为水平和垂直两个方向,分别计算图像在x和y方向上的梯度值,然后将两个梯度值合并得到最终的边缘图像。

Prewitt算子与Sobel算子类似,也是一种基于梯度的边缘检测算法。

Prewitt算子将图像分为水平和垂直两个方向,分别计算图像在x和y方向上的梯度值,然后将两个梯度值合并得到最终的边缘图像。

Roberts算子是一种简单而有效的边缘检测算法。

它通过计算图像中每个像素点与其相邻像素点的差值来检测边缘。

Roberts算子分为两个方向,分别计算图像在x和y方向上的差值,然后将两个差值合并得到最终的边缘图像。

Canny算子是一种较为复杂的边缘检测算法,它综合考虑了图像的梯度和灰度信息,并利用阈值和非极大值抑制等技术来提取边缘。

Canny算子在边缘检测中具有较好的性能,常被用于实际应用中。

在Matlab中,我们可以使用imfilter函数来实现边缘锐化算法。

该函数可以对图像进行卷积操作,通过设置不同的卷积核来实现不同的边缘锐化效果。

例如,可以使用fspecial函数生成Sobel、Prewitt、Roberts等算子的卷积核,然后将卷积核作用于图像上,即可得到相应的边缘图像。

Matlab图像的锐化处理及边缘检测

Matlab图像的锐化处理及边缘检测

Matlab图像锐化处理及边缘检测本章要点:☑图像边缘锐化的基本方法☑微分运算☑梯度锐化☑边缘检测6.1 图像边缘锐化的基本方法物体的边缘是以图像局部特性不连续性的形式出现。

本质上边缘常意味着一个区域的终结和另一个区域的开始。

图像边缘信息在图像分析和人的视觉中都是十分重要的,是图像识别中提取图像特征的一个重要特性。

图像的边缘有方向和幅度两个特性。

通常,延边缘走向的像素变化平缓,而垂直于边缘走向的像素变化剧烈。

边缘的描述包含以下几个方面:(1)边缘点——它两边像素的灰度值有显著的不同。

边缘点也存在于这样一对邻点之间即一个在较亮的区域内部,另一个在外部。

(2)边缘法线方向——在某点灰度变化最剧烈的方向,与边缘方向垂直。

(3)边缘方向——与边缘法线方向垂直,是目标边界的切线方向。

(4)边缘位置——边缘所在的坐标位置。

(5)边缘强度——沿边缘法线方向图像局部的变化强度的量度。

粗略地区分边缘种类可以有两种,其一是阶跃状边缘,它两边像素的灰度值有显著的不同,其二是屋顶状边缘,它位于灰度值从增加到减少的变化转折点。

这些变化分别对应景物中不同的物理状态。

边缘是图像上灰度变化比较剧烈的地方,如果一个像素落在图像中某一个物体的边界上,那么它的邻域将成为一个灰度级的变化带。

对这种变化最有用的两个特征是灰度的变化率和方向,在灰度变化突变处进行微分,将产生高值。

经典的边缘提取方法是考虑图像的每个像素在某个领域内的变化,利用边缘邻近一阶或二阶方向导数变化规律,来检测边缘。

图像灰度值的显著变化可以用一阶差分替代一阶微分的梯度来表示,它们分别以梯度向量的幅度和方向来表示。

因此图像中陡峭边缘的梯度值将是很大的;那些灰度变化平缓的地方,梯度值是比较小的;而那些灰度值相同的地方,梯度值将为零。

图像经过梯度运算能灵敏地检测出边界线,这种微分边缘检测算子运算简单易行,但有方向性。

利用计算机进行图像锐化处理有两个目的,一是与柔化处理相反,增强图像边缘,使模糊的图像变得更加清晰起来,颜色变得鲜明突出,图像的质量有所改善,产生更适合人观察和识别的图像,本章的梯度锐化就是介绍这方面的内容。

使用Matlab进行图像增强与图像修复的方法

使用Matlab进行图像增强与图像修复的方法

使用Matlab进行图像增强与图像修复的方法图像增强与图像修复是数字图像处理领域中的重要研究方向之一。

随着数字摄影和图像处理技术的快速发展,越来越多的应用需要对图像进行增强和修复,以提高图像的质量和视觉效果。

在本文中,我们将探讨使用Matlab进行图像增强和图像修复的方法。

一、图像增强方法图像增强是通过对图像进行处理,改善其质量,使其更加清晰、鲜明和易于观察。

下面将介绍几种常用的图像增强方法。

1. 灰度拉伸灰度拉伸是一种简单而有效的图像增强方法,通过拉伸图像的灰度范围,使得图像中的细节更加明确可见。

具体操作是将图像的最低灰度值映射到0,最高灰度值映射到255,中间的灰度值按比例映射到相应的范围。

在Matlab中,我们可以使用imadjust函数实现灰度拉伸。

2. 直方图均衡化直方图均衡化是一种常用的图像增强方法,通过对图像的灰度分布进行调整,使得图像的对比度得到增强。

具体操作是对图像的灰度直方图进行均衡化处理,将图像的灰度级分布均匀化。

在Matlab中,我们可以使用histeq函数实现直方图均衡化。

3. 锐化锐化是一种常用的图像增强方法,通过增强图像的边缘和细节,使得图像更加清晰和立体。

具体操作是对图像进行高通滤波,突出图像中的边缘信息。

在Matlab中,我们可以使用imsharpen函数实现图像锐化。

4. 去噪去噪是一种常用的图像增强方法,通过抑制图像中的噪声,提高图像的质量。

常见的去噪方法包括中值滤波、均值滤波和小波去噪等。

在Matlab中,我们可以使用medfilt2函数实现中值滤波。

二、图像修复方法图像修复是对图像中存在的缺陷或损坏进行补全或恢复的过程,以提高图像的可视化效果。

下面将介绍几种常用的图像修复方法。

1. 图像插值图像插值是一种常用的图像修复方法,通过根据已知的像素值推测缺失的像素值,从而补全图像中的缺失部分。

常见的插值方法包括最近邻插值、双线性插值和双立方插值等。

在Matlab中,我们可以使用interp2函数实现图像插值。

基于MATLAB的数字图像平滑和锐化处理算法分析

基于MATLAB的数字图像平滑和锐化处理算法分析

基于MATLAB的数字图像平滑和锐化处理算法分析卞凤杰2141141摘要:本文主要内容是利用MATLAB 对图像进行频域平滑和锐化处理。

本文先对图像进行空域平滑、锐化处理,然后再进行频域平滑滤波、锐化等操作,可以简单比较空域和频域下对图像进行处理的不同效果,并且通过改变参数确定效果最佳的平滑和锐化处理算法,同时给出了运用MATLAB 进行图像处理的前后对照图像。

关键词:MATLAB;图像处理;图像平滑;图像锐化Abstract:In this paper, the main content is to use MATLAB to do image smoothing and sharpening processing in the frequency-domain.Firstly,this article to do spatial smoothing, sharpening processing of the image, and then to frequency-domain smoothing filtering, sharpening, etc.This can be simply compare the different results of image processing in spatial domain and frequency domain. Secondly, by changing the parameters to determine the best smoothing and sharpening processing algorithm, and gives a comparison before and after using MATLAB image processing image.Keywords:MATLAB;Image Processing;Image smoothing;Image sharpening1、引言数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB 实现数字图像锐化处理
摘要:讨论了数字图像增强技术中空域图像锐化的四种算法及其用MATLAB的实现;同时给出了利用四种算法进行图像锐化后的对照图像。

比较实验结果,可知运用算法锐化处理后,图像比原来图像清晰。

关键词:MATLAB、线性锐化、非线性锐化、sobel算子、prewitt算子、log算子
1.引言
MATLAB全称是Matrix Laboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。

实际运用中MATLAB 中的绝大多数的运算都是通过矩阵这一形式进行的,这一特点决定了MATLAB 在处理数字图像上的独特优势。

理论上讲,图像是一种二维的连续函数,然而计算机对图像进行数字处理时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。

二维图像均匀采样,可得到一幅离散化成M ×N 样本的数字图像,该数字图像是一个整数阵列,因而用矩阵来描述该数字图像是最直观最简便的。

而MATLAB 的长处就是处理矩阵运算,因此用MATLAB 处理数字图像非常的方便。

MATLAB 支持五种图像类型,即索引图像、灰度图像、二值图像、RGB 图像和多帧图像阵列;支持BMP,GIF,HDF,JPEG,PCX,PNG,XWD,CUR,ICO等图像文件格式的读、写和显示。

MATLAB 对图像的处理功能主要集中在它的图像处理工具箱(Image Processing Toolbox)中。

图像处理工具箱是由一系列支持图像处理操作的函数组成,可以进行诸如几何操作、线性滤波和滤波器设计、图像变换、图像分析与图像增强、二值图像操作以及形态学处理等图像处理操作口。

数字图像处理中图像锐化的目的有两个:一是增强图像的边缘,使模糊的图像变得清晰起来;这种模糊不是由于错误操作,就是特殊图像获取方法的固有影响。

二是提取目标物体的边界,对图像进行分割,便于目标区域的识别等。

通过图像的锐化,使得图像的质量有所改变,产生更适合人观察和识别的图像。

2.数字图像的锐化
数字图像的锐化可分为线性锐化滤波和非线性锐化滤波。

如果输出像素是输入像素领域像素的线性组合则称为线性滤波,否则称为非线性滤波。

2.1线性锐化滤波器
线性高通滤波器是最常用的线性锐化滤波器。

这种滤波器必须满足滤波器的中心系数为正数,其他系数为负数。

线性高通滤波器3 ×3 模板的典型系数如表1 所示:
表1
用线性高通滤波实现图像锐化的程序和图像如下:
F=imread('F:/text.png'); %读入图像
f=rgb2gray(F);
h=double(f); %转化为double类型
g=[-1 -1 -1; -1 8 -1; -1 -1 -1];%线性高通滤波3×3 模板
j=conv2(h,g,'same');% 线性高通滤波进行图像滤波
subplot(1,2,1);imshow(f);title('原始图像');
J=uint8(j);
subplot(1,2,2);imshow(J);title('滤波后图像');
2.2非线性锐化滤波器
非线性锐化滤波就是使用微分对图像进行处理,以此来锐化由于邻域平均导致的模糊图像。

图像处理中最常用的微分是利用图y 像沿某个方向上的灰度变化率,即原图像函数的梯度。

梯度定义如下:
梯度模的表达式如下:
在数字图像处理中,数据是离散的,幅值是有限的,其发生的最短距离是在两相邻像素之间。

因此在数字图像处理中通常采用一阶差分来定义微分算子。

其差分形式为:
△xf=f(x+1,y)-f(x,y)
△yf=f(x,y+1)-f(x,y)
比较有名的微分滤波器算子包括Sobel 梯度算子、Prewitt 梯度算子和log 算子等等。

用Sobel 梯度算子实现图像锐化的程序和图像如下:
i=imread('F:/text.png');%读入图像
I=rgb2gray(i);
subplot(1,2,1),imshow(I);title('原图像');%显示原图像
H=fspecial('sobel'); %应用sobel 算子锐化图像
I2=filter2(H,I); %sobel 算子滤波锐化
subplot(1,2,2);imshow(I2);%显示sobel 算子锐化图像
title('sobel 算子锐化图像
');
原始图
像滤波后图

用Prewitt 梯度算子实现图像锐化的程序和图像如下:
i=imread('F:/text.png');%读入图像
I=rgb2gray(i);
subplot(1,2,1),imshow(I);title('原图像');%显示原图像
H=fspecial('prewitt');%应用prewitt 算子锐化图像
I3=filter2(H,I);%prewitt 算子滤波锐化
subplot(1,2,2);imshow(I3); %显示prewitt 算子锐化图像
title('prewitt 算子锐化图像');
用log 梯度算子实现图像锐化的程序和图像如下:
i=imread('F:/text.png');%读入图像
I=rgb2gray(i);
subplot(1,2,1),imshow(I);title('原图像');%显示原图像
H=fspecial('log'); %应用log 算子锐化图像
I4=filter2(H,I); %log 算子滤波锐化
subplot(1,2,2);imshow(I4);%显示log 算子锐化图像
title('log 算子锐化图像');
原图
像sobel 算子锐化图

原图
像prewitt 算子锐化图像
3.结束语
本文就MATLAB 在数字图像锐化处理方面进行了阐述、讨论。

实验结果表明应用MATLAB 进行数字图像处理具有理想的效果和很高的工程价值。

当然,MATLAB 图像处理工具箱中所提供的图像处理功能远不止这些。

可以说,MATLAB 为数字图像处理提供了一种简单、快捷而又有效的方法,大大提高了数字图像处理的效率及效果并且应用到图像处理的各个方向。

参考文献:
[1]韩晓军,苗长云,王亚青.基于标准图像文件格式的数字图像处理方法[J]. 阜新:辽宁工程技术大学学报(自然科学版).2000,19(4)
[2]柏春岚.基于空域图像增强的研究与分析[J].河南城建学院学报.2011,20(1)
[3]关雪梅.基于空域的图像增强技术研究.赤峰学院学报.2012,28(4)
[4]曾嘉亮.基于边缘检测的图像锐化算法.《现代电子技术》.2006,12(227)
[5]卢允伟,陈友荣.基于拉普拉斯算法的图像锐化算法研究和实现. Computer Knowledge and Technology 电脑知识与技术.2009,5(6)
原图
像。

相关文档
最新文档