matlab 图像的几何变换与彩色处理

合集下载

MATLAB图像处理基础教程

MATLAB图像处理基础教程

MATLAB图像处理基础教程第一章:MATLAB图像处理简介MATLAB(Matrix Laboratory)是一种强大的数值计算和数据可视化软件,广泛应用于各个领域,包括图像处理。

图像处理是一门研究如何对数字图像进行分析、增强、重建和压缩的学科。

本教程将引导读者逐步了解MATLAB图像处理的基本概念和技术。

第二章:MATLAB图像的读取与显示在MATLAB中,可以使用imread函数读取不同格式的图像文件,并使用imshow函数显示图像。

此外,还可以使用imfinfo函数获取图像的详细信息,如分辨率、颜色空间和位深度等。

第三章:图像的灰度处理灰度处理是一种常见的图像预处理方法。

通过将彩色图像转换为灰度图像,可以减少图像的数据量,简化图像处理的复杂性。

在MATLAB中,可以使用rgb2gray函数将彩色图像转换为灰度图像,并使用imhist函数查看灰度图像的直方图。

第四章:图像的滤波处理滤波是一种常用的图像处理操作,用于对图像进行平滑、增强或去噪。

MATLAB提供了各种滤波函数,如均值滤波、中值滤波和高斯滤波等。

可以根据具体需求选择合适的滤波方法,并使用imfilter函数进行滤波处理。

第五章:图像的二值化处理图像的二值化是将图像转换为黑白两色的过程,常用于物体检测、识别和分割等应用。

在MATLAB中,可以使用im2bw函数将灰度图像转换为二值图像,并可以调整阈值来控制二值化的效果。

第六章:图像的几何变换几何变换是一种常见的图像处理操作,用于对图像进行旋转、缩放、平移和翻转等操作。

MATLAB提供了imrotate、imresize、imtranslate和flip函数等实现各种几何变换。

通过组合这些函数,可以实现复杂的图像变换。

第七章:图像的特征提取图像的特征提取是图像处理中的重要步骤,用于从图像中提取出具有代表性的信息。

在MATLAB中,可以使用各种特征提取函数,如imgradient、imhistogram和imcontour等。

(整理)matlab图像类型与彩色模型的转换.

(整理)matlab图像类型与彩色模型的转换.

第六讲图像类型与彩色模型的转换【目录】一、图像类型的转换 (1)1、真彩图像→索引图像 (3)2、索引图像→真彩图像 (3)3、真彩图像→灰度图像 (4)4、真彩图像→二值图像 (4)5、索引图像→灰度图像 (5)6、灰度图像→索引图像 (6)7、灰度图像→二值图像 (7)8、索引图像→二值图像 (8)9、数据矩阵→灰度图像 (9)二、彩色模型的转换 (9)1、图像的彩色模型 (10)2、彩色转换函数 (10)三、纹理映射 (13)【正文】一、图像类型的转换1、真彩图像→索引图像【格式】X =d i t h e r (R G B ,m a p )【说明】按指定的颜色表m a p 通过颜色抖动实现转换 【输入】R G B 可以是d o u b l e 或u i n t 8类型【输出】X 超过256色则为d o u b l e 类型,否则输出为u i n t 8型【例】C L F ,R G B =i m r e a d ('f l o w e r s .t i f '); 1002003004005005010015020025030035010020030040050050100150200250300350【输出】R G B 为d o u b l e 类型【例】C L F ,l o a d t r e e s ; R G B =i n d 2r g b (X ,m a p );s u b p l o t (1,2,1);s u b i m a g e (X ,m a p );t i t l e ('索引图') s u b p l o t (1,2,2);s u b i m a g e (R G B );t i t l e ('真彩图')1002003005010015020025010020030050100150200250真彩图像→灰度图像【例】1002003004005005010015020025030035010020030040050050100150200250300350真彩图像→二值图像【输出】B W 为u i n t 8型【例】C L F ,R G B =i m r e a d ('f l o w e r s .t i f ');1002003004005005010015020025030035010020030040050050100150200250300350索引图像→灰度图像【输入】X 可以是d o u b l e 或u i n t 8类型,m a p 为d o u b l e 类型 【输出】I 是d o u b l e 类型,N e w m a p 为d o u b l e 类型【例】C L F ,l o a d t r e e s ; I =i n d 2g r a y (X ,m a p ); N e w m a p =r g b 2g r a y (m a p );s u b p l o t (2,2,1);s u b i m a g e (X ,m a p );t i t l e ('索引图') s u b p l o t (2,2,3);s u b i m a g e (I );t i t l e ('格式1灰度图')s u b p l o t (2,2,4);s u b i m a g e (X ,N e w m a p );t i t l e ('格式2灰度图')100200300501001502002501002003005010015020025010020030050100150200250灰度图像→索引图像【格式1】1、[X ,m a p ]=g r a y 2i n d (I ,n )2、X =g r a y s l i c e (I ,n )3、X =g r a y s l i c e (I ,v )【说明】格式1:将灰度图像转换为灰度级为n 的索引图像X ,n 的默认值为64;格式2:将灰度图像I 均匀量化为n 个等级,然后转换为伪彩色图像X ;格式3:按指定的阈值矢量v (其中每个元素在0和1之间)对图像I 进行阈值划分,然后转换成索引图像【输入】I 可以是d o u b l e 类型、u i n t 8类型和u i n t 16类型【输出】m a p 的行不大于256,则X 为u i n t 类型,否则为d o u b l e 类型【例】C L F ,I =i m r e a d ('r i c e .t i f '); [X 1,m a p 1]=g r a y 2i n d (I ,16);X 2=g r a y s l i c e (I ,8);X 3=g r a y s l i c e (I ,255*[0 0.21 0.23 0.26 0.30 0.35 0.6 1.0]'); s u b p l o t (2,2,1);s u b i m a g e (I );t i t l e ('灰度图')s u b p l o t (2,2,2);s u b i m a g e (X 1,m a p 1);t i t l e ('16灰度级图') s u b p l o t (2,2,3);s u b i m a g e (X 2,h o t (8));t i t l e ('均匀量化图') 501001502002505010015020025016灰度级图5010015020025050100150200250均匀量化图5010015020025050100150200250非均匀量化图5010015020025050100150200250度图像→二值图像【格式一】B W =d i t h e r (I );【格式一】B W =i m 2b w (I ,l e v e l ) 【说明】格式一用抖动的方式实现转换,格式二用阈值方式转换 【输入】I 可以是d o u b l e 类型和u i n t 8类型 【输出】B W 为u i n t 8类型【例】C L F ,I =i m r e a d ('s a t u r n .t i f '); B W 1=d i t h e r (I ); B W 2=i m 2b w (I ,0.5);s u b p l o t (2,2,1);s u b i m a g e (I );t i t l e ('灰度图') s u b p l o t (2,2,3);s u b i m a g e (B W 1);t i t l e ('抖动二值化') 10020030040050100150200250300抖动二值化1002003004005010015020025030010020030040050100150200250300索引图像→二值图像【格式】B W =i m 2b w (X ,m a p ,l e v e l )【输入】X 可以是d o u b l e 类型和u i n t 8类型 【输出】B W 为u i n t 8类型【例】C L F ,l o a d t r e e s ; B W =i m 2b w (X ,m a p ,0.5);s u b p l o t (1,2,1);s u b i m a g e (X ,m a p );t i t l e ('索引图') s u b p l o t (1,2,2);s u b i m a g e (B W );t i t l e ('二值图')1002003005010015020025010020030050100150200250数据矩阵→灰度图像如不指定区间,自动取最大区间。

matlab《数字图像处理》第4章-图像类型与彩色模型的转换--附要点

matlab《数字图像处理》第4章-图像类型与彩色模型的转换--附要点

MATLAB《数字图像处理》第4章——图像类型与彩色模型的转换一、图像类型在 MATLAB 中,图像可以分为灰度图像和彩色图像两种。

1. 灰度图像灰度图像是一种内部只有亮度信息,没有色度信息的图像。

在 MATLAB 中,灰度图像的存储方式为二维矩阵,每个像素点的值表示该点的亮度值。

在图像处理中,灰度图像常用来表达物体的边缘、轮廓等特征。

2. 彩色图像彩色图像是一种包含了颜色信息的图像。

在 MATLAB 中,彩色图像的存储方式为三维矩阵,每个像素点由 RGB 三个通道的值组成。

其中,R、G、B 通道分别存储该像素点在红、绿、蓝三个颜色分量上的亮度值。

彩色图像通常用来表达物体的色彩信息。

二、彩色模型的转换在图像处理中,有时需要将图像从一种彩色模型转换为另一种,以达到特定的效果。

在 MATLAB 中,常用的彩色模型有 RGB、HSV、YCbCr 等。

1. RGB 到 HSV 的转换RGB 到 HSV 的转换通常用于调整图像的色调、饱和度和明度等参数。

在MATLAB 中,可以使用rgb2hsv函数进行转换,示例代码如下:rgb = imread('image.jpg');hsv = rgb2hsv(rgb);2. HSV 到 RGB 的转换HSV 到 RGB 的转换通常用于根据指定的色调、饱和度和明度等参数生成彩色图像。

在 MATLAB 中,可以使用hsv2rgb函数进行转换,示例代码如下:hsv = imread('image.jpg');rgb = hsv2rgb(hsv);3. RGB 到 YCbCr 的转换RGB 到 YCbCr 的转换通常用于数字视频、数字电视等领域。

在 MATLAB 中,可以使用rgb2ycbcr函数进行转换,示例代码如下:rgb = imread('image.jpg');ycbcr = rgb2ycbcr(rgb);4. YCbCr 到 RGB 的转换YCbCr 到 RGB 的转换通常用于数字视频、数字电视等领域。

最新matlab图像类型与彩色模型的转换

最新matlab图像类型与彩色模型的转换

m a t l a b图像类型与彩色模型的转换仅供学习与交流,如有侵权请联系网站删除 谢谢13第六讲 图像类型与 彩色模型的转换【目录】................................................. .......................................................................................................................................................... 2 1、真彩图像→索引图像 .. (2)2、索引图像→真彩图像 ........................................................................................................ 3 3、真彩图像→灰度图像 ........................................................................................................ 4 4、真彩图像→二值图像 ........................................................................................................ 4 5、索引图像→灰度图像 ........................................................................................................ 4 6、灰度图像→索引图像 ........................................................................................................ 5 7、灰度图像→二值图像 ........................................................................................................ 6 8、索引图像→二值图像 ........................................................................................................ 7 9、数据矩阵→灰度图像 ........................................................................................................ 8 二、彩色模型的转换 ................................................................................................................... 8 1、图像的彩色模型 ................................................................................................................ 8 2、彩色转换函数 .................................................................................................................... 9 三、纹理映射 . (11)仅供学习与交流,如有侵权请联系网站删除 谢谢13【正文】一、图像类型的转换④⑧③ A⑥⑤仅供学习与交流,如有侵权请联系网站删除 谢谢131、真彩图像→索引图像【格式】X =d i t h e r (R G B ,m a p )【说明】按指定的颜色表m a p 通过颜色抖动实现转换 【输入】R G B 可以是d o u b l e 或u i n t 8类型【输出】X 超过256色则为d o u b l e 类型,否则输出为u i n t 8型【例】C L F ,R G B =i m r e a d ('f l o w e r s .t i f '); 真彩图10020030040050050100150200250300350索引图10020030040050050100150200250300350【输出】R G B 为d o u b l e 类型【例】仅供学习与交流,如有侵权请联系网站删除 谢谢13索引图10020030050100150200250真彩图10020030050100150200250【例】真彩图10020030040050050100150200250300350灰度图10020030040050050100150200250300350仅供学习与交流,如有侵权请联系网站删除 谢谢13【输出】B W 为u i n t 8型【例】真彩图10020030040050050100150200250300350二值图10020030040050050100150200250300350【输入】X 可以是d o u b l e 或u i n t 8类型,m a p 为d o u b l e 类型 【输出】I 是d o u b l e 类型,N e w m a p 为d o u b l e 类型【例】C L F ,l o a d t r e e s ; I =i n d 2g r a y (X ,m a p ); N e w m a p =r g b 2g r a y (m a p );s u b p l o t (2,2,1);s u b i m a g e (X ,m a p );t i t l e ('索引图') s u b p l o t (2,2,3);s u b i m a g e (I );t i t l e ('格式1灰度图')s u b p l o t (2,2,4);s u b i m a g e (X ,N e w m a p );t i t l e ('格式2灰度图')仅供学习与交流,如有侵权请联系网站删除 谢谢13索引图10020030050100150200250格式1灰度图10020030050100150200250格式2灰度图10020030050100150200250【格式1】1、[X ,m a p ]=g r a y 2i n d (I ,n )2、X =g r a y s l i c e (I ,n )3、X =g r a y s l i c e (I ,v )【说明】格式1:将灰度图像转换为灰度级为n 的索引图像X ,n 的默认值为64;格式2:将灰度图像I 均匀量化为n 个等级,然后转换为伪彩色图像X ;格式3:按指定的阈值矢量v (其中每个元素在0和1之间)对图像I 进行阈值划分,然后转换成索引图像【输入】I 可以是d o u b l e 类型、u i n t 8类型和u i n t 16类型【输出】m a p 的行不大于256,则X 为u i n t 类型,否则为d o u b l e 类型【例】C L F ,I =i m r e a d ('r i c e .t i f '); [X 1,m a p 1]=g r a y 2i n d (I ,16);仅供学习与交流,如有侵权请联系网站删除 谢谢13X 2=g r a y s l i c e (I ,8);X 3=g r a y s l i c e (I ,255*[0 0.21 0.23 0.26 0.30 0.35 0.6 1.0]'); s u b p l o t (2,2,1);s u b i m a g e (I );t i t l e ('灰度图')s u b p l o t (2,2,2);s u b i m a g e (X 1,m a p 1);t i t l e ('16灰度级图') s u b p l o t (2,2,3);s u b i m a g e (X 2,h o t (8));t i t l e ('均匀量化图') 灰度图501001502002505010015020025016灰度级图5010015020025050100150200250均匀量化图5010015020025050100150200250非均匀量化图5010015020025050100150200250【格式一】B W =d i t h e r (I );【格式一】B W =i m 2b w (I ,l e v e l ) 【说明】格式一用抖动的方式实现转换,格式二用阈值方式转换 【输入】I 可以是d o u b l e 类型和u i n t 8类型 【输出】B W 为u i n t 8类型【例】C L F ,I =i m r e a d ('s a t u r n .t i f '); B W 1=d i t h e r (I ); B W 2=i m 2b w (I ,0.5);s u b p l o t (2,2,1);s u b i m a g e (I );t i t l e ('灰度图')s u b p l o t (2,2,3);s u b i m a g e (B W 1);t i t l e ('抖动二值化') 灰度图10020030040050100150200250300抖动二值化10020030040050100150200250300阈值二值化10020030040050100150200250300【格式】B W =i m 2b w (X ,m a p ,l e v e l ) 【输入】X 可以是d o u b l e 类型和u i n t 8类型 【输出】B W 为u i n t 8类型【例】索引图10020030050100150200250二值图10020030050100150200250仅供学习与交流,如有侵权请联系网站删除 谢谢139、数据矩阵→灰度图像【格式】1、I =m a t 2g r a y (A ,[m a x ,m i n ])2、I =m a t 2g r a y (A )【说明】按指定的取值区间[m a x ,m i n ]将数据矩阵A 转换为灰度图像I 。

matlab 图像的几何变换与彩色处理

matlab 图像的几何变换与彩色处理

实验四、图像的几何变换与彩色处理一、实验目的1理解和掌握图像的平移、垂直镜像变换、水平镜像变换、缩放和旋转的原理和应用;2熟悉图像几何变换的MATLAB操作和基本功能3 掌握彩色图像处理的基本技术二、实验步骤1 启动MATLAB程序,读入图像并对图像文件分别进行平移、垂直镜像变换、水平镜像变换、缩放和旋转操作%%%%%%平移>> flowerImg=imread('flower.jpg');>> se=translate(strel(1),[100 100]);>> img2=imdilate(flowerImg,se);>> subplot(1,2,1);>> imshow(flowerImg);>> subplot(1,2,2);>> imshow(img2);I1=imread('flower.jpg');I1=double(I1);H=size(I1);I2(1:H(1),1:H(2),1:H(3))=I1(H(1):-1:1,1:H(2),1:H(3)); I3(1:H(1),1:H(2),1:H(3))=I1(1:H(1),H(2):-1:1,1:H(3)); Subplot(2,2,1);Imshow(uint8(I1));Title('原图');Subplot(2,2,2);Imshow(uint8(I3));Title('水平镜像');Subplot(2,2,3);Imshow(uint8(I2));Title('垂直镜像');img1=imread('flower.jpg');figure,imshow(img1);%%%%%%缩放img2=imresize(img1,0.25);figure,imshow(img2);imwrite(img2,'a2.jpg');%%%%%%旋转img3=imrotate(img1,90); figure,imshow(img3); imwrite(img3,'a3.jpg');2 实验如下操作:(1)改变图像缩放比例f= imread('flower.jpg');T=[ 0.5 0 0; 0 0.5 0; 0 0 1];tform=maketform('affine',T);[g1,xdata1,ydata1]=imtransform(f,tform,'FillValue',255);T=[ 1 0 0; 0 1 0; 0 0 1];tform=maketform('affine',T);[g2,xdata2,ydata2]=imtransform(f,tform,'FillValue',255);T=[ 1.5 0 0; 0 1.5 0; 0 0 1];tform=maketform('affine',T);[g3,xdata3,ydata3]=imtransform(f,tform,'FillValue',255);hold onimshow(g3,'XData', xdata3, 'YData', ydata3)hold onimshow(g2,'XData', xdata2, 'YData', ydata2)hold onimshow(g1,'XData', xdata1, 'YData', ydata1)axis autoaxis on(2)改变图像的旋转角度,f= imread('flower.jpg');theta=3*pi/4;T=[cos(theta) sin(theta) 0; -sin(theta) cos(theta) 0; 0 0 1]; tform=maketform('affine',T);[g3,xdata3,ydata3]=imtransform(f,tform,'FillValue',255); theta=pi;T=[cos(theta) sin(theta) 0; -sin(theta) cos(theta) 0; 0 0 1]; tform=maketform('affine',T);[g4,xdata4,ydata4]=imtransform(f,tform,'FillValue',255); imshow(f);hold onimshow(g3,'XData', xdata3, 'YData', ydata3)hold onimshow(g4,'XData', xdata4, 'YData', ydata4)axis autoaxis on观察变换结果,要求把经过不同类型几何变换的图像和原图像在同一坐标系内显示输出(请参考课件或教材上的代码)3 读入一幅彩色图像,进行如下图像处理:(1)在RGB彩色空间中对图像进行模糊和锐化处理rgb= imread('flower.jpg');figure; imshow(rgb); title('原图');%平滑滤波r=rgb(:,:,1);g=rgb(:,:,2);b=rgb(:,:,3);m=fspecial('average',[8,8]);r_filtered=imfilter(r,m);g_filtered=imfilter(g,m);b_filtered=imfilter(b,m);rgb_filtered=cat(3,r_filtered,g_filtered,b_filtered);figure; imshow(rgb_filtered); title('模糊后');imwrite(rgb_filtered, 'RGB彩色空间模糊后.jpg');%拉普拉斯lapMatrix=[1 1 1;1 -8 1;1 1 1];i_tmp=imfilter(rgb,lapMatrix,'replicate');i_sharped=imsubtract(rgb,i_tmp);figure; imshow(i_sharped); title('锐化后'); imwrite(i_sharped, 'RGB彩色空间锐化后.jpg');(2)在HSI彩色空间中,对H分量图像进行模糊和锐化处理,转换回RGB格式并观察效果(3)在HSI彩色空间中,对S分量图像进行模糊和锐化处理,转换回RGB格式并观察效果(4)在HSI彩色空间中,对I分量图像进行模糊和锐化处理,转换回RGB格式并观察效果fc = imread('flower.jpg');h = rgb2hsi(fc);H = h (:,:,1);S = h (:,:,2);I = h (:,:,3);subplot(3,3,1);imshow(fc); title('原图');%平滑滤波m=fspecial('average',[8,8]);h_filtered=imfilter(H,m);img_h_filtered = cat(3,h_filtered,S,I);rgb_h_filtered = hsi2rgb(img_h_filtered);subplot(3,3,2);imshow(rgb_h_filtered); title('H分量模糊后');imwrite(rgb_h_filtered, 'H分量模糊后.jpg');%拉普拉斯lapMatrix=[1 1 1;1 -8 1;1 1 1];i_tmp=imfilter(H,lapMatrix,'replicate');H_sharped=imsubtract(H,i_tmp);img_h_sharped = cat(3,H_sharped,S,I);rgb_h_sharped = hsi2rgb(img_h_sharped);subplot(3,3,3); imshow(rgb_h_sharped); title('H分量锐化后'); imwrite(rgb_h_sharped, 'H分量锐化后.jpg');subplot(3,3,4);imshow(fc); title('原图');%平滑滤波m=fspecial('average',[8,8]);s_filtered=imfilter(S,m);img_s_filtered = cat(3,H,s_filtered,I);rgb_s_filtered = hsi2rgb(img_s_filtered);subplot(3,3,5);imshow(rgb_s_filtered); title('S分量模糊后'); imwrite(rgb_s_filtered, 'S分量模糊后.jpg');%拉普拉斯lapMatrix=[1 1 1;1 -8 1;1 1 1];i_tmp=imfilter(S,lapMatrix,'replicate');s_sharped=imsubtract(S,i_tmp);img_s_sharped = cat(3,H,s_sharped,I);rgb_s_sharped = hsi2rgb(img_s_sharped);subplot(3,3,6); imshow(rgb_s_sharped); title('S分量锐化后'); imwrite(rgb_s_sharped, 'S分量锐化后.jpg');subplot(3,3,7);imshow(fc); title('原图');%平滑滤波m=fspecial('average',[8,8]);i_filtered=imfilter(I,m);img_i_filtered = cat(3,H,S,i_filtered);rgb_i_filtered = hsi2rgb(img_i_filtered);subplot(3,3,8);imshow(rgb_i_filtered); title('I分量模糊后'); imwrite(rgb_i_filtered, 'I分量模糊后.jpg');%拉普拉斯lapMatrix=[1 1 1;1 -8 1;1 1 1];i_tmp=imfilter(I,lapMatrix,'replicate');i_sharped=imsubtract(I,i_tmp);img_i_sharped = cat(3,H,S,i_sharped);rgb_i_sharped = hsi2rgb(img_i_sharped);subplot(3,3,9); imshow(rgb_i_sharped); title('I分量锐化后'); imwrite(rgb_i_sharped, 'I分量锐化后.jpg');由图看出I分量图像进行模糊和锐化处理的效果最好。

基于MATLAB的数字图像处理的彩色图像处理

基于MATLAB的数字图像处理的彩色图像处理

南京信息工程大学滨江学院基于MATLAB的数字图像处理的彩色图像处理专业:电子信工程学生姓名:***指导教师:***完成时间:2022年4月26日摘要自20世纪70年代以来,由于数字技术和计算机技术的迅猛发展,给数字图像处理(Digital Image Processing)提供了先进的技术手段。

图像科学从信息处理、自动控制系统理论、计算机科学、数据通信等学科中脱颖而出,成为研究图像信息的获取、传输、存储、变换、显示、理解和综合利用的新兴学科。

数字图像处理在实际中得到了广泛应用。

特别是在遥感、航空航天、通信、生物和医学、安全监控、工业生产、视频和多媒体、机器人视觉、物理和化学分析、公安和军事等领域.它在国家安全、经济发展和日常生活中已经起到越来越重要的作用。

由于彩色图像提供了比灰度图像更为丰富的信息,因此彩色图像处理正受到人们越来越多的关注。

关键字颜色空间彩色图像分割彩色空间转换彩色变换目录引言 (1)1 MATLAB图像处理工具箱及数字图像处理基本过程简介 (2)1.1 常用图像操作 (2)1.2 图像增强功能 (2)1.3边缘检测和图像分割功能 (3)1,4图像变换功能 (4)2 MATLAB中彩色图像表示 (4)2.1RGB图像 (4)2.2索引图像 (6)2.3处理RGB和索引图像 (6)3 彩色图像处理 (6)3.1读入一幅RGB图像,将其分别转换到CMY空间、HSI空间并显示 (6)3.2彩色空间滤波 (8)参考文献 (9)致谢 (9)引言MATLAB 语言是由美国MathWorks 公司推出的计算机软件,经过多年的逐步发展与不断完善,现已成为国际公认的最优秀的科学计算与数学应用软件之一,是近几年来在国内外广泛流行的一种可视化科学计算软件。

它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,而且还具有可扩展性特征。

MathWorks 公司针对不同领域的应用,推出了信号处理、控制系统、神经网络、图像处理、小波分析、鲁棒控制、非线性系统控制设计、系统辨识、优化设计、统计分析、财政金融、样条、通信等30 多个具有专门功能的工具箱,这些工具箱是由该领域内的学术水平较高的专家编写的,无需用户自己编写所用的专业基础程序,可直接对工具箱进行运用。

Matlab中的图像处理技术

Matlab中的图像处理技术

Matlab中的图像处理技术引言:图像处理技术在现代科技和社会生活中扮演着重要的角色。

而Matlab作为一款强大的科学计算软件,提供了丰富的图像处理工具箱,使得我们可以轻松地进行各种图像处理任务。

本文将深入探讨Matlab中的图像处理技术,并学习如何使用这些工具进行图像处理。

一、图像的表示和读取在进行图像处理之前,首先需要了解如何在Matlab中表示和读取图像。

在Matlab中,图像表示为一个二维矩阵,每个元素表示一个像素的灰度值或颜色值。

可以使用imread函数来读取各种格式的图像文件,并使用imshow函数来显示图像。

二、灰度图像处理灰度图像是指每个像素只有一个灰度值的图像。

在Matlab中,我们可以对灰度图像进行各种处理,其中包括图像增强、图像滤波、边缘检测等。

例如,可以使用imadjust函数来调整灰度图像的对比度和亮度,使用medfilt2函数来对灰度图像进行中值滤波。

三、彩色图像处理与灰度图像不同,彩色图像由红、绿、蓝三个通道组成,每个像素有三个颜色值。

在Matlab中,我们可以对彩色图像进行各种处理,其中包括图像增强、图像滤波、颜色空间转换等。

例如,可以使用rgb2gray函数将彩色图像转换为灰度图像,使用imsharpen函数来增强彩色图像的清晰度。

四、图像分割与目标检测图像分割是将图像划分为若干个区域的过程,而目标检测则是在图像中识别和定位出特定目标的过程。

在Matlab中,我们可以使用各种图像分割和目标检测算法来处理图像。

例如,可以使用imsegkmeans函数来对图像进行K均值聚类分割,使用imfindcircles函数来检测图像中的圆形目标。

五、图像配准和图像拼接图像配准是将两个或多个图像在空间上对齐的过程,而图像拼接则是将多个图像拼接成一个大图像的过程。

在Matlab中,我们可以使用各种图像配准和图像拼接算法来处理图像。

例如,可以使用imregtform函数来对图像进行仿射变换配准,使用imfuse函数将拼接多个图像。

matlab《数字图像处理》第4章 图像类型与彩色模型的转换 附要点

matlab《数字图像处理》第4章 图像类型与彩色模型的转换  附要点

第四章图像类型与彩色模型的转换(附)【目录】一、图像类型的转换 (1)1、真彩图像→索引图像 (3)2、索引图像→真彩图像 (4)3、真彩图像→灰度图像 (4)4、真彩图像→二值图像 (5)5、索引图像→灰度图像 (6)6、灰度图像→索引图像 (7)7、灰度图像→二值图像 (9)8、索引图像→二值图像 (10)9、数据矩阵→灰度图像 (10)二、彩色模型的转换 (11)1、图像的彩色模型 (11)2、彩色转换函数 (12)三、纹理映射 (16)【正文】一、图像类型的转换1、真彩图像→索引图像【格式】X=d i t h e r(R G B,m a p)【说明】按指定的颜色表m a p通过颜色抖动实现转换颜色抖动即改变像素点的颜色,使像素颜色近似于色图的颜色,从而以空间分辨率来换取颜色分辨率。

【输入】R G B可以是d o u b l e、u i n t16或u i n t8类型【输出】X超过256色则为u i n t16类型,否则输出为u i n t8型【例】C L FR G B=i m r e a d('f l o w e r s.t i f');m a p=j e t(256);X=d i t h e r(R G B,m a p);s u b p l o t(1,2,1);s u b i m a g e(R G B);t i t l e('真彩图')s u b p l o t(1,2,2);s u b i m a g e(X,m a p);t i t l e('索引图')1002003004005005010015020025030035010020030040050050100150200250300350实际实现时就是产生一个三维数据矩阵,然后将索引图像对应的调色板颜色赋予三维数据矩阵。

【输入】X 可以是d o u b l e 、u i n t 16或u i n t 8类型 【输出】R G B 为d o u b l e 类型【例】C L F ,l o a d t r e e s ; 1002003005010015020025010020030050100150200250真彩图像→灰度图像【格式】I =r g b 2g r a y (R G B )【输入】R G B 可以是d o u b l e 、u i n t 16或u i n t 8类型 【输出】I 类型同R G B【例】C L F ,R G B =i m r e a d ('f l o w e r s .t i f '); 1002003004005005010015020025030035010020030040050050100150200250300350真彩图像→二值图像像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四、图像的几何变换与彩色处理一、实验目的1理解和掌握图像的平移、垂直镜像变换、水平镜像变换、缩放和旋转的原理和应用;2熟悉图像几何变换的MATLAB操作和基本功能3 掌握彩色图像处理的基本技术二、实验步骤1 启动MATLAB程序,读入图像并对图像文件分别进行平移、垂直镜像变换、水平镜像变换、缩放和旋转操作%%%%%%平移>> flowerImg=imread('flower.jpg');>> se=translate(strel(1),[100 100]);>> img2=imdilate(flowerImg,se);>> subplot(1,2,1);>> imshow(flowerImg);>> subplot(1,2,2);>> imshow(img2);I1=imread('flower.jpg');I1=double(I1);H=size(I1);I2(1:H(1),1:H(2),1:H(3))=I1(H(1):-1:1,1:H(2),1:H(3)); I3(1:H(1),1:H(2),1:H(3))=I1(1:H(1),H(2):-1:1,1:H(3)); Subplot(2,2,1);Imshow(uint8(I1));Title('原图');Subplot(2,2,2);Imshow(uint8(I3));Title('水平镜像');Subplot(2,2,3);Imshow(uint8(I2));Title('垂直镜像');img1=imread('flower.jpg');figure,imshow(img1);%%%%%%缩放img2=imresize(img1,0.25);figure,imshow(img2);imwrite(img2,'a2.jpg');%%%%%%旋转img3=imrotate(img1,90); figure,imshow(img3); imwrite(img3,'a3.jpg');2 实验如下操作:(1)改变图像缩放比例f= imread('flower.jpg');T=[ 0.5 0 0; 0 0.5 0; 0 0 1];tform=maketform('affine',T);[g1,xdata1,ydata1]=imtransform(f,tform,'FillValue',255);T=[ 1 0 0; 0 1 0; 0 0 1];tform=maketform('affine',T);[g2,xdata2,ydata2]=imtransform(f,tform,'FillValue',255);T=[ 1.5 0 0; 0 1.5 0; 0 0 1];tform=maketform('affine',T);[g3,xdata3,ydata3]=imtransform(f,tform,'FillValue',255);hold onimshow(g3,'XData', xdata3, 'YData', ydata3)hold onimshow(g2,'XData', xdata2, 'YData', ydata2)hold onimshow(g1,'XData', xdata1, 'YData', ydata1)axis autoaxis on(2)改变图像的旋转角度,f= imread('flower.jpg');theta=3*pi/4;T=[cos(theta) sin(theta) 0; -sin(theta) cos(theta) 0; 0 0 1]; tform=maketform('affine',T);[g3,xdata3,ydata3]=imtransform(f,tform,'FillValue',255); theta=pi;T=[cos(theta) sin(theta) 0; -sin(theta) cos(theta) 0; 0 0 1]; tform=maketform('affine',T);[g4,xdata4,ydata4]=imtransform(f,tform,'FillValue',255); imshow(f);hold onimshow(g3,'XData', xdata3, 'YData', ydata3)hold onimshow(g4,'XData', xdata4, 'YData', ydata4)axis autoaxis on观察变换结果,要求把经过不同类型几何变换的图像和原图像在同一坐标系内显示输出(请参考课件或教材上的代码)3 读入一幅彩色图像,进行如下图像处理:(1)在RGB彩色空间中对图像进行模糊和锐化处理rgb= imread('flower.jpg');figure; imshow(rgb); title('原图');%平滑滤波r=rgb(:,:,1);g=rgb(:,:,2);b=rgb(:,:,3);m=fspecial('average',[8,8]);r_filtered=imfilter(r,m);g_filtered=imfilter(g,m);b_filtered=imfilter(b,m);rgb_filtered=cat(3,r_filtered,g_filtered,b_filtered);figure; imshow(rgb_filtered); title('模糊后');imwrite(rgb_filtered, 'RGB彩色空间模糊后.jpg');%拉普拉斯lapMatrix=[1 1 1;1 -8 1;1 1 1];i_tmp=imfilter(rgb,lapMatrix,'replicate');i_sharped=imsubtract(rgb,i_tmp);figure; imshow(i_sharped); title('锐化后'); imwrite(i_sharped, 'RGB彩色空间锐化后.jpg');(2)在HSI彩色空间中,对H分量图像进行模糊和锐化处理,转换回RGB格式并观察效果(3)在HSI彩色空间中,对S分量图像进行模糊和锐化处理,转换回RGB格式并观察效果(4)在HSI彩色空间中,对I分量图像进行模糊和锐化处理,转换回RGB格式并观察效果fc = imread('flower.jpg');h = rgb2hsi(fc);H = h (:,:,1);S = h (:,:,2);I = h (:,:,3);subplot(3,3,1);imshow(fc); title('原图');%平滑滤波m=fspecial('average',[8,8]);h_filtered=imfilter(H,m);img_h_filtered = cat(3,h_filtered,S,I);rgb_h_filtered = hsi2rgb(img_h_filtered);subplot(3,3,2);imshow(rgb_h_filtered); title('H分量模糊后');imwrite(rgb_h_filtered, 'H分量模糊后.jpg');%拉普拉斯lapMatrix=[1 1 1;1 -8 1;1 1 1];i_tmp=imfilter(H,lapMatrix,'replicate');H_sharped=imsubtract(H,i_tmp);img_h_sharped = cat(3,H_sharped,S,I);rgb_h_sharped = hsi2rgb(img_h_sharped);subplot(3,3,3); imshow(rgb_h_sharped); title('H分量锐化后'); imwrite(rgb_h_sharped, 'H分量锐化后.jpg');subplot(3,3,4);imshow(fc); title('原图');%平滑滤波m=fspecial('average',[8,8]);s_filtered=imfilter(S,m);img_s_filtered = cat(3,H,s_filtered,I);rgb_s_filtered = hsi2rgb(img_s_filtered);subplot(3,3,5);imshow(rgb_s_filtered); title('S分量模糊后'); imwrite(rgb_s_filtered, 'S分量模糊后.jpg');%拉普拉斯lapMatrix=[1 1 1;1 -8 1;1 1 1];i_tmp=imfilter(S,lapMatrix,'replicate');s_sharped=imsubtract(S,i_tmp);img_s_sharped = cat(3,H,s_sharped,I);rgb_s_sharped = hsi2rgb(img_s_sharped);subplot(3,3,6); imshow(rgb_s_sharped); title('S分量锐化后'); imwrite(rgb_s_sharped, 'S分量锐化后.jpg');subplot(3,3,7);imshow(fc); title('原图');%平滑滤波m=fspecial('average',[8,8]);i_filtered=imfilter(I,m);img_i_filtered = cat(3,H,S,i_filtered);rgb_i_filtered = hsi2rgb(img_i_filtered);subplot(3,3,8);imshow(rgb_i_filtered); title('I分量模糊后'); imwrite(rgb_i_filtered, 'I分量模糊后.jpg');%拉普拉斯lapMatrix=[1 1 1;1 -8 1;1 1 1];i_tmp=imfilter(I,lapMatrix,'replicate');i_sharped=imsubtract(I,i_tmp);img_i_sharped = cat(3,H,S,i_sharped);rgb_i_sharped = hsi2rgb(img_i_sharped);subplot(3,3,9); imshow(rgb_i_sharped); title('I分量锐化后'); imwrite(rgb_i_sharped, 'I分量锐化后.jpg');由图看出I分量图像进行模糊和锐化处理的效果最好。

相关文档
最新文档