自我简述PID调节的方法
控制系统中的PID调节方法与参数优化技巧

控制系统中的PID调节方法与参数优化技巧在自动控制系统中,PID(比例-积分-微分)控制器是一种常用的控制方式,它结合了比例、积分和微分三个部分,通过调节不同的参数可以实现对系统的稳定性和响应速度的控制。
PID控制器简单且易于实现,因此被广泛应用于各个领域的控制系统中。
本文将介绍PID调节方法以及参数优化的技巧。
1. PID调节方法1.1 比例控制(P控制)比例控制是PID调节中的基本部分,它通过比例放大被控量与参考量之间的差异,产生一个控制作用。
P控制可以提高系统的灵敏度和响应速度,缩小稳态误差,但对于系统抗干扰能力较差,容易导致系统不稳定。
1.2 积分控制(I控制)积分控制通过积分被控变量的偏差,使系统对稳态误差做出补偿。
I控制可以消除系统的稳态误差,提高系统的控制精度和稳定性,但过大的积分参数可能导致系统的超调和频率振荡。
1.3 微分控制(D控制)微分控制是通过微分变换被控变量的变化趋势,用来预测系统未来的动态响应。
D控制可以提高系统的响应速度和稳定性,减小超调,但如果微分参数设置不当,可能导致系统的噪声放大和过度补偿。
2. 参数优化技巧2.1 经验法则PID调节中的参数优化可以采用一些经验法则作为初步设置,例如:- 比例参数Kp:根据系统响应速度调整,若Kp过大将导致系统超调,若Kp过小则系统的响应速度较慢。
- 积分参数Ki:根据系统稳态误差调整,若Ki过大将导致系统超调和频率振荡,若Ki过小则无法完全消除稳态误差。
- 微分参数Kd:根据系统的抗干扰能力调整,若Kd过大将导致系统对噪声敏感,若Kd过小则无法有效预测系统未来的动态响应。
2.2 Ziegler-Nichols方法Ziegler-Nichols方法是一种经典的参数整定方法,它通过系统的临界响应特性来确定PID控制器的参数。
具体步骤如下:- 将比例参数Kp设置为零,逐渐增大,直到系统边界振荡的临界增益为Ku。
- 根据临界增益Ku,计算出比例参数Kp为Ku/2,积分时间Ti为临界振荡周期Tu*0.5,微分时间Td为临界振荡周期Tu*0.125。
PID参数调整方法

结果:起动时间长
分
值
MV
PV MV
积分值大、微分值大 结果:起动时间长
小
PV
︵
强
作
MV
用
嗼
积分值小、微分值小 结果:积分太强,微分动作 较弱,起动时产生超程。
小(弱作用)
PV
最佳PID值
MV
微分值
积分值小、微分值大 结果:由于积分、微分动作 均强,MV变化剧烈,PV值 难以稳定下来。
大(强作用)
2. 装置启动后根据PV(测量值,即控制对象实际值)调整参数的方法:
⑴ 超程大(超调、过冲大):见左图。 方法:先把P值调小(比例带变窄)
超程大
如果还产生超程,请把 *值调小(积分作用变强)
设定值
时间
同时按照 D=*÷(4~6)的公示改变微分时间
⑵ 起动时间过长(达到设定值太慢):见左图。 方法:把P值调小(比例带变窄) 把 *值调小(积分作用变强)
ffset(偏差)难以消除:见左图。 方法:把 *值调小(积分作用变强)
设定值
时间
偏差
⑷ 产生振荡:见左图。 方法:关掉积分与微分动作(均设为0) 如果还存在振荡,把P值调大 (调宽比例带)
设定值
振荡 时间
3. 最佳PID与变更为他PID值后的波形趋势比较:
【PV与MV的关系】 概念:PV即我们控制对象的变量,即测量值。如温度、压力、流量等。MV即操作量,是一个百分比值。简 单的含义就是PID控制输出的程度,以160°回转角度阀门为例,MV=50%就意味着我们给出的控制信号正 好使阀门开度为80 °,即最大开度的50%。
PV
PV
PV
MV
MV
MV
P=1.5%
PID控制器的原理与调节方法

PID控制器的原理与调节方法PID控制器是一种常见的控制算法,广泛应用于工业自动化系统中。
它是通过对反馈信号进行比例、积分和微分处理,来实现对被控对象的控制。
本文将介绍PID控制器的原理和调节方法,并探讨其在实际应用中的一些注意事项。
一、PID控制器原理PID控制器的原理基于三个基本元素:比例、积分和微分。
这三个元素分别对应控制误差的当前值、累积值和变化值。
PID控制器根据这三个元素的加权和来生成控制信号,以实现对被控对象的稳定控制。
1. 比例元素(P)比例元素是根据当前的控制误差进行调节的。
它直接乘以一个比例系数,将误差放大或缩小,生成相应的控制信号。
比例元素的作用是快速响应控制误差,但可能引起超调和震荡。
2. 积分元素(I)积分元素是对控制误差的累积值进行调节的。
它将误差进行积分,得到一个累积值,并乘以一个积分系数,生成相应的控制信号。
积分元素的作用是消除稳态误差,但可能导致系统响应过慢或产生超调。
3. 微分元素(D)微分元素是对控制误差的变化率进行调节的。
它将误差进行微分,得到一个变化率,并乘以一个微分系数,生成相应的控制信号。
微分元素的作用是预测误差的变化趋势,以提前调整控制信号,但可能引起过度调节和噪声放大。
通过调节比例、积分和微分元素的系数权重,可以优化PID控制器的响应速度、控制精度和抗干扰能力。
二、PID控制器调节方法PID控制器的调节方法通常包括经验法和自整定法两种。
1. 经验法经验法是基于经验和试错的方法,通过手动调节PID控制器的系数来实现对被控对象的控制。
具体步骤如下:步骤一:将积分和微分元素的系数设为零,只调节比例元素的系数。
步骤二:逐渐增大比例系数,观察系统的响应,并调整至系统稳定且响应时间较短。
步骤三:增加积分系数,减小系统的稳态误差,但要注意避免系统过调和震荡。
步骤四:增加微分系数,提高系统对突变的响应速度,但要避免过度调节和噪声放大。
2. 自整定法自整定法是基于系统辨识和参数整定理论的方法,通过对系统的频域或时域特性进行分析,自动计算得到PID控制器的系数。
PID参数的调整方法

PID参数的调整方法1. 经验调整法(Trial and Error Method):这是一种最简单、最常用的方法。
通过观察系统的响应特性,手动调整PID参数,直到满足要求的控制效果。
这种方法需要经验丰富的控制工程师,并且时间消耗较大。
2. Ziegler-Nichols 法则:该方法是由Ziegler和Nichols于1942年提出的,是一种经典的自整定方法。
该方法通过施加阶跃信号,观察系统的响应曲线,根据曲线的一些特性来确定PID参数。
包括:增益临界法(P-临界)、重频临界法(PI-临界)和周期振荡法(PID-临界)等三种方法。
3. 闭环试校法(Closed Loop Tuning Method):这是一种能够在线调整PID参数的方法。
通过在稳态和非稳态条件下,使系统自动识别其自身的响应特性,然后根据系统的性能指标进行PID参数调整。
常见的闭环试校方法有:积分分离法、自适应校正法、计算机仿真法等。
4. 频域设计法(Frequency Domain Design Method):这种方法主要是基于系统的频域特性进行PID参数的调整。
通过分析系统的频响曲线、相位裕度、增益裕度等参数,确定适合的PID参数。
常见的频域设计方法有:Nyquist曲线法、根轨迹法等。
值得注意的是,PID参数调整并不是一种一劳永逸的方法。
不同的系统、不同的控制目标需要不同的参数调整方法,而且系统的参数也可能随时间发生变化。
因此,需要控制工程师在实际的应用中,结合实际情况选择合适的PID参数调整方法,并根据系统的变化进行适时的参数调整,以保证系统的稳定性和性能。
PID调节参数及方法

PID调节参数及方法PID控制是一种常用的自动控制方法,它可以根据系统的实时反馈信息,即误差信号,来调整控制器的输出信号,从而实现系统的稳定性和性能优化。
PID调节参数是PID控制器中的比例系数、积分系数和微分系数。
调节这些参数可以达到所需的动态性能和稳态精度。
下面将介绍PID调节参数及常用的调节方法。
1.比例系数(Kp):比例系数用来调节控制器输出信号与误差信号的线性关系。
增大比例系数可以加快系统的响应速度,但可能会引起系统的超调和不稳定。
减小比例系数可以提高稳定性,但可能会导致系统的响应速度变慢。
调节比例系数的方法一般有经验法和试探法。
经验法:根据经验将比例系数初值设为1,然后逐渐增大或减小,观察系统的响应情况。
当增大比例系数时,如果系统的超调量明显增加,则应适当减小比例系数;相反,如果系统的超调量过小,则应适当增大比例系数。
反复调节,直到得到满意的响应。
试探法:根据系统的特性进行试探调节。
根据系统的频率响应曲线或步跃响应曲线,选择适当的比例系数初值,然后逐渐增大或减小,观察系统的响应。
如果系统的过冲量大,则应适当减小比例系数;如果系统的响应速度慢,则应适当增大比例系数。
反复试探调节,直到得到满意的响应。
2.积分系数(Ki):积分系数用来补偿系统的静差,增加系统的稳态精度。
增大积分系数可以减小系统的稳态误差,但可能会引起系统的震荡和不稳定。
减小积分系数可以提高稳定性,但可能会导致系统的静差增大。
调节积分系数的方法一般有试探法和校正法。
试探法:将积分系数初值设为0,然后逐渐增大,观察系统的响应。
如果系统的震荡明显增强,则应适当减小积分系数;相反,如果系统的响应速度慢,则应适当增大积分系数。
反复试探调节,直到得到满意的响应。
校正法:根据系统的静态特性进行校正调节。
首先将比例系数设为一个适当的值,然后减小积分系数,直到系统的静差满足要求。
这种方法通常用于对稳态精度要求较高的系统。
3.微分系数(Kd):微分系数用来补偿系统的过冲和速度变化,增加系统的相对稳定性。
PID调节方法

PID调节方法PID调节是一种广泛应用于工业过程控制的方法,通过测量控制系统的输出与期望值之间的误差,并根据误差的大小来调整控制系统的输入,以使输出与期望值尽可能一致。
PID调节的主要目标是快速、准确地调整系统的响应速度、稳定性和稳态精度。
下面将详细介绍PID调节的原理、调参方法和一些常见的应用。
1.PID调节的原理\[Output = K_p \cdot Error + K_i \cdot \int{Error}\ dt + K_d \cdot \dfrac{d(Error)}{dt}\]其中,\(K_p\)、\(K_i\)和\(K_d\)分别是比例、积分和微分参数。
比例项(P)通过根据误差的大小来调整输出,具有快速的响应速度和较小的超调。
积分项(I)通过累积误差来减小稳态误差,具有消除静差的作用。
微分项(D)通过对误差变化率的控制,可以避免输出的过度波动。
通过调整三个参数的大小和比例,可以在控制系统中实现适当的响应速度、稳定性和稳态精度。
2.PID调节的调参方法调参是PID调节的关键步骤,合适的参数设置可以使系统达到最佳的控制效果。
常见的PID调参方法有经验法、试验法和优化算法。
(1)经验法:根据经验公式设置PID参数。
这种方法基于经验,适用于一些简单的控制系统。
常见的经验法有经验公式法、手动调参法和Ziegler-Nichols法。
其中,经验公式法是根据控制对象的性质和要求选择合适的参数;手动调参法是通过观察系统响应和对参数的手动调整来获得合适的参数;Ziegler-Nichols法是一种经验调参法,通过对系统进行临界增益试验来确定PID参数。
(2)试验法:基于试验和观察系统响应的方法。
通过改变PID参数的值,观察系统的响应和性能指标,如超调量、调整时间和稳态误差等,来判断参数的合适性。
这种方法需要多次试验调整,比较耗时。
(3)优化算法:使用数学方法和计算机算法来最佳的PID参数。
常见的优化算法有基于遗传算法、粒子群算法和模拟退火算法等。
PID参数的调整方法

PID参数的调整方法PID控制器是一种广泛应用于工业自动化控制系统中的一种控制算法,通过对控制系统的反馈信号进行分析和调整,来实现对控制系统的稳定控制。
PID参数调整的目的是通过修改PID控制器的三个参数(比例增益P、积分时间Ti、微分时间Td),来达到最优的控制效果。
下面将介绍几种常见的PID参数调整方法。
1.经验法:经验法是一种直接根据经验经验的方法来调整PID参数的调整方法,是初学者常用的方法。
经验法的基本原理是通过系统的试验,根据实际的经验经验来进行参数的调整。
其流程主要包括以下几个步骤:1)选择一个适当的比例增益P,使系统能够快速而准确地响应,但不引起系统的振荡。
2)逐渐增加积分时间Ti,使系统的稳态误差趋于零。
3)逐渐增加微分时间Td,使系统的响应更加平稳。
2. Ziegler-Nichols 调参法:Ziegler-Nichols 调参法是一种基于试验的经验方法,适用于较简单的系统。
其主要思想是通过改变比例增益P、积分时间Ti、微分时间Td的值,找到系统的临界增益和周期,然后根据经验公式计算参数。
具体步骤如下:1)以较小的增量逐步增加比例增益P,使系统产生小幅振荡。
2)记录振荡周期Tosc和振幅Aosc。
3)根据经验公式计算PID参数:P = 0.6KoscTi = 0.5ToscTd = 0.125Tosc3. Chien-Hrones-Reswick 调参法:Chien-Hrones-Reswick 调参法是一种经验法,适用于非线性和阻滞比较大的系统。
该方法主要通过分析系统的特性来进行参数调整。
具体步骤如下:1)选择一个适当的比例增益P,使系统快速而准确地响应。
2)根据系统的阶跃响应曲线,确定时间常数τp(过程时间常数),并计算增益裕度Kr(Kr=τp/T p)。
3)根据Kr的值,选择合适的积分时间Ti和微分时间Td。
4.自整定法:自整定法是一种根据系统的特性自动调整PID参数的方法,适用于不断变化的复杂系统。
PID参数设置及调节方法

PID参数设置及调节方法1.什么是PID控制器?PID控制器是一种常用的闭环控制器,用于自动调节系统输出以使系统响应达到期望值。
PID控制器由三个部分组成:比例(Proportional),积分(Integral)和微分(Derivative)。
比例部分根据当前误差调整输出,积分部分根据过去误差的累积调整输出,微分部分根据误差的变化率调整输出。
2.PID参数PID控制器的性能取决于三个参数:比例增益(Kp)、积分时间(Ti)和微分时间(Td)。
PID参数越合理,系统响应越快、稳定。
3.PID参数设置方法设置PID参数的一般方法包括试验法、Ziegler-Nichols法和频率响应法等。
(1)试验法:通过对系统进行试验,手动调节PID参数,观察系统响应并调整参数至效果最佳。
试验法简单有效,但需要经验和时间。
(2) Ziegler-Nichols法:通过观察系统的临界响应,确定合适的PID参数。
Ziegler-Nichols法中共有三种方法:经验法、连续模型法和离散模型法。
这些方法根据系统的临界增益(Ku)和临界周期(Tu)计算PID参数。
经验法适用于简单的系统,连续模型法适用于具有较强非线性的系统,离散模型法适用于数字控制系统。
(3)频率响应法:通过对系统进行频率响应测试,根据系统的频率特性确定PID参数。
频率响应法需要用到系统的传递函数,适用于线性、时不变的系统。
4.PID参数调节方法当得到了初步的PID参数后,还需要进行参数调节才能达到期望的控制效果。
(1)手动调参法:根据系统的响应特性,手工调整PID参数。
首先将积分和微分增益设置为零,仅调整比例增益。
根据系统的超调量和调整时间,逐渐增加积分和微分增益,直到系统响应满足要求为止。
(2)自动调参法:利用自适应算法或优化算法自动调整PID参数。
自适应算法根据系统响应实时调整PID参数,如基于模型参考自适应控制(MRAC)算法。
优化算法通过目标函数最小化或优化算法最佳PID参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PID调节口诀
1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,
2. 一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:
温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,
液位L: P=20~80%,T=60~300s,
流量L: P=40~100%,T=6~60s。
3.PID控制的原理和特点
在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID调节。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
比例(P)控制比例控制是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。
为了消除稳态误差,在控制器中必须引入“积分项”。
积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。
这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。
因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。
自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。
其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。
解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。
所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。