不等式与方程组计算题

合集下载

初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)1. 楠楠老师在解方程2x−13=x +a 2−1去分母时,因为手抖发作,将方程右侧的-1漏乘了,因而求得的方程的解为x =2,请帮助楠楠老师求出正确的解. 答案:x =-3. 解析:漏乘后方程为:2(2X -1)=3(x +a )-1. 4x -2=3x +3a -1. x =3a +1 .∵ x =2.∴ a =13.∴ 原方程去分母后得: 2(2X -1)=3(x +13)-6. 4x -2=3x +1-6. X =-3.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—错解方程.2. 已知关于x 的方程3[x −2(x −a2)]=4x 与3x +a 12−1−5x 8=1有相同的解,求 a 的值及方程的解.答案:a =2711,方程的解为x =8177.解析:把a 当作常数,方程3[x −2(x −a2)]=4x 的解为x =37a .方程3x +a 12−1−5x 8=1的解为x =27−2a 21.故37a =27−2a 21.解得a =2711,所以x =8177.考点:方程与不等式—一元一次方程—同解方程—同解方程求参数.3. 解方程组.(1){m +n3−n−m4=24m +n 3=14 (2){1−0.3(y −2)=x +15y−14=4x +920−1答案:(1){m =185n =−65.(2){x =4y =2.解析:(1)化简方程组得,{7m +n =2412m +n =42,加减消元可解得答案为{m =185n =−65.(2)化简方程组得,{2x +3y =144x −5y =6,加减消元可解得答案为{x =4y =2.考点:方程与不等式—二元一次方程组—解二元一次方程组.4. 回答下列小题.(1)当k = 时,方程组{4x +3y =1kx +(k −1)y =3的解中,x 与y 的值相等.(2)关于x ,y 的方程组{ax +by =2cx −7y =8,甲正确的解得{x =3y =−2,乙因为把c 看错了,解得{x =−2y =2,求a ,b ,c 的值. (3)若方程组{2x +3y =7ax −by =4与方程组{ax +by =64x −5y =3有相同的解,则a ,b 的值为( ).A.{a =2b =1B. {a =2b =−3C. {a =2.5b =1D. {a =4b =−5 答案:(1)11.(2)a =4,b =5,c =-2. (3)C .解析:(1)因为x 和y 的值相等,所以x =y ,代入1式可得x =y =17,再代入2式可得k =11.(2)乙看错了c ,说明乙的解只满足1式;甲是正确的解,说明甲的解满足两个等式.将解代入方程可得{3a −2b =23c +14=8−2a +2b =2,解得a =4,b =5,c =-2.(3)由题中条件:有相同的解可知,这两个方程组可以联立,即{2x +3y =7ax−by =4ax +by =64x−5y =3,由1式和4式可以解得{x =2y =1,代入2式和3式可得{2a −b =42a +b =6. 解得{a =2.5b =1,故选C.考点:方程与不等式—二元一次方程组—同解方程组.5. 台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 解析:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.依题意,列方程组得:{x +y =245x =2y +50.解得{x =180y =65.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 考点:方程与不等式—二元一次方程组—二元一次方程(组)的解.6.如图所示,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 cm2.答案:400.解析:设一个小长方形的长为x,宽为y,则可列方程组{x+y=50x+4y=2x.解得{x=40y=10.则一个小长方形的面积=40cm×10cm=400cm2.考点:方程与不等式—二元一次方程组—二元一次方程(组)的应用.7.高新区某水果店购进800千克水果,进价每千克7元,售价每千克12元,售出总量一半后,发现剩下的水果己经有5﹪受损(受损部分不可出售),为尽快售完,余下的水果准备打折出售.(1)若余下的水果打6折出售,则这笔水果生意的利润为多少元?(2)为使总利润不低于2506元,在余下的水果的销售中,营业员最多能打几折优惠顾客(限整数折,例如:5折、6折等)?答案:(1)这笔水果生意的利润为1936元.(2)营业员最多能打8折优惠顾客.解析:(1)根据题意得:400×12+(400-400×5﹪)×0.6×12-800×7=1936(元).答:这笔水果生意的利润为1936元.(2)设余下的水果应按原出售价打x折出售,根据题意列方程:400×12+(400-400×5﹪)×0.1x×12-800×7=2506.解方程得:x=7.25.答:营业员最多能打8折优惠顾客.考点:方程与不等式—一元一次方程—一元一次方程的应用.打折销售问题—经济利润问题.8. 二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(﹪)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(﹪)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示.(1)线段OB 表示的是 (填“甲”或“乙”),它的表达式是 (不必写出自变量的取值范围).(2)求直线OA 的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米. (3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b 百万米处,同时报废,请你确定方案中a 、b 的值. 答案:(1)1.甲.2.y =20x. (2)OA 的解析式是y =1003x ,这辆自行车最多可骑行3百万米.(3){a =158b =154.解析:(1)∵ 线段OB 表示的是甲,设OB 的解析式是y =kx.∴ 1.5k =30. ∴ 解得:k =20. ∴ OB 的表达式是y =20x. ∴ 答案是:甲,y =20x .(2)∵ 设直线OA 的表达式为y =mx.∴ 根据题意得:1.5m =50. ∴ 解得:m =1003.∴ 则OA 的解析式是y =1003x .∵ 当y =100时,100=1003x .∴ 解得:x =3.答:这辆自行车最多可骑行3百万米.(3)∵ 根据题意,得:{1003a +20(b −a )=10020a +1003(b −a )=100. ∴ 解这个方程组,得{a =158b =154.考点:方程与不等式—二元一次方程组—解二元一次方程组.函数—一次函数—待定系数法求正比例函数解析式—一次函数的应用—一次函数应用题.9. 若关于x 的一元二次方程(x +1)2=1-k 无实根,则k 的取值范围为 .答案:k >1.解析:若方程(x +1)2=1-k 无实根,则1-k >0.∴k >1.考点:方程与不等式—一元二次方程—一元二次方程的定义—一元二次方程的相关概念.10. 小明在探索一元二次方程2x2-x -2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是( ).A.4B.3C.2D.1答案:D.解析:根据表格中的数据,可知:方程的一个解x的范围是:1<x<2.所以方程的其中一个解的整数部分是1.考点:方程与不等式—一元二次方程—估算一元二次方程的近似解.11.已知m、n、p分别是Rt△ABC的三边长,且m≤n<p.(1)求证:关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)若x=-1是一元二次方程mx2+√2px+n=0的一个根,且Rt△ABC的周长为√2+2,求Rt△ABC的面积.答案:(1)证明见解析.(2)1.解析:(1)∵ m、n、p分别是Rt△ABC的三边长,且m≤n<p.∴ p2=m2+n2.∴ b2-4ac=2p2-4mn=2(m2+n2)-4mn=2(m-n)2≥0.∴关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)∵ x=-1是一元二次方程mx2+√2px+n=0的一个根.∴ m-√2p+n=0 ①.∵ Rt△ABC的周长为2√2+2.∴ m+n+p=2√2+2②.由①、②得:m+n=2√2,p=2.∴(m+n)2=8.∴ m2+2mn+n2=8.又∵ m2+n2=p2=4.∴ 2mn=4.∴1=mn=1.2∴ Rt△ABC的面积是1.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.根与系数的关系—韦达定理应用.三角形—三角形基础—三角形面积及等积变换.12.关于x的方程(k-3)x2+2x+1=0有两个不等的实数根,则k的取值范围为.答案:k<4且k≠3.解析:∵关于x的方程(k-3)x2+2x+1=0有两个不等的实数根.∴ {k−3≠0△=4−4(k−3)>0.∴ k<4且k≠3.考点:方程与不等式—一元二次方程—一元二次方程的定义—根据一元二次方程求参数值.根的判别式—已知一元二次方程根的情况,求参数的取值范围.13.设a、b是方程x2+x-9=0的两个实数根,则a2+2a+b的值为.答案:8.解析:∵ a是方程x2+x-9=0的根.∴ a2+a==9.由根与系数的关系得:a+b=-1.∴ a2+2a+b=(a2+a)+(a+b)=9+(-1)=8.考点:方程与不等式—一元二次方程—根与系数的关系—韦达定理应用.14.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12cm的住房墙.另外三边用25cm长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门.(1)所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?(2)能否围成一个面积为100 m2的矩形猪舍?如能,说明了围法;如不能,请说明理由.答案:(1)矩形猪舍的长为10m,宽为8m.(2)不能围成一个面积为100 m2的矩形猪舍.解析:(1)设矩形猪舍垂直于房墙的一边长为xm,则矩形猪舍的另一边长为(26-2x)m.由题意得:x(26-2x)=80.解得:x1=5,x2=8,当x=5时,26-2x=16>12(舍去).当x=8时,26-2x=10<12.答:矩形猪舍的长为10m,宽为8m.(2)由题意得:x(26-2x)=100.整理得:x2-13x+50=0.∵△=(-13)2-4×1×50=-31<0.∴方程无解.故不能围成一个面积为100 m2的矩形猪舍.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.一元二次方程的应用.15.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为 120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售__________件,每件盈利__________元(用x的代数式表示).(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想每天赢利2000元,可能吗?请说明理由.答案:(1)(20+2x),(40-x).(2)20元或10元.(3)不可能,理由见解析.解析:(1)根据题意得:每天可销售(20+2x);每件盈利(40-x).(2)根据题意得:(40-x)(20+2x)=1200.解得:x1=20,x2=10.答:每件童装降价20元或10元时,平均每天赢利1200元.(3)(40-x)(20+2x)=2000.整理得:x2-30x+600=0.△=62-4ac=(-30)2-4×1×600=900-2400<0.∴方程无解.答:不可能做到平均每天赢利2000元.考点:式—整式—代数式.方程与不等式—一元二次方程—一元二次方程的解.根的判别式—判断一元二次方程根的情况—一元二次方程的应用.16.若a>b,则下列不等式中正确的是.(填序号)① a-2<b-2 ② 5a<5b ③-2a<-2b ④a3<b3答案:③.解析:不等式的两边同时乘以(或除以)同一个负数,不等号改变方向.考点:方程与不等式—不等式与不等式组—不等式的基础—不等式的性质.17.解不等式:2−x+23>x+x−12.答案:x<1.解析:12-2(x+2)>6x+3(x-1).12-2x-4>6x+3x-3.-11x>-11.X<1.考点:方程与不等式—不等式与不等式组—解一元一次不等式.18.解不等式组{2x+4≤5(x+2)x−1<23x,把它的解集在数轴上表示出来,并求它的整数解.答案:原不等式组的整数解为-2,-1,0,1,2.解析:由2x+4≤5(x+2)得x≥-2.由x−1<23x得x<3.不等式组的解集在数轴上表示如下.∴原不等式组的解集为-2≤x<3.∴原不等式组的整数解为-2,-1,0,1,2.考点:方程与不等式—不等式与不等式组—在数轴上表示不等式的解集—一元一次不等式组的整数解.19.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表.已知可供建造沼气池的占地面积不超过370m2,该村农户共有498户.(1)满足条件的方案共有哪几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?答案:(1)方案共三种:分别是A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)A型建8个的方案最省,最低造价52万元.解析:(1)设A型的建造了x个,得不等式组:{15x+20(20−x)≤370 18x+30(20−x)≥498.解得:6≤x≤8.5.三方案:A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)当x=6时,造价2×6+3×14=54.当x=7时,造价2×7+3×13=53.当x=8时,造价2×8+3×12=52.故A型建8个的方案最省,最低造价52万元.考点:方程与不等式—不等式与不等式组—一元一次不等式组的应用—最优化方案.20.服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?答案:(1)甲种服装最多购进75件.(2)当0<a<10时,购进甲种服装75件,乙种服装25件.当a=10时,按哪种方案进货都可以.当10<a<20时,购进甲种服装65件,乙种服装35件.解析:(1)设购进甲种服装x件,由题意可知.80x+60(100-x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75.W=(40-a)x+30(100-x)=(10-a)x+3000.方案1:当0<a<10时,10-a>0,w随x的增大而增大.所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件.方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以.方案3:当10<a<20时,10-a<0,w随x的增大而减小.所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.考点:方程与不等式—不等式与不等式组—一元一次不等式的应用—一元一次不等式组的应用—最优化方案.21.解答下列问题:(1)计算:2xx+1−2x+6x2−1÷x+3x2−2x+1.(2)解分式方程:3x+1+1x−1=6x2−1.答案:(1)2x+1.(2)x=2.解析:(1)原式=2xx+1−2(x+3)(x+1)(x−1)÷(x−1)2x+3.=2xx+1−2(x−1)x+1=2x+1.(2)3(x-1)+x+1=6.3x-3+x+1=6.4x=8.x=2.检验:当x=2时,x2+1≠0.故x=2是该分式方程的解.考点:式—分式—分式的加减法—简单异分母分式的加减.方程与不等式—分式方程—解分式方程—常规法解分式方程.22.解下列方程:(1)5x−4x−2=4x+103x−6−1.(2)x−2x+2−x+2x−2=8x2−4.答案:(1)x=2是方程的增根,原方程无解.(2)x=-1.解析:(1)等式两边同乘以3(x-2)得,3(5x-4)=4x+10.解得x=2.检验x=2时,2(x-2)=0.∴ x=2是方程的增根,原方程无解.(2)两边同乘x2-4.得:-8x=8.X=-1.经检验x=-1是原方程的解.考点:方程与不等式—分式方程—解分式方程—常规法解分式方程.分式方程解的情况—分式方程有解—分式方程有增根.23.若分式方程2xx+1−m+1x2+x=x+1x产生增根,则m的值为.答案:-2或1.解析:方程两边都乘x(x+1).得x2-(m+1)=(x+1)2.∵原方程有增根.∴最简公分母x(x+1)=0.解得x=0或-1.当x=0时,m=-2.当x=-1时,m=0.故m的值可能是-2或0.考点:方程与不等式—分式方程—分式方程解的情况—根据增根求参数.24.在“春节”前夕,某花店用13000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的12,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?答案:第二批鲜花每盒的进价是 120元.解析:设第二批鲜花每盒的进价是x元.依题意有:6000x =12×13000x+10.解得x=120.经检验:x=120是原方程的解,且符合题意.答:第二批鲜花每盒的进价是120元.考点:方程与不等式—分式方程—分式方程的应用.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独完成此项任务比乙队单独完成此项任务多用10天,且乙队每天的工作效率是甲队每天工作效率的1.5倍.(1)甲、乙两队单独完成此项任务各需要多少天?(2)若甲、乙两队共同工作4天后,乙队因工作需要停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,如果要完成任务,那么甲队再单独施工多少天?答案:(1)甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)甲队再单独施工10天.解析:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天.由题意可得:1x = 1.5x+10.解得:x=20.经检验,x=20是原方程的解.∴x+10=30(天).答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)设甲队再单独施工a天,由题意可得:(130+120)×4+230×a=1.解得:a=10.答:甲队再单独施工10天.考点:方程与不等式—一元一次方程—一元一次方程的应用—工程问题.分式方程—分式方程的应用.。

初二数学方程组与不等式组试题

初二数学方程组与不等式组试题

初二数学方程组与不等式组试题1.(1)解方程:(2)解不等式组:【答案】(1)6(2)3<x≤10【解析】解:(1)由原方程,得2(x+3)=3x,∴x=6.经检验,x=6是原方程的解,∴原方程的解是x=6(2)由①,得x>3.由②,得x≤10.∴原不等式的解集为3<x≤10.2.函数y =+中自变量x的取值范围是A.x≤2B.x=3C.x<2且x ≠3D.x ≤2且x≠3【答案】A【解析】2-x≥0,x-3≠0解得:x≤2,所以选A.3.已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等实数解【答案】C【解析】当k=0时,方程变为x-1=0,所以x=1,因此A错误;当k≠0时,,所以当k=-1时,方程有两个相等的实数解,故选:C.【考点】一元二次方程根的判别式.4.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行20千米,求两车的速度各为多少?设货车的速度为千米/小时,依题意列方程正确的是A.B.C.D.【答案】C.【解析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.试题解析:根据题意,得故选C.【考点】由实际问题抽象出分式方程.5.某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔,毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支,钢笔、毛笔的单价分别为多少元?【答案】钢笔、毛笔的单价分别为10元,15元.【解析】首先设钢笔单价x元/支,则毛笔单价1.5x元/支,根据题意可得:1500元购买的钢笔数量-1800元购买的毛笔数量=30支,根据等量关系列出方程,再解即可.试题解析:设钢笔单价x元/支,由题意得:解得:x=10,经检验:x=10是原分式方程的解,1.5x=1.5×10=15.答:钢笔、毛笔的单价分别为10元,15元.【考点】分式方程的应用.6.下列各数中,是不等式2x﹣3>0的解的是()A.﹣1B.0C.﹣2D.2【答案】D【解析】首先求出不等式的解决,然后判断各个选项是否是不等式的整数解即可.【考点】一元一次不等式的整数解7.(6分)解方程:= ﹣1.【答案】x=-2【解析】按照分式方程的解法,先把分式方程化为整式方程,解整式方程,经验,得出分式方程的解.试题解析:解:方程两边同乘以2(x-2)得2(1-x)=x-2(x-2)解方程得x=-2把x=-2代入2(x-2)=-8≠0,所以x=-2是原方程的根.【考点】解分式方程8.(本题5分,共10分)解方程:(1)3x2-7x=0 ;(2)(用配方法).【答案】(1),;(2),【解析】(1)应用因式分解法解方程,得到两个x的值;(2)先把常数项移到等号右边,对左边进行配方,得到,解得x的值.试题解析:解:(1) 3x2-7x=0,x(3x-7)=0,x=0或3x-7=0,所以,;(2),,,,,,所以,.【考点】因式分解法解一元二次方程;配方法解一元二次方程.9.(本题10分)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?【答案】80.【解析】首先根据题意判断该校购买树苗超过60棵,设该校共购买了X棵树苗,由题意得,解得x值,根据每棵树苗最低售价不得少于100元决定x值的取舍.试题解析:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵.设该校共购买了X棵树苗,由题意得,解得.当时,,∴不合题意,舍去;当时,,∴,答:该校共购买了80棵树苗.【考点】列一元二次方程解应用题.10.(每小题4分,共8分)解方程(1)(2)(x-2)(x-5)=-3【答案】(1)x=-4;x=1;(2)无实根.【解析】(1)用因式分解法解方程即可;(2)整理成一般形式后用公式法解方程即可.试题解析:(1)x+4=0或x-1=0∴x=-4;x=1(x-2)(x-5)=-3a=1,b=-7,c=13,△=49-52=-3<0,∴原方程无解.【考点】一元二次方程的解法.11.已知是关于x的一元二次方程,则m的取值范围是.【答案】.【解析】根据一元二次方程的定义可知,m-2≠0,所以m≠2.故答案为:m≠2.【考点】一元二次方程的定义.12.(6分)某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由.【答案】方案(3)比较省钱【解析】根据方案(1)的叙述可知:甲工程队单独完成时的时间=工期;由方案(2)可得:乙工程队单独完成这项工程时,所用的天数﹣5天=工期;可以设出工期是x天,即可表示出甲、乙单独完成这项工程时所需要的天数,即可表示出各自的工作效率,根据方案(3)即可列方程求得工期,进而计算方案(1)(3)各自需要的工程款,即可作出比较.试题解析:解:设工期是x天,即可表示出甲、乙单独完成这项工程时所需要的天数是x天,(x+5)天.根据题意得:4(+)+=1,解得:x=20,经检验x=20是原方程的解.则甲、乙单独完成这项工程时所需要的天数是20天,25天.则方案(1)的工程款是:20×1.5=30万元;方案(3)的工程款是:1.5×4+1.1×20=28(万元).综上所述,可知在保证正常完工的前提下,应选择第三种方案:甲、乙两队合作4天,剩下的工程由乙队独做.答:方案(3)比较省钱.【考点】分式方程的应用13.已知不等式2x-a<0的正整数解只有2个,则a的取值范围是.【答案】4<a≤6.【解析】由2x-a<0可得x<,又因不等式的正整数解只有2个,所以2<≤3,即4<a≤6.【考点】不等式的整数解.14.不等式的解集在数轴上表示正确的是()【答案】A.【解析】由不等式可得x>3,根据在数轴上表示不等式解集的方法可得x>3在数轴表示为,故答案选A.【考点】在数轴上表示不等式解集的方法15.(本题满分6分)解不等式组,并把不等式组的解集在数轴上表示出来。

初二数学方程组与不等式组试题

初二数学方程组与不等式组试题

初二数学方程组与不等式组试题1.对于实数a,b,定义运算“*”:a*b=例如:4*2,因为4>2,所以4*2=42-4×2=8,若是一元二次方程x2-5x+6=0的两个根,则 = .【答案】±3【解析】解方程x2-5x+6=0得x=2,x=3,当时,,当时,,所以 =±3.【考点】一元二次方程的根.2.把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.【答案】B【解析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画.<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示.“<”,“>”要用空心圆圈表示.解不等式①,得x>﹣1,解不等式②,得x≤1,所以不等式组的解集是﹣1<x≤1.【考点】解一元一次不等式组;在数轴上表示不等式的解集.3.(6分)已知y1=2x﹣3,y2=﹣x+3,当x取何值时,(1)y1≤y2;(2)y1>y2.【答案】(1)x≤2;(2)x>2.【解析】根据题意得出关于x的不等式,然后根据不等式的解法求出x的取值.试题解析:(1)∵y1=2x﹣3,y2=﹣x+3,y1≤y2,∴2x﹣3≤﹣x+3,解得x≤2;(2)∵y1=2x﹣3,y2=﹣x+3,y1>y2,∴2x﹣3>﹣x+3,解得x>2.【考点】解一元一次不等式.4.已知不等式2x-a<0的正整数解只有2个,则a的取值范围是.【答案】4<a≤6.【解析】由2x-a<0可得x<,又因不等式的正整数解只有2个,所以2<≤3,即4<a≤6.【考点】不等式的整数解.5.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?【答案】甲工厂每天加工40件产品,乙工厂每天加工60件产品.【解析】设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品.根据题目中的等量关系“甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10”,列出方程解方程即可.试题解析:解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.【考点】分式方程的应用.6.解一元二次方程:3x2+2x﹣5=0.【答案】x1=﹣,x2=1【解析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.试题解析:解:3x2+2x﹣5=0,(3x+5)(x﹣1)=0,3x+5=0,x﹣1=0,x 1=﹣,x2=1.【考点】解一元二次方程-因式分解法7.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【答案】A【解析】本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为:1<x≤2,在数轴上表示不等式组的解集为:故选A.【考点】1.在数轴上表示不等式的解集;2.解一元一次不等式组.8.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.【答案】1.【解析】设小道进出口的宽度为x米,依题意得(30-2x)(20-x)=532,整理,得x2-35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.【考点】一元二次方程的应用.9.解不等式,并把解集在数轴上表示出来.【答案】x<3.【解析】按照解不等式的步骤逐步计算求解,再表示解集.试题解析:去分母,得 2x﹣4<x﹣1移项,合并同类项,得 x<3.在数轴上表示解集为:【考点】1.解一元一次不等式;2.在数轴上表示不等式的解集.10.解分式方程:.【答案】原分式方程无解.【解析】观察可得2﹣x=﹣(x﹣2),所以方程的最简公分母为:(x﹣2),去分母将分式方程化为整式方程后再求解,注意检验.试题解析:方程两边同乘(x﹣2),得:1=﹣(1﹣x)﹣3(x﹣2)整理得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,∴原分式方程无解.【考点】解分式方程.11.(3分)某单位购买甲、乙两种纯净水公用180元,其中甲种水每桶8元,乙种水每桶6元,甲乙两种纯净水共25桶,设买甲种水x桶,乙种水y桶,则可列方程组是______________.【答案】【解析】设买甲种水x桶,乙种水y桶,根据“甲种水每桶8元,乙种水每桶6元,共用180元;甲乙两种纯净水共25桶”列出方程组.【考点】由实际问题抽象出二元一次方程组.12.设x1,x2是一元二次方程x2-3x-2=0的两个实数根,则x12+3x1x2+x22的值为.【答案】7.【解析】由题意,得:x1+x2=3,x1x2=-2;原式=(x1+x2)2+x1x2=9-2=7.【考点】根与系数的关系.13.(6分)暑假期间,小明到父亲经营的小超市参加社会实践活动.一天小明随父亲从银行换回来58张人民币,共计200元的零钞用于顾客付款时找零.细心的小明清理了一下,发现其中面值为1元的有20张,面值为10元的有7张,剩下的均为2元和5元的钞票.你能否用所学的数学方法算出2元和5元的钞票各有多少张吗?【答案】15;16【解析】根据题意设2元的有x张,5元的有y张,则可由总张数为58张,和总钱数为200元列方程组解答即可.试题解析:解:设面值为2元的有x张,设面值为5元的有y张.依题意得:解得答:面值为2元的有15张,面值为5元的有16张.【考点】列二元一次方程组解实际问题14.若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为 .【答案】【解析】先用含k的代数式表示x、y,即解关于x,y的方程组,再代入2x+3y=6中可得.根据题意得,消元得.【考点】解三元一次方程组.15.解方程组:(1)(2).【答案】(1);(2).【解析】两方程组利用加减消元法求出解即可.试题解析:(1),①+②得:3x=18,即x=6,把x=6代入①得:y=3,则方程组的解为;(2),①×2+②×3得:11x=22,即x=2,把x=2代入②得:y=-1,则方程组的解为.【考点】解二元一次方程组.16.解下列方程组.【答案】【解析】把第一个方程乘以3,第二个方程乘以2,利用减法消元先消去x,求出y的值,再把y 的值代入第一个方程求出x的值,即可得解.试题解析:①×3得,6x+9y=36③,②×2得,6x+8y=34④,③-④得,y=2,把y=2代入①得,2x+3×2=12,解得x=3,所以,方程组的解是.【考点】解二元一次方程组.17.若a>b,则下列式子正确的是()A.-2015a>-2015b B.2015a<2015b C.2015-a>2015-b D.a-2015>b-2015【答案】D.【解析】试题解析:∵a>b,∴-2015a<-2015b,∴选项A不正确;∵a>b,∴2015a>2015b,∴选项B不正确;∵a>b,∴2015-a<2015-b,∴选项C不正确;∵a>b,∴a-2015>b-2015,∴选项D正确.故选D.【考点】不等式的性质.18.若成立,则下列不等式成立的是()A.B.C.D.【答案】C.【解析】选项A,根据不等式的性质3和性质1,可得,选项A错误;选项B,根据不等式的性质2可得,选项B错误;选项C,根据不等式的性质1可得,选项C 正确;选项D,根据不等式的性质3,可得,选项D错误,故答案选C.【考点】不等式的性质.19.解方程(每题4分,共8分)(1)8x3+125=0(2)64(x+1)2-25=0【答案】(1)x=-;(2)【解析】根据平方根和立方根的计算法则进行计算.试题解析:(1)解得:x=-(2)x+1=±解得:【考点】解方程20.解方程.(1)(2)【答案】(1)无解(2)【解析】根据分式方程的解法步骤,先把分式方程化为整式方程,解整式方程,检验,写结论即可.解题关键是确定最简公分母.试题解析:解:(1)方程两边同乘以x-2得2(x-2)+1=3-x解得检验:把x=2代入x-2=0,所以x=2是原方程的增根,原分式方程无解.(2)方程两边同乘以3x得3(2x+1)+1=3x解得把x=代入3x≠0,因此x=是原分式方程的解.【考点】解分式方程21.一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住.这批宿舍的间数为()A.20B.15C.10D.12【答案】A.【解析】试题解析:设这批宿舍的间数为x,则x+10=3(x-10),解得:x=20.故选A.【考点】一元一次方程的应用.22.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(﹣5)+②×2【答案】D【解析】使用加减消元法时,要消去那个字母,则必须是这个字母的系数相同或互为相反数.【考点】加减消元法23.运动会上某班啦啦队买了两种价格的雪糕,其中甲种雪糕共花费40元;乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根,每根乙种雪糕的价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元/根,根据题意可列方程为()A.-=20B.-=20C.-=20D.-=20【答案】B.【解析】试题解析:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:-=20.故选B.【考点】由实际问题抽象出分式方程.24.若关于x的方程无解,则m=__________.【答案】1.【解析】试题解析:原方程可化为x-3=-m,∴x=3-m,由已知得:3-m=2,∴m=1.【考点】分式方程的解.25.佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?【答案】(1)6;(2)赚了388元【解析】(1)首先设第一次的单价为x元,则第二次单价为1.1x,根据数量=总价÷单价分别求出两次的数量,然后根据第二次的数量比第一次数量多20千克列出分式方程进行求解,最后进行验根;(2)分别求出两次的盈亏情况,然后进行合并计算.试题解析:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,根据题意得:=20,解得:x=6,经检验,x=6是原方程的解,(2)第一次购水果1200÷6=200(千克).第二次购水果200+20=220(千克).第一次赚钱为200×(8﹣6)=400(元).第二次赚钱为100×(9﹣6.6)+120×(9×0.5﹣6×1.1)=﹣12(元).所以两次共赚钱400﹣12=388(元),答:第一次水果的进价为每千克6元,该老板两次卖水果总体上是赚钱了,共赚了388元.【考点】分式方程的应用26.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的,两根铁棒长度之和为220cm,此时木桶中水的深度是 cm.【答案】80cm.【解析】试题解析:设水的深度为xcm,由题意得x+x=220,解得:x=80,即水深80cm.【考点】一元一次方程的应用.27.(2014春•惠山区校级期末)甲、乙两位同学在解方程组时,甲看错了第一个方程,解得,乙看错了第二个方程,解得.求a、b的值.【答案】【解析】甲看错了第一个方程,把他解的答案代入第二个方程,乙看错了第二个方程把他解得答案代入第一个方程,把两个方程组成方程组,求a、b的值.解:由题意得,解得.【考点】二元一次方程组的解.28.不等式组:的解集在数轴上可表示为()【答案】D【解析】试题解析:两个不等式的公共部分是在数轴上,5以及5右边的部分,因而解集可表示为:故选D.【考点】在数轴上表示不等式的解集.29.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降。

与方程(组)、不等式(组)有关的参数问题

与方程(组)、不等式(组)有关的参数问题

4´10 - (3a +1) = 6´10 - 2a +1,
40 - 3a -1 = 60 - 2a +1 ,
39 - 3a = 61- 2a ,
-3a + 2a = -39 + 61,
-a = 22 ,
a = -22 ,
故 a 的值为 -22 .
5.已知关于
x,
y
的方程组
ì2x - y = 2m - 4①
解得: 8 < a £ 3 , 3
即此时 a 的取值范围是 8 < a £ 3 . 3
12.已知
ì2x + íîx + 2
y y
= =
3 3
+
2a 2a
a
¹
0
是关于
x,y
的二元一次方程组.
(1)求方程组的解(用含 a 的代数式表示); (2)若 x - 2 y > 0 ,求 a 的取值范围.
【答案】(1)
mx - 2x > m + 3 , (m - 2)x > m + 3 ,
Q
它的解集是
x
<
m m
+ -
3 2

\m-2 < 0,
解得 m < 2 ;
(2) 2x -1 > 3 - x ,
解得: x > 4 , 3
Q
它的解集是
x
>
m m
+ -
3 2

\
m m
+ -
3 2
=
4 3
,且
m
-
2
>

二元一次方程组与一元一次不等式的应用题

二元一次方程组与一元一次不等式的应用题

1 某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同.若购买2个足球和3个篮球共需340元;购买4个排球和5个篮球共需600元.(1)求购买一个足球、一个篮球分别需要多少元?(2)该中学根据实际情况,需从该体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球? 答案:解(1)设购买一个足球需要x 元,购买一个篮球需要y 元 根据题意,得2334045600x y x y +=⎧⎨+=⎩解这个方程组得:5080x y =⎧⎨=⎩答:购买一个足球需要50元,购买一个篮球需要80元(2)设该中学购买篮球m 个根据题意,得8050(100)6000m m +-≤ 解这个一元一次不等式得:1333m ≤m 是整数33m ∴≤(或m 的最大整数解是33)答:这所中学最多可以购买33个篮球。

2.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A 、B 两种设备,已知:购买1台A 种设备和2台B 种设备需要3.5万元;购买2台A 种设备和1台B 种设备需要2.5万元. (1)求每台A 种、B 种设备各多少万元?(2)根据学校实际,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计 解:(1)设每台A 种、B 种设备各x 万元、y 万元,根据题意得出:,解得:,答:每台A 种、B 种设备各0.5万元、1.5万元;(2)设购买A 种设备z 台,根据题意得出: 0.5z+1.5(30﹣z )≤30, 解得:z≥15,答:至少购买A 种设备15台.3.暑期临近,本溪某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.(1)旅游团中成人和儿童各有多少人?(2)旅行社为了吸引游客,打算给游客准备一件T恤衫,成人T恤衫每购买10件赠送1件儿童T恤衫(不足10件不赠送),儿童T恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T恤衫的价格最高是多少元?4某校九年级有三个班,其中九年一班和九年二班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九年一班的满分率为70%,九年二班的满分率为80%. (1)求九年一班和九年二班各有多少名学生.(2)该校九年三班有45名学生,若九年级体育成绩的总满分率超过75%,求九年三班至少有多少名学生体育成绩是满分.5.学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?6.某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男女两种款式的书包。

方程与不等式训练300题(学生版)

方程与不等式训练300题(学生版)

2020-1六下双基训练300题方程与不等式六年级·寒假·学生版九层之台,起于累土【练习1.1】 简单的一元一次方程1. ()()43206711y y y y --=--2. ()254(3)2(1)x x x --+=-3. 37(1)32(3)x x x --=-+4. 12(1)4()2x x x --=-5. 4(4)35(72)y y +=--6. 7 2.5 2.536x x -=⨯+7. 12(23)3(21)a a -+=-+ 8. 93(1)6x x --=9. 63(32)6(2)x x x --=-+ 10. 7104(0.5)x x -=-+方程与不等式补充材料千里之行,始于足下11. 3(8)64(11)y y y -=-- 12. 13(8)2(152)x x --=-13. 2(10)52(1)x x x x -+=+- 14.223046m m +--=15. 43(20)67(9)x x x x --=-- 16. 2(21)2(1)3(3)x x x -=+++17. 43(23)12(4)x x x +-=-- 18. ()()335225x x -=--19. ()()()243563221x x x --=--+ 20. ()()()321531152x x x --+=+六年级·寒假·学生版九层之台,起于累土【练习1.2】 一元一次方程——去分母21. 21101211364x x x --+-=- 22. 212153x x +--=23. 3157146y y ---= 24. 212134y y -+-=-25. 341125x x -+-= 26. 1112222x x x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦27. 12233xx -=-+ 28.13216222x x x ⎛⎫--=+ ⎪⎝⎭方程与不等式补充材料千里之行,始于足下29. 21101136x x ++-= 30.211135x x +-=- 31. 121224x x+--=+ 32.42571510x x +--= 33. 124123x x ---= 34.213124x x--=- 35. 2123134x x ---= 36.3141136x x x ---=-六年级·寒假·学生版九层之台,起于累土37. 211135x x +-=- 38.+4122523x x x -+-=- 39. 25316412x x x ---+= 40. 2523163x x x +--=- 41. 431432x x -+-= 42.()()11212223x x x ⎡⎤--=+⎢⎥⎣⎦ 43. 141123x x --=- 44.5415513412y y y +--+=-方程与不等式补充材料千里之行,始于足下45. 121225x x ++-=- 46.()10532327x x x -++--=47. 7151322324x x x -++-=- 48.34113843242x x ⎧⎫⎡⎤⎛⎫--=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭ 49. 248539x x -=- 50.3121134x x -+-= 51. 1122254x x x++--=+ 52.1328237x x x-+---=六年级·寒假·学生版九层之台,起于累土53. 248236x x ---=- 54.31322322105x x x +-+-=- 55. 225353x x x ---=- 56. 1212323x x x --+=- 57. 12136x x x -+-=- 58.3157146y y ---= 59. 131224x x+--=- 60.21101211364x x x -++-=-方程与不等式补充材料千里之行,始于足下61. 211011412x x x ++-=- 62.()()142113233x x x ⎡⎤+-=-+⎢⎥⎣⎦ 63. 312423(1)32x x x -+-+=- 64.49325532x x x ++--= 65. 4115(2)13212x x x +--+=-66. 113(23)(32)5(32)(23)32x x x x ---=-+-六年级·寒假·学生版九层之台,起于累土67. 22(31)253y y -=- 68.31242233x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦69. 21101211364x x x -++-=- 70.3213(1)(32)(1)45102x x x --+=-- 71. 431261345x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦72.121146x x ++-= 73. 211011412x x x ++-=- 74.111(15)(7)523x x +=--方程与不等式补充材料75. 2110121123644x x x-++-=-76.2383236x x x-+-=-77. 1010210147x x+--=78. ()()137464722x x-=+-79.12223x xx-+-=-80.3221211245x x x+-+-=-81. 13533236524x x⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭82.112132152yy-+-=六年级·寒假·学生版83. 343111243242x x⎡⎤⎛⎫--=+⎪⎢⎥⎝⎭⎣⎦84.111116412345x⎧⎫⎡⎤⎛⎫--+=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭85.43254xxx x---=【练习1.3】一元一次方程——去分子、分母中的小数86. 0.10.20.710.30.4x x---=87.1.5 1.51.50.30.1x x--=88.2130.20.5x x-+-=89.0.30.2 1.5570.20.5x x--+=方程与不等式补充材料90. 0.20.10.010.0150.30.04x x---=91.0.010.030.40.110.020.5x x-+-=92.30.412.50.20.5x x+--=-93.341.60.50.2x x-+-=94. 2 1.633180.30.63x x x-+-=95.341.650.2y y-+-=96. 4 1.550.8 1.230.50.20.1x x x----=+97.1.5210.30.2x x--=六年级·寒假·学生版98. 3 1.50.20.1840.20.09x xx--+=+99.0.12230.30.6x xx-+-=100.341.60.50.2x x-+-=101.10.2110.40.7x x+--=102.0.230.210.50.03x x--=103.3 1.140.20.160.70.40.30.06x x x----=104. 1.510.530.6x x--=105.0.10.020.10.10.30.0020.05x x-+-=方程与不等式补充材料106. 0.030.010.170.050.10.020.070.030.09x x x +-+-=107. 0.10.20.0226.57.50.010.02x x---=-108.30.70.310.80.4x xx+-=-109. 0.40.50.20.5110.060.232x xx+-⎛⎫-=+⎪⎝⎭110.2651430.030.30.02x x-+-=【练习1.4】一元一次方程——巧算(整体法、拆括号、裂项、凑分子)111. 11311377325235x x⎛⎫⎛⎫--=--⎪ ⎪⎝⎭⎝⎭112. ()()15201520153411131717x x x---+=六年级·寒假·学生版113. ()()()()1131121132x x x x +--=--+ 114. 31333447167x x x x ⎡⎤⎛⎫⎛⎫---=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 115. ()()1123233211191313x x x -+-+=116. ()()()()1120181120191120182019x x x x +--=--+ 117. 111123452345x x x x +++=+++方程与不等式补充材料118. ()()()()1111123201620162342017x x x x ++++++++= 119. 111133312222y ⎧⎫⎡⎤⎛⎫---=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭120.111246819753x ⎧⎫⎡⎤+⎛⎫+++=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭121. 2016122320162017x xx +++=⨯⨯⨯ 122. 1122320192020x xx+++=⨯⨯⨯123. 200613352003200520052007x x x x++++=⨯⨯⨯⨯六年级·寒假·学生版124.11 123234201720182019201820192020220192020 x x x x++++=-⨯⨯⨯⨯⨯⨯⨯⨯⨯125.3213201520162017x x x---++=126.201013201920092007x x x---++=127.2017130 1008620162014x x x---++=128.20181614125 357911x x x x x-----++++=方程与不等式补充材料129. 3x a b x b c x c ac a b------++= ()000a b c >>>、、 130.4x a b c x b c d x c d a x d a bd a b c------------+++= () a b c d 、、、均为正数【练习2.1】 较简单的二元一次方程131. 27325x y x y -=⎧⎨+=⎩132. 85765476x y x y +=⎧⎨-=⎩133. 293x y x y -=-⎧⎨+=⎩134. 53702370x y x y --=⎧⎨+-=⎩六年级·寒假·学生版135.5120311120x yy x-=⎧⎨-=⎩136.245x yx y+=⎧⎨-=⎩137.5210x yx y+=⎧⎨+=⎩138.25342x yx y-=⎧⎨+=⎩139.7423624x yx y+=⎧⎨-=⎩140.892317674x yx y+=⎧⎨-=⎩141.()()()()31445135y xx y⎧-=-⎪⎨-=+⎪⎩142.32222m nm n+=⎧⎨-=-⎩方程与不等式补充材料143.372513x yx y-=⎧⎨+=⎩144.25342x yx y-=⎧⎨+=⎩145.30327xx y-=⎧⎨-=⎩146.633594x yx y-=-⎧⎨-=⎩147.2114327x yx y+=⎧⎨+=⎩148.3(1)4(4)5(1)3(5)y xx y-=-⎧⎨-=+⎩149.()()()()4395211x y x yx y x y⎧+--=⎪⎨-++=⎪⎩150.()()()()337242233228x yx y⎧+=-+⎪⎨-+-=⎪⎩六年级·寒假·学生版【练习2.2】较复杂的二元一次方程组151.1234x yx y+=⎧⎪⎨+=⎪⎩152.1640.30.4 1.7x yx y⎧+=⎪⎨⎪+=⎩153.2320.40.7 2.8x yx y⎧+=⎪⎨⎪+=⎩154.35723423235x yx y++⎧+=⎪⎪⎨--⎪+=⎪⎩155.2()1346()4(2)16x y x yx y x y-+⎧=-⎪⎨⎪+=-+⎩156.2344143m n n mnm+-⎧-=⎪⎪⎨⎪+=⎪⎩方程与不等式补充材料157. 2153224111466x y x y ⎧+=-⎪⎪⎨⎪-=-⎪⎩158. 32212453231045x y x y --⎧+=⎪⎪⎨++⎪-=⎪⎩159. 252234m nm n ⎧-=⎪⎨⎪+=⎩160. ()()35724310413x y y x x y x y -+⎧+=-⎪⎪⎨---⎪=⎪⎩161. ()()()54723187323x y x y x y x y ⎧+-+=⎪⎪⎨⎪+--=⎪⎩162. 2164622372y x y x y x x y++⎧-=-⎪⎨⎪+=--⎩六年级·寒假·学生版163.1115212355x yyx+-⎧-=-⎪⎪⎨⎪+=-⎪⎩164.3223132x y x y-+==165.()5111562347 896x y y x x y---+++==【练习2.3】普通的三元一次方程组166.321x y zx y zx y-+=-⎧⎪+-=⎨⎪+=⎩167.324230140x yx zx y z=-⎧⎪-=⎨⎪++=⎩方程与不等式补充材料168.153241341013x y zx y zz-+=⎧⎪+-=-⎨⎪=⎩169.1225224x y zx y zx y++=⎧⎪++=⎨⎪=⎩170.3232443210x y zx y zx y z-+=⎧⎪+-=⎨⎪++=-⎩171. 235532z x yx y zx y z=+⎧⎪-+=⎨⎪+-=⎩172.52621212x yy zx z-=⎧⎪-=-⎨⎪+=⎩173.12232a b ca b ca b c++=⎧⎪+-=⎨⎪-+=⎩六年级·寒假·学生版174.3123325x y zx y zx y z+-=⎧⎪-+=⎨⎪+-=⎩175.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩176.102317328x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩177.42314235x y zx y zx y z--=⎧⎪++=⎨⎪+-=⎩178.4329253456218x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=⎩179.24+393251156713x y zx y zx y z+=⎧⎪-+=⎨⎪-+=⎩方程与不等式补充材料180.232623343239x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩181.3213272312x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩182.4239328a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩183.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩184.56812412345x y zx y zx y z+-=⎧⎪+-=-⎨⎪+-=⎩185.24393251156713x y zx y zx y z++=⎧⎪-+=⎨⎪-+=⎩六年级·寒假·学生版186.9202325x y zx y zx y z-+=⎧⎪++=⎨⎪--=⎩187.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩188.231332163510x y zx y zx y z++=⎧⎪+-=⎨⎪+-=⎩189.3423126x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩190.275323342y xx y zx z=-⎧⎪++=⎨⎪-=⎩191.344635511x y zx y zy z++=⎧⎪-+=-⎨⎪+=⎩方程与不等式补充材料192.42325560x y zx y zx y z-+=⎧⎪++=⎨⎪++=⎩193.52574313x yy zz x+=⎧⎪-=-⎨⎪+=⎩194.42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩195.2343327231a b ca b ca b c-+=⎧⎪-+=⎨⎪+-=⎩【练习2.4】有技巧的多元一次方程组196.78388737x yx y+=⎧⎨+=⎩197.231763172357x yx y+=⎧⎨+=⎩六年级·寒假·学生版198.199519975989199719955987x yx y+=⎧⎨+=⎩199.354x yy zx z+=⎧⎪+=⎨⎪+=⎩200.222426x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩201.1131x y zy z xz x y+-=⎧⎪+-=⎨⎪+-=⎩202.512x yy zz x+=⎧⎪+=-⎨⎪+=-⎩203. 2345238x y zx y z⎧==⎪⎨⎪+-=⎩方程与不等式补充材料204.::z1:2:32318x yx y z=⎧⎨-+=⎩205.:3:2:5:466x yy zx y z=⎧⎪=⎨⎪++=⎩206.323232y z x az x y bx y z c+-=⎧⎪+-=⎨⎪+-=⎩207.252821126x yy zz uu x+=⎧⎪+=⎪⎨+=⎪⎪+=⎩208.12323434545151212345x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪++=⎩209.12323434545151251532x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=-⎨⎪++=-⎪⎪++=⎩六年级·寒假·学生版210. 220240280+216023202640a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f +++++=⎧⎪+++++=⎪⎪+++++=⎪⎨++++=⎪⎪+++++=⎪+++++=⎪⎩【练习3.1】 一元一次不等式 211. ()25321x x --≥ 212. 8156x x -≥-213. ()()3129x x -≤+ 214. ()()32232x x x x ⎡--⎤>--⎣⎦215. 3(2)152(2)x x -+-<-- 216.121123x x -++<方程与不等式补充材料217. 21433x x -≥-- 218. 3453172y y y --≤-219. 6721251423x x x --+-+>+- 220.121180.50.25x x -++>221. 124816x x x xx ++++> 222.12123x x +-≥223. 2354124463x x x ---+->+ 224. ()()52186117x x -+<-+六年级·寒假·学生版225. ()332524y y +≤- 226.()311212423x ⎡⎤--≥⎢⎥⎣⎦227. 11111112332x x ⎛⎫⎛⎫-≥-- ⎪ ⎪⎝⎭⎝⎭228. ()21035127x x x ---≥-229. 531132x x +--< 230. 22252y y y ---≤- 231. 123x x-< 232.2352x x -≥+方程与不等式补充材料233. 212(12)13x x --≥- 234.8111122x x x ++-≤-235. 422(2)x x -≥+ 236.3122123x x---≤237. 214432x x -+-< 238. 3(2)12(1)x x +>---239. 111(2)(3)248x x ->-+ 240. 533(2)x x +≤+六年级·寒假·学生版241. 14232x x -+->- 242.2432x x -≥- 243. 11132x x --≥ 244. 7(4)2(43)4x x x ---<245. 5(2)86(1)7x x -+<-+ 246.1132x x --< 247. 21211362x x x +--->- 248.3(1)5182x x x +-->-方程与不等式补充材料249.18136x xx+-+≤-250. 15(31)10(42)6(63)39x x x---≥--251. 0.40.210.20.5x x+->-252. 51531x x+>-253. 22123x x+-≥254.2(1)12xx---<255. 2152246x x-+-≥-256.3(1)12384x x+-+<-六年级·寒假·学生版257.121133x xx-+-≤+258.0.2 1.20.120.130.30.05x x---≤-259.()0.20.10.2 0.030.010.70.310.030.50.15x x x-+--<+260. 0.40.90.030.0250.50.032x x x++-->【练习3.2】一元一次不等式组261.3312183(1)xxx x-⎧+≥+⎪⎨⎪+<+-⎩262.253(2)12135x xx+≤+⎧⎪-⎨+>⎪⎩方程与不等式补充材料263. 22531323213x xx x--⎧-≤⎪⎨⎪->-⎩264. 3(1)954x x +≤⎧⎨+>⎩265. 3(1)702423x x x -->⎧⎪-⎨>⎪⎩266. 2362523x x x x +≤+⎧⎪+⎨<+⎪⎩267. 21390x x >-⎧⎨-+≥⎩268. 33(3)21123x x x x +≤+⎧⎪-+⎨>-⎪⎩269. ()()1032561x x x +⎧>⎪⎨⎪+≥-⎩270. 3150728x x x ->⎧⎨-<⎩六年级·寒假·学生版271.312342x xx x-≤-⎧⎨-+>-⎩272.1232(3)3(2)6x xx x⎧->-⎪⎨⎪--->-⎩273.593(1)311122x xx x-<-⎧⎪⎨-≤-⎪⎩274.328212xx-<⎧⎨->⎩275.523(4)131722x xx x-≤+⎧⎪⎨-<-⎪⎩276.328654x--≤--<-277.2632145x xx x-≤-⎧⎪+⎨->⎪⎩278.121233(2)54x xx x--⎧≤⎪⎨⎪+>+⎩方程与不等式补充材料千里之行,始于足下279. ()32421152x x x x ⎧--≥⎪⎨-+≤⎪⎩280. 513(1)23722x x x x ->+⎧⎪⎨-≤-⎪⎩281. 2132(1)5x x +⎧<⎪⎨⎪-≤⎩282. 312128x x x -≤+⎧⎨-<⎩283. 222212x x x x+⎧≥⎪⎨⎪-<-⎩284. 313112123x x x x +<-⎧⎪++⎨≤+⎪⎩285. 521262(3)4x x x x -⎧->⎪⎨⎪-≤-⎩ 286. 2153712x x x ->⎧⎪⎨-+≤⎪⎩六年级·寒假·学生版九层之台,起于累土287. 2(21)342151132x x x x -≤+⎧⎪-+⎨-≤⎪⎩288. 3(2)8143x x x x +>+⎧⎪-⎨≥⎪⎩289. 267442152x x x x +>-⎧⎪+-⎨≥⎪⎩290. 43213(1)6x x x x-⎧+≥⎪⎨⎪--<-⎩291. ()()35223141x x x x -⎧≤-⎪⎨⎪-<+⎩292. 543132(32)3x x x ->⎧⎨--≤⎩293. 2153112x x x ->⎧⎪⎨+-≥⎪⎩294. 253259837(4)2(43)4x x x x x x x +≤+⎧⎪->+⎨⎪---<⎩方程与不等式补充材料千里之行,始于足下295. ()1231121286432x x x x x x +>+-⎧⎪⎪+≥+⎨-<-⎪⎪⎩296. 8156212(12)133(2)152(2)x x x x x x -≥-⎧⎪-⎪-≥-⎨⎪-+-<--⎪⎩297. 36451322253522x x x x x x +>+-⎧⎪⎪+>+⎨<-⎪⎪⎩298. 18136212113620.40.210.20.5x x x x x x x x +-⎧+≤-⎪⎪+--⎪->-⎨⎪+-⎪>-⎪⎩299. 427323653453x x x x x x ⎧⎪+>++≥+≤-⎨-⎪⎩300. ()()32232217223x x x x x x ⎧⎪->++≤+≥+⎨-⎪⎩。

初三数学方程组与不等式组试题答案及解析

初三数学方程组与不等式组试题答案及解析

初三数学方程组与不等式组试题答案及解析1.已知关于x的一元二次方程。

(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5。

当△ABC是等腰三角形时,求k的值。

【答案】(1)证明如下;(2)或.【解析】(1)先计算出△=1,然后根据判别式的意义即可得到结论;(2)先利用公式法求出方程的解为x1=k,x2=k+1,然后分类讨论:AB=k,AC=k+1,当AB=BC或AC=BC时△ABC为等腰三角形,然后求出k的值.试题解析:(1)∵关于x的一元二次方程中,,∴。

∴方程有两个不相等的实数根。

(2)∵由,得,∴方程的两个不相等的实数根为。

∵△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5,∴有两种情况:情况1:,此时,满足三角形构成条件;情况2:,此时,满足三角形构成条件。

综上所述,或。

考点: (1)根的判别式;(2)解一元二次方程-因式分解法;(3)三角形三边关系;(4)等腰三角形的性质.2.下列方程有实数解的是()A.B.|x+1|+2=0C.D.【答案】C【解析】解:A.,因而对任何实数都不能成立.即方程没有实数解.B、,因而对任意实数一定成立,因而方程没有实数解.C、方程去分母得到:x=1,经检验是方程的解.D、△,则方程无实数解.故选C。

3.把三张大小相同的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S1;若按图10-2摆放时,阴影部分的面积为S2,则S1S2(填“>”、“<”或“=”).【答案】=【解析】该试题考查知识点:图形面积计算思路分析:推算两图中未被卡片覆盖的部分的面积,然后进行比较具体解答过程:如图所示。

设大正方形的边长为a,小正方形的边长为b;在图10-1中,设未被卡片覆盖的部分宽分别为m、n,长为q;在图10-2中,设未被卡片覆盖的部分宽为m′、n′,长为q′,则m+n=m′+n′=a-b,而q=q′=a-b∴在图10-1中,设未被卡片覆盖的部分(阴影)的面积为S1=(m+n)q=(a-b)2;在图10-2中,设未被卡片覆盖的部分(阴影)的面积为S2=(m′+n′)q′=(a-b)2综上所述,可知S1=S2试题点评:这是一道数学探究题,难度不大。

初一数学方程组与不等式组试题

初一数学方程组与不等式组试题

初一数学方程组与不等式组试题1.如果,那么++= 。

【答案】10【解析】解:由题意得,,解得,则2.若一个二元一次方程的一个解为,则这个方程可以是_______________(只要求写出一个).【答案】x+y=1,答案不唯一【解析】方程的解是,把x=2,y=1代入方程,方程的左右两边一定相等,这个方程可能是:x+y=1,答案不唯一.3.下图是一个数值转换机的示意图,若输入的值为3,的值为-2时,则输出的结果为:________.【答案】5【解析】略4.若关于x的方程2x+a﹣4=0的解是x=﹣2,则a= .【答案】8【解析】因为方程2x+a﹣4=0的解是x=﹣2,所以把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得a=8,【考点】一元一次方程的解.5.已知是二元一次方程组的解,求m+3n的立方根.【答案】2.【解析】把x,y值代入这个方程组,观察发现两方程相加能求出m+3n的值,进而求其立方根.试题解析:把代入方程组,得,两个方程相加得:m+3n=8,∴= ="2" .【考点】1.解二元一次方程组;2.求一个数的立方根.6.(9分)关于x的不等式组有21个整数解,则a的取值范围是.【答案】<a≤1【解析】分别解两个不等式,然后根据不等式组解集的求法:都大取较大,都小取较小,大小小大取中间,大大小小无解,确定出解集,再根据整数解的个数确定出a的范围.试题解析:解:解不等式①得x<21解不等式②得x>2-3a所以不等式组的解集为2-3a<x<21由于不等式组有21个整数解,因此-1≤2-3a<0因此<a≤1【考点】不等式组的解集7.(本题满分10分)小明参加学校组织的知识竞赛,共有道题.答对一题记分,答错(或不答)一题记分,小明参加本次竞赛要超过分,他至少要答对多少道题?【答案】14【解析】根据题意可设小明答对了x道题,答错或不答有(20-x)道题,根据二者得分超过100分,可列不等式解决.试题解析:解:设小明答对了x道题,则:解之得:因为x为整数,所以x≥14答:小明至少要答对14道题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式与方程组计算题
1.x 为整数同时满足不等式5
6x+
4x+77
〉与8x+34x+50〈,求x 的整数值
2.已知关于x ,y 的方程组⎩
⎨⎧=+=+3135y x m
y x 的解为非负数,求整数m 的值.
3.求不等式组⎪⎩⎪⎨⎧-->---<--2
)3(3)1(231221
1x x x x 的负整数解。

4.已知方程组⎩
⎨⎧-=-+=+1726
52y x m y x 的解x 、y 都是正数,求m 的取值范围.
5.已知:关于x 的方程
m x m x =--+2
1
23的解是非正数,求m 的取值范围.
6.已知关于x 、y 的方程组⎩⎨
⎧-=+=-1332k y x k y x 的解满足⎩
⎨⎧<>00
y x ,求k 的取值范围。

7.当3
10)3(2k k -<
-时,求关于x 的不等式
k x x k ->-4
)
5(的解集.
8.已知方程组⎩⎨
⎧-=++=+②
①m
y x m y x 12,
312的解满足x +y <0,求m 的取值范围.
9.已知关于x ,y 的方程组⎩
⎨⎧-=++=+134,
123p y x p y x 的解满足x >y ,求p 的取值范围.
10.已知关于x 、y 的方程组⎩⎨
⎧=++=-a
y x a y x 523
的解满足x>y>0,化简|a|+|3-a|.
11.当k 取何值时,方程组⎩
⎨⎧-=+=-52,
53y x k y x 的解x ,y 都是负数.
12.已知⎩
⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.
13.已知a 是自然数,关于x 的不等式组⎩
⎨⎧>-≥-02,
43x a x 的解集是x >2,求a 的值.
14.关于x 的不等式组⎩
⎨⎧->-≥-123,
0x a x 的整数解共有5个,求a 的取值范围.
15.若关于x 的不等式组⎪⎪⎩
⎪⎪⎨⎧+<+->+a x x x x 322,32
15
只有4个整数解,求a 的取值范围.
16.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?
一元一次不等式组练习题
一、填填补补!(每小题3分,共24分)
1.不等式组21x x >⎧⎨>-⎩,的解集是_____;不等式组22x x <⎧⎨<-⎩

的解集是_____.
2.不等式组61x x <⎧⎨
>⎩,的解集是_____;不等式组51
x x >⎧⎨<-⎩,
的解集是_____.
3.解不等式组2(2)4103
2x x x x --⎧⎪
⎨+-<⎪⎩,,≤① ②解不等式①得_____,解不等式②得_____,所以不
等式组的解集是_____. 4.不等式组1
3x x >-⎧⎨

,≤的解集为_____,这个不等式组的整数解是_____.
5.三根木棍的长分别为a ,b ,c ,其中50cm a =,100cm c =,则b 应满足_____时,它
们可以围成一个三角形. 6.若不等式组8x x m
<⎧⎨
>⎩,
有解,则m 的取值范围是_____.
7.不等式1324x <-<的解集是_____.
8.从彬彬家到家校的路程是2400 米,如果彬彬7时离家,要在7时30分至40分间到达学校,问步行的速度x 的范围是_____.
二、快乐A、B、C!(每小题3分,共24分)
1.已知不等①、②、③的解集在数轴上的表示如图1所示,则它们的公共部分的解集是( ) A.13x -<≤
B.13x <≤
C.11x -<≤
D.无解
图1
2.不等式组1
3x x >-⎧⎨<⎩
的解集为(

A.1x
>-
B.3x < C.13x -<
<
D .无解
3.若不等式组3x x a
>⎧⎨>⎩,
的解集为x a >,则a 的取值范围是(

A.3a
<
B.3a =
C.3a >
D.3a ≥
4.有A、B、C、D、E五个足球队在同一小组进行单循环比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线.小组赛结束后,A 队的积分为9分,则下列说法正确的是( ) A.A队的战绩是胜3场,负2场 B.A队的战绩是胜3场,平1场 C.A队的战绩是胜3场,负1场
D.A队的战绩是胜2场,平3场
5.不等式组1020x x +⎧⎨-<⎩

≥的整数解为(

A.1-,1
B.1-,1,2
C.1-,0,1
D.0,1,2
6.下列不等式中,解集为14x -<≤的是( )
A.1
4x x -⎧⎨>⎩,;

B.1
4x x >-⎧⎨<⎩,;
C.4010x x -<⎧⎨+⎩,;

D.401x x ->⎧⎨-⎩,.

7.不等式组231
12x x +>⎧⎨-<⎩
,的解集在数轴上的表示如下图所示,其中正确的是(

8.解集是如图2 所示的不等式组为( )
A.2030x x +⎧⎨->⎩

;≥
B.2030x x +<⎧⎨-<⎩


C.241103
x x -⎧⎪⎨-<⎪⎩,
;≤
D.2241103
x x -+⎧⎪⎨-<⎪⎩,.≥
三、小小神算手!(本大题共30分)
1.(本题10分)解不等式组,并把它们的解集在数轴上表示出来. (1)3150728x x x ->⎧⎨-<⎩;;
① ② (2)312342x x x x --⎧⎨
-+>-⎩;.
≤ ① ②
2.(本题10分)解下列不等式组:
(1)4(1)5723(2)x x x x -+⎧⎨++⎩;;
≤ ①≤ ② (2)3(1)2(1)4(2)5(1)6x x x x ->+⎧⎨
->+-⎩;.
① ②
3.(本题10分)a 为何值时,方程组231
2x y a x y a
-=+⎧⎨+=⎩,的解满足x y ,均为正数?
图2
四、拓广探索,超越自我!(本大题共22分)
1.(本题11分)已知一个两位数的十位数字比个位数字小2,若这个两位数大于21而小于36,求这个两位数?
2.(本题11分)已知不等式组1
1
1x x x k >-⎧⎪
<⎨⎪<-⎩
,,. (1)当2k
=-时,不等式组的解集是_____,当3k =时,不等式组的解集是_____;
(2)由(1)可知,不等式组的解集是随数k 的值的变化而变化.当k 为任意有理数时,写出不
等式组的解集.。

相关文档
最新文档