基站天线的下倾角设置建议

合集下载

基站天线的设置技术

基站天线的设置技术

基站天线的设置技术摘要:在移动通信中,天线的作用是将基站的射频信号有效地发射到规定的覆盖区域,使服务区域有效覆盖而不干扰其他的区域。

论述移动通信中基站天线设置的几个重点技术,并分析实际应用中天线设置的数据选取。

关键词:下倾角;方向角;分级;隔离中图分类号:TN828 文献标志码:A 文章编号:1000-8772(2009)18-0122-02一、下倾角设置(一)考虑干扰抑制时的下倾角在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线增益(尤其是上波瓣)衰减很快。

因此从控制干扰的角度考虑,可认为半功率角的延长线到地面的交点为该基站的实际覆盖边缘。

在基站周围环境理想情况下,下倾角可按以下公式计算:θ=actan(H/R)+β/2θ为天线的下倾角,H为天线有效高度,β为天线的垂直半功率角。

R为该小区最远的覆盖距离,即覆盖长径R。

在理想情况下R=2D/3。

实际上天线的辐射方向图不可能完全适配三叶草型蜂窝结构。

水平半功率角为60度左右的天线与之比较接近,而水平半功率角为90度的天线则相差较大。

因此对于使用水平半功率角为90度天线的基站,取R=D/2,D为站间距离。

(二)考虑加强覆盖时的下倾角在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素的影响。

为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点为该基站的实际覆盖边缘。

在基站周围环境理想情况下,下倾角可按以下公式计算:θ=actan(H/R)二、天线方向角的设置理想状况下,即在各基站均匀分布、不考虑地形地物等因素、各基站均为定向站的情况下,基站各扇区之间的夹角应均为120度,如此可以达到蜂窝网络的最小干扰。

但实际上由于基站分布极不规则,同时地形地物错综复杂,各基站的方向角可以根据实际情况确定。

为了减少混乱的方向角带来的网络干扰的不确定性,应尽量保证各扇区间天线的夹角为120度,最低要求不能小于90度。

三、天线挂高的设置基站天线的有效挂高对覆盖和干扰的影响是显而易见的。

基站天线的下倾角设置建议

基站天线的下倾角设置建议

基站天线的下倾角设置建议一、下倾角概述基站天线作为移动通信网络的终端,承载了电磁波发射与接收的双工功能,即移动通信信号传递的载体,其应用效果的好坏直接决定了移动通信网络的优劣。

基站天线的应用效果的好坏,一般受限于基站电磁环境、天线挂高、天线方位角及天线下倾角四大重要因素,只有四大因素相辅相成,方能实现基站天线的最佳应用效果,本文结合基站的各种电磁环境、天线挂高对基站天线下倾角的设置进行简单的分析介绍。

合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围和整网的软切换比例(对CDMA网络而言),而且可以加强本基站覆盖区内的信号强度。

通常天线下倾角的设定有两个侧重方向,即侧重于干扰抑制和侧重于加强覆盖。

这两个侧重方向分别对应不同的下倾角算法。

一般而言,对基站分布密集的地区应侧重于考虑干扰抑制,而基站分布较稀疏的地区则侧重于考虑加强覆盖。

.考虑干扰抑制时的下倾角在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线增益(尤其是上波瓣)衰减很快。

因此从控制干扰的角度考虑,可认为半功率角的延长线到地面的交点(B点)为该基站的实际覆盖边缘。

在基站周围环境理想情况下,下倾角可按以下公式计图1、基站天线控制干扰时的下倾角应用图其中α为天线的下倾角,H为天线有效高度,β为天线的垂直半功率角。

R为该小区最远的覆盖距离,即覆盖长径R。

.考虑加强覆盖时的下倾角在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素的影响。

为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点(B点)为该基站的实际覆盖边缘。

在基站周围环境理想情况下,下倾角可按以下公式计算。

α=actan(H/R)公式二公式二含义如下图所示。

图二、基站天线控制信号强度时的下倾角应用图二、下倾角设置的应用分析.下倾角分类目前天线行业内天线的下倾角实现方式有三种:机械下倾角、预置电下倾角以及电调下倾角;需要下倾角=机械下倾角+预置电下倾角+电调下倾角。

定向天线天线下倾角的设置

定向天线天线下倾角的设置

定向天线天线下倾角的设置摘要:天线下倾角设置是否合理,将对天线的覆盖产生重要的影响,同时会对相邻小区形成不良的影响,因此,正确的理解天线下倾角的设置原理,合理的设置天线下倾角,将对无线基站设计起到积极的作用,使基站能够发挥更好的作用,为无线用户提供更好的服务。

关键词:GSM 下倾覆盖1、概述在过去两个月的工作中,我主要从事无线基站的设计,在勘查和设计的过程中,发现了不少需要解决的问题,针对这些问题,我收集了一些资料进行学习和整理,希望能够为自己和同事在将来的查勘设计过程中提供相关技术应用的理论依据,其中,一个比较重要的课题就是定向天线下倾角的设置。

2、天线下倾的方法2.1 天线倾角的作用为了使信号限制在自己的小区覆盖范围内,并且降低对其他同频小区的干扰,使定向天线波束图形向下倾斜一定角度是非常有效的方法。

天线下倾技术是利用天线的垂直方向性有效控制干扰和覆盖的重要手段:1)天线下倾可以使小区覆盖范围变小;2)天线下倾安装使天线在干扰方向上的增益减小,相当于天线在垂直面上去耦增加;3)天线下倾后加强了本覆盖区内的信号强度,既改善了小区的场强,又增加了抗同频干扰的能力。

2.2 天线下倾的方法有两种使天线方向图向下倾斜的方法:1)机械下倾,通过机械调整改变天线向下倾角。

2)电调下倾。

通过改变天线阵的激励系数来调整波束的倾斜角度。

两种不同的下倾方法将产生不同的辐射情况,在下倾角度较小时,这种区别不明显;但随着角度的加大,它们的区别就非常显著了。

在采用电倾角时,随着下倾角的增加,在主瓣方向覆盖距离明显缩短,天线方向图仍然保持原有形状,能够降低呼损、减小干扰。

但对于机械下倾,随着下倾角的加大,天线主瓣方向信号强度迅速降低,当下倾角增大到一定数值时主瓣方向逐渐凹陷下去,同时旁瓣增益随之增大,这就造成旁瓣对其他方向上的同频基站的干扰。

目前GSM网在高话务密度区的呼损较高,干扰较大,其中一个重要原因是机械下倾角过大,天线方向图严重变形,要解决高话务区的容量不足,必须缩短站距、加大天线下倾角度,因此采用机械天线很难解决用户高密度区呼损高、干扰大的问题,建议在高话务密度区用带电倾角的天线,而把机械倾角天线安装在农村、郊区等低话务密度地区。

基站天线方向性和倾斜角的设置和优化

基站天线方向性和倾斜角的设置和优化

基站天线方向性和倾斜角的设置和优化在移动通信网络中,基站天线的设置与倾斜角的优化是一项重要的工作。

通过合理设置天线方向性和倾斜角,可以提高网络的覆盖范围和信号质量,进而提升用户的通信体验。

本文将介绍基站天线方向性和倾斜角的设置和优化的相关知识和技术。

1. 基站天线方向性的设置和优化基站天线的方向性是指天线主瓣的辐射方向。

合理设置基站天线方向性可以使信号覆盖更加集中和聚焦,提高信号强度和覆盖范围。

在设置基站天线方向性时,需要考虑以下因素:1.1 综合考虑地形和建筑物地形和建筑物会对信号传播产生阻挡和衰减,因此,在设置基站天线方向性时需要结合地形和建筑物等因素进行综合考虑。

对于山区、丘陵地区或者高层建筑多的城市区域,可以选择采用高增益和窄波束宽度的天线,以增加覆盖范围。

1.2 考虑用户分布和流量分布根据用户和流量的分布情况,可以调整基站天线的方向性。

例如,在人口稠密的地区,可以将天线的主瓣指向人口聚集区域,以增加信号强度和覆盖范围。

1.3 考虑邻频干扰和同频干扰邻频干扰和同频干扰会对无线信号的传输和接收产生影响,因此,在设置基站天线方向性时需要考虑减小邻频干扰和同频干扰的影响。

可以通过调整基站天线的方向性和波束宽度,实现对干扰源的屏蔽或远离,从而减小干扰。

2. 基站天线倾斜角的设置和优化基站天线倾斜角是指天线挂角的调整,通过调整倾斜角可以改变天线的辐射方向和覆盖范围。

合理的设置和优化基站天线倾斜角可以达到以下目的:2.1 提高边缘区域的覆盖边缘区域的信号质量一般较差,通过调整基站天线的倾斜角可以增加信号到达边缘区域的能量,从而提高边缘区域的覆盖范围和信号质量。

2.2 避免重叠覆盖和干扰重叠覆盖和干扰会对网络性能产生负面影响,通过优化基站天线的倾斜角可以减小重叠覆盖区域和干扰范围,从而提高网络的容量和质量。

2.3 提高网络容量和信号质量根据用户的分布和流量需求,合理设置和优化基站天线的倾斜角可以增加网络容量和提高信号质量。

基站天线角度的调试

基站天线角度的调试
年移动通信的迅速发展,基站站点大量增多,在市区已经达到大约500m左右为一个站。
在这种情况下,我们必须减小基站的覆盖范围,降低天线的高度,否则会严重影响我们
的网络质量。其影响主要有以下几个方面பைடு நூலகம்
a. 话务不均衡。基站天线过高,会造成该基站的覆盖范围过大,从而造成该基站的话务量很大,而与之相邻的基站由于覆盖较小且被该基站覆盖,话务量较小,不能发挥
根据覆盖公式:
下倾角=Atan(天线高度h/覆盖距离)*180/Pi+V-HPBW/2+经验修正值,在乡村修正值为0、市区为1、基站密集区为2ioK
具体说明:
天线所发直射波所能达到的最远距离(S)直接与收发信天线的高度有关,具体关系式可简化如下:
S=2R(H+h)$(哦*K:JFD本文来自移动通信网,版权所有
(c) 类地区也应设较大配置的定向基站,如6/6/6站型或4/4/4站型,基站站间距取 1.6~3km;
(d) 类地区一般可设小规模定向基站,如2/2/2站型,站间距为3~5km;若基站位
于城市边缘或近郊区,且站间距在5km以上,可设以全向基站。 以上几类地区内都按用户均匀分布要求设站。郊县和主要公路、铁路覆盖一般可设全 s也f12dK:JFD()本文来自移动通信网,版权所有
链路损耗计算:
基站的选址和布局直接影响到整个系统的服务质量情况。因此,根据合适的传播模型及路径损耗,可以计算出基站的覆盖半径。
在过去的基站覆盖半径计算中,典型的传播模型是Hata城市传播模型。Hata模型如(1)式表述:
Hata城市传输模型:
L=46.3+33.9log(f)-13.82log(Hb)+(44.9-6.55log(Hb))log(d)+Cm……(1)

基站天线安装角度规范

基站天线安装角度规范

基站天线安装角度规范引言基站天线的安装角度是影响无线通信系统覆盖范围和性能的重要因素之一。

为了确保基站天线的正常工作和网络的稳定性,制定基站天线安装角度规范是至关重要的。

本文将介绍基站天线安装角度规范的相关内容,帮助网络运维人员进行正确的安装和调整。

规范说明安装角度的定义基站天线的安装角度是指天线与地平面之间的夹角。

安装角度的调整可以影响天线的辐射方向和覆盖范围。

安装角度的调整原则在正常情况下,基站天线的安装角度应符合以下原则:1.垂直方向调整:基站天线的垂直方向调整应根据地理环境和网络需求来确定。

一般情况下,天线应垂直于地面安装,夹角误差不应超过5度。

2.水平方向调整:基站天线的水平方向调整应根据网络布局和覆盖需求来确定。

一般情况下,天线应朝向目标覆盖区域,夹角误差不应超过10度。

安装角度的调整步骤为了正确调整基站天线的安装角度,可以按照以下步骤进行:1.定位天线:在选择安装位置时,应考虑地理环境和网络布局,选择位置合适的地点安装基站天线。

2.安装天线:使用合适的安装工具将天线牢固地安装在支架上,确保天线的稳定性和固定度。

3.调整水平方向:使用天线调整工具或者电子设备,将天线调整到水平方向。

4.调整垂直方向:使用天线调整工具或者电子设备,将天线调整到垂直方向,并确保夹角误差不超过规定范围。

5.锁定天线:在调整完安装角度后,使用适当的螺丝或固定装置将天线固定住,避免因外力影响导致天线角度发生变化。

6.测试与验证:安装完毕后,进行相关的测试和验证,确保基站天线的覆盖范围和性能符合设计要求。

安装角度调整的注意事项1.避免天线与障碍物的干扰:在选择安装位置时,应尽量避开高楼大厦、电力设施等可能对天线信号造成干扰的障碍物。

2.考虑电磁辐射对人体的影响:安装人员在调整天线角度时,应注意个人安全,避免过度接触天线和暴露在辐射范围内。

3.定期维护与检查:基站天线安装角度的调整应定期进行检查和维护,及时发现和处理异常情况。

天线下倾角最大允许偏差

天线下倾角最大允许偏差

天线下倾角最大允许偏差天线下倾角是指天线与地面之间的夹角,它对于无线通信系统的性能至关重要。

在实际应用中,天线下倾角的偏差会对通信质量产生重要影响。

因此,确定天线下倾角的最大允许偏差是非常重要的。

我们需要明确天线下倾角的定义。

天线下倾角是指天线指向地面的角度,一般以水平面为参考。

在无线通信系统中,合理的天线下倾角有助于信号的传播和接收。

根据不同的应用场景和需求,天线下倾角的最大允许偏差也会有所不同。

在现代通信系统中,天线下倾角的最大允许偏差一般由系统设计人员根据实际需求进行确定。

在确定最大允许偏差时,需要考虑以下几个方面:1. 信号覆盖范围:天线下倾角的偏差会直接影响信号的覆盖范围。

如果天线下倾角偏差太大,信号可能无法覆盖到目标区域,导致通信中断或信号弱。

因此,需要根据实际应用场景确定合理的最大允许偏差,以保证信号的覆盖质量。

2. 天线高度:天线下倾角的最大允许偏差还需要考虑天线的安装高度。

天线安装的高度会直接影响信号的传播距离和角度。

一般来说,天线安装的高度越高,天线下倾角的最大允许偏差也可以相应增大,因为高处安装的天线可以更好地覆盖目标区域。

3. 环境影响:天线下倾角的最大允许偏差还需要考虑环境因素对信号传播的影响。

例如,如果通信系统部署在有建筑物或障碍物的城市环境中,天线下倾角的最大允许偏差可能需要比较小,以避免信号被阻挡或反射导致干扰。

在实际应用中,为了保证通信质量和系统性能,通常会采用一些调整手段来控制天线下倾角的偏差。

例如,通过调整天线的安装角度、使用下倾角调整器或者使用自动倾斜系统来实现天线下倾角的精确控制。

天线下倾角的最大允许偏差是根据实际应用需求确定的重要参数。

合理地确定最大允许偏差可以保证通信系统的正常运行和性能优化。

在实际应用中,系统设计人员需要综合考虑信号覆盖范围、天线高度和环境因素等因素来确定合理的最大允许偏差。

通过采用合适的调整手段,可以实现天线下倾角的精确控制,提高无线通信系统的性能和覆盖质量。

天线最佳下倾角度数、天线最佳高度计算方法

天线最佳下倾角度数、天线最佳高度计算方法

天线最佳下倾⾓度数、天线最佳⾼度计算⽅法
天线⾼度=TAN(下倾⾓度数*PI()/180)*覆盖业务中⼼距离度数计算⽤反正切函数
excel中(PI()/180)为弧度计算公式,所以⼀般⽂档⾥没有出现,导致EXCEL⾥直接⽤TAN(⾓度)×覆盖距离为负数
天线下倾⾓的设置
天线下倾⾓的预设主要利⽤⼏何光学的原理来估计。

我们要考虑到天线的垂直HPBW,天线挂⾼,天线到服务区的距离,天线附近的地形地貌等。

同时,下倾⾓对于接收和发射天线必须保持⼀致。

D A B C
如上图所⽰,如果天线的下倾⾓a⼩于HPBW/2,那么⼩区的覆盖范围由C点来决定。

下⾯的公式给出了这⼏个参数的关系:
DC= H/tan(a-HPBW/2)(最远距离)
转换过来就是:
a=arc tan(H/DC)+HPBW/2;
在实际应⽤中,我们可以考虑天线位置D到业务区中⼼B点的距离,这样⼀来,我们的下倾⾓计算公式可简化为:
a=arctan(H/DB); DB=H*ctan(a);
半功率⾓15度=天线垂直覆盖15°以外信号将会衰减。

⼴度覆盖:为了达到⽆缝隙覆盖,正确选择基站天线参数是⼗分重要的。

⽬前对于三扇区在话务量密集地区通常选⽤⽔平⽅向图,半功率
波束宽度为65o
的双极化定向天线。

由于基站间距离⼤约在300 ~
500⽶,此时天线的俯仰⾓(波束倾⾓):(式中是波束倾⾓,h为基站天线⾼度,r为站间距离)。

可由此式算出,α⼤约在10α
o~ 19o之间;对于话务量中密集区,基站间距离⼤于500⽶,此时a⼤约在6o~ 16o之间:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基站天线的下倾角设置建议
一、下倾角概述
基站天线作为移动通信网络的终端,承载了电磁波发射与接收的双工功能,即移动通信信号传递的载体,其应用效果的好坏直接决定了移动通信网络的优劣。

基站天线的应用效果的好坏,一般受限于基站电磁环境、天线挂高、天线方位角及天线下倾角四大重要因素,只有四大因素相辅相成,方能实现基站天线的最佳应用效果,本文结合基站的各种电磁环境、天线挂高对基站天线下倾角的设置进行简单的分析介绍。

合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围和整网的软切换比例(对CDMA网络而言),而且可以加强本基站覆盖区内的信号强度。

通常天线下倾角的设定有两个侧重方向,即侧重于干扰抑制和侧重于加强覆盖。

这两个侧重方向分别对应不同的下倾角算法。

一般而言,对基站分布密集的地区应侧重于考虑干扰抑制,而基站分布较稀疏的地区则侧重于考虑加强覆盖。

1.1.考虑干扰抑制时的下倾角
在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线增益(尤其是
覆盖距离,即覆盖长径R。

1.2.考虑加强覆盖时的下倾角
在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素的影响。

为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点(B点)为该基站的实际覆盖边缘。

在基站周围环境理想情况下,下倾角可按以下公式计算。

α=actan(H/R)公式二公式二含义如下图所示。

图二、基站天线控制信号强度时的下倾角应用图
二、下倾角设置的应用分析
2.1.下倾角分类
目前天线行业内天线的下倾角实现方式有三种:机械下倾角、预置电下倾角以及电调下倾角;需要下倾角=机械下倾角+预置电下倾角+电调下倾角。

1)机械下倾角:通过调整安装支架,改变天线物理位置,从而实现下倾角连续调节的
调节方式。

2)预置电下倾角:通过天线赋形技术,调整天线馈电网络,改变天线阵列中各振子的
相位,从而在天线物理位置不变的前提下,实现某个电下倾角的调节方式。

3)电调下倾角:通过天线关键器件移相器,连续调整天线馈电网络,连续改变天线阵
列中各振子的相位,从而在天线物理位置不变的前提下,实现天线电下倾角的连续
调节的调节方式。

2.2. 机械倾角和电下倾角的对比
65°15dBi天线不同机械倾角的方向图仿真图
65°15dBi天线不同电下倾角的方向图仿真图
从仿真图分析,同等类型的电子式下倾天线与机械式下倾天线相比,波形畸变较小,易于控制覆盖范围;干扰规避能力较强,在某种程度上可以改善载干比;RMS延迟范围较小,抗多径效应能力较强。

下表分别列比了某种内置6度、9度电子倾角天线和一般类型天线在不同机械倾角时波形畸变的情况。

基站天线波形畸变情况对照表
65°15dBi 天线不同机械倾角时水平波束宽度和前后比实测数据
65°15dBi6°电子倾角天线不同机械倾角时水平波束宽度和前后比实测数据
65°15dBi9°电子倾角天线不同机械倾角时水平波束宽度和前后比实测数据
综合以上考虑,宜优先选用带有预置电倾角的电调倾角天线。

在工程中,采用预置电下倾角、电调倾角和机械倾角三者结合的方式使天线达到需要的下倾角度。

天线需要的下倾角度=机械下倾角+预置电下倾角+电调下倾角。

例如:对某些特殊基站,由于业主协调难度较高,最后被迫选择超高基站进行建站,为避免塔下黑的现象,需要采用超大下倾角24°,则此时下倾角的最佳组合方式为24°=机械下倾角4°+预置电下倾角6°+电调下倾角14°。

.
三、实际应用环境中天线下倾角设置参考值
由于基站周围环境十分复杂,天线下倾角设定还必须充分考虑附近山体、水面和高大玻璃幕墙等强反射物质的反射和阻挡。

因此实际应用中的基站下倾角可利用上述理论计算方法,并结合实际的应用环境最终确定。

在此仅将基站电磁环境分为密集城区、一般城区、郊区、农村四大主流电磁环境,并结合上述理论计算,得出不同基站高度及不同覆盖距离时的天线下倾角设置参考表如下:
密集城区
一般城区
郊区
农村
标注:此表格中的数据仅供参考,若纳入实际应用,需统筹考虑基站的实际电磁环境。

四、总结
综上所述,基站天线的应用效果决定了移动通信网络的通信质量,而要想保证基站天线的应用效果,就必须统筹考虑基站天线的电磁环境、天线挂高、天线方位角及天线下倾角四大因素。

本文结合天线的电磁环境及天线挂高,分析了基站天线下倾角的选择,对移动通信网络建设中的下倾角设置有着重要的参考意义。

但是如果在最终的现网下倾角应用中只是简单的公式套用,则很难达到最佳的应用效果。

因此对基站天线的下倾角设置,应统筹考虑实际的基站应用环境,并结合本文所展列的下倾角参考值,最终得出符合现网的下倾角设置值,从而保证移动通信网络的通信质量。

相关文档
最新文档