高等数学同济大学第六版1-02-数列的极限课程

合集下载

高等数学同济大学第六版1-04-极限的运算-文档资料

高等数学同济大学第六版1-04-极限的运算-文档资料
常数因子可以提到极限记号外面.
推论2 如果lim f ( x)存在,而n是正整数,则 lim[ f ( x)]n [lim f ( x)]n .
求极限方法举例
例1

lim
x2
x
2
x3 1 3x
5
.

lim( x2 3x 5) lim x2 lim 3x lim 5
x2
x2
x2
x2
(lim x)2 3lim x lim 5 22 3 2 5 3 0,
(2)零是可以作为无穷小的唯一的数。
2.无穷小与函数极限的关系: 定理 : lim f ( x) A f (x) A (x),
其中( x)是自变量变化时的无穷小.
意义: 将一般极限问题转化为特殊极 限 — 无穷小 —的问题。
3.无穷小的运算性质:
定理. 在同一自变量的变化过程中,有限个无 穷小的代数和仍是无穷小.
n n
n
lim sin x 0, 函数sin x是当x 0时的无穷小. x0
又如,
函数 x2 1当 x2 1
x 时的极限为 1 ,
而当x 1 时的极限为 0 ,
函数 x2 1本身不是无穷小量, x2 1
而当x
1
时函数
x2 x2
1 才是无穷小量。 1
注意 (1)无穷小是变量,不是有穷小量,不能与很 小的数混淆;
x 1
x2
2x
3
lim
x 1
(x
3)( x
1)
x 1
x1 1
lim
x1 x1 x 3 2
消去零因子
例4

lim
x
2x3 7x3
3x2 4x2

高等数学-同济大学第六版--高等数学课件第一章函数与极限

高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数

高等数学同济第六版教材pdf

高等数学同济第六版教材pdf

高等数学同济第六版教材pdf 高等数学是大学理工科专业中必修的重要课程之一,对于培养学生的逻辑思维和分析问题的能力具有重要意义。

而同济大学的《高等数学》第六版教材在教学界具有很高的声誉和影响力。

对于学习这门课程的学生来说,拥有一本全面且详细的教材十分重要。

在这里,我将介绍并推荐同济第六版教材的PDF版本,帮助大家更好地学习高等数学。

第一部分:教材简介同济大学的《高等数学》第六版教材由同济大学出版社出版,作者为王立平等。

这本教材共分为上下两册,内容涵盖了高等数学的基础知识以及一些较为深入的内容。

教材的编写风格通俗易懂,逻辑清晰,注重理论与实践相结合。

并且,该教材还融入了一些生活中的实际问题,帮助学生将数学理论应用于实际情境中。

第二部分:教材内容概览《高等数学》第六版教材共包含十章内容,分别是函数与极限、微分学、微分中值定理与导数的应用、不定积分、定积分与柯西公式、定积分应用、微分方程、无穷级数、向量代数与空间解析几何、多元函数微分学与多元函数积分学。

每章内容都有详细的讲解和大量的习题,帮助学生巩固知识并提高解题能力。

第三部分:PDF版本介绍同济大学的《高等数学》第六版教材的PDF版本是在线阅读和下载的电子书籍。

相比于纸质版教材,PDF版本有以下几个优点:1. 方便携带:由于PDF版本可以保存在电子设备中,学生可以随时随地进行学习,解决了携带纸质教材的不便。

2. 搜索功能:PDF版本具有搜索功能,可以快速定位特定的知识点或者习题,提高学习效率。

3. 多媒体支持:PDF版本可以嵌入图片、音频和视频等多媒体元素,使学习过程更加生动有趣。

4. 环保节约:PDF版本无需印刷和运输,节约了纸张资源,符合现代社会的可持续发展理念。

第四部分:获取PDF版本方法要获取同济大学《高等数学》第六版教材的PDF版本,可以通过以下途径进行:1. 在线教育平台:许多在线教育平台提供免费或付费的电子教材下载服务,学生可以登录平台并搜索《高等数学》第六版教材进行获取。

高等数学同济教材第六版

高等数学同济教材第六版

高等数学同济教材第六版高等数学是大学数学重要的一门课程,对于理工科学生来说是必修内容。

同济大学出版社出版的高等数学同济教材第六版是一本经典教材,被广大学生和教师广泛使用。

本文将对该教材进行全面分析和评价。

一、教材概述高等数学同济教材第六版于20xx年出版,是在前五版的基础上进行了更新和修订的版本。

该教材内容全面、系统,逻辑清晰,覆盖了大部分高等数学的主要内容,包括数列与极限、连续函数与导数、定积分与反常积分等。

该教材的编写团队由同济大学数学系的教授和专家组成,他们在教学和研究领域积累了丰富的经验。

因此,该教材不仅准确地反映了高等数学的理论与实践,而且融入了许多实例和习题,以帮助学生巩固所学知识。

二、教材特点1. 知识点详细全面:高等数学同济教材第六版在每个章节中详细介绍了各个知识点,并结合实例进行讲解。

每个知识点都给出了定义、必要条件和相关定理,能够满足学生对于理论知识的要求。

2. 题目丰富多样:该教材提供了大量的习题和例题,在不同难度层次上进行了分级,从基础到提高,充分满足了学生的不同需求。

习题形式多样,有选择题、填空题、计算题等,可以培养学生的各种解题能力。

3. 理论与实践结合:高等数学同济教材第六版注重将理论与实践相结合,通过例题和习题的设计,引导学生将所学的知识应用到实际问题中。

这有助于学生更好地理解和掌握知识,并提升解决实际问题的能力。

三、教材优势1. 难度适中:高等数学同济教材第六版的难度设置适中,能够满足大多数理工科学生的学习需求。

教材章节之间难度递进,有利于学生渐进地学习和掌握知识。

2. 理论严谨性:教材中的理论推导和证明过程准确严谨,能够帮助学生建立起扎实的数学基础和严密的逻辑思维能力。

3. 重点突出:高等数学同济教材第六版对于重点知识点进行了重点突出,以加深学生对于重要概念和定理的理解。

同时,在对应关键知识点下辅以大量的习题,以帮助学生加深对该知识点的掌握。

四、教材不足1. 缺乏应用示例:尽管教材在理论与实践结合方面有很大的优势,但有时缺乏具体的实际应用示例,这对于一些学生来说可能不够直观。

同济高等数学第六版上册第一章ppt精编版

同济高等数学第六版上册第一章ppt精编版
k
k
lim x 2 k 1 1;
lim x 2 k 1
目录
上页
下页
返回
结束
内容小结
1. 数列极限的 “ – N ” 定义及应用 2. 收敛数列的性质: 唯一性 ; 有界性 ; 保号性; 任一子数列收敛于同一极限
目录
上页
下页
返回
结束
第三节 函数的极限
对 y f ( x) , 自变量变化过程的六种形式: ( 4) x ( 1 ) x x0
定义
如果对于任意给定的正数 (不论它多么
小),总存在正数 N ,使得对于 n N 时的一切 x n , 不等式 x n a 都成立,那末就称常数 a 是数列
x n 的极限,或者称数列 x n 收敛于a ,记为
lim x n a , 或 x n a ( n ).
n

n (1) n 1 n

n (1) n lim xn lim 1 n n n
目录 上页 下页 返回 结束
例2. 设 q 1 , 证明等比数列 1 , q , q 2 , , q n 1 , 的极限为0 . 证:
n 1
n 1
n 1
xn 0 q
,;
n ( 1) { n
n 1
}
3 , 3 3 , , 3 3 3 ,
1.数列对应着数轴上一个点列.可看作一 注 意: 动点在数轴上依次取 x1 , x 2 , , x n , .
x3
x1
x2 x4
xn
2.数列是整标函数 x n f ( n).
目录 上页 下页 返回 结束
第一章
( 2) x x 0 (3) x x0 本节内容 :

【同济第六版高数】第01章函数与极限教案与习题讲解(2)

【同济第六版高数】第01章函数与极限教案与习题讲解(2)

第一章 函数与极限§1. 2 数列的极限一个实际问题:如可用渐近的方程法求圆的面积?设有一圆, 首先作内接正四边形, 它的面积记为A 1;再作内接正八边形, 它的面积记为A 2;再作内接正十六边形, 它的面积记为A 3;如此下去, 每次边数加倍, 一般把内接正8×2n -1边形的面积记为A n . 这样就得到一系列内接正多边形的面积:A 1, A 2, A 3, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , A n , ⋅ ⋅ ⋅设想n 无限增大(记为n →∞, 读作n 趋于穷大), 即内接正多边形的边数无限增加, 在这个过程中, 内接正多边形无限接近于圆, 同时A n 也无限接近于某一确定的数值, 这个确定的数值就理解为圆的面积. 这个确定的数值在数学上称为上面有次序的数(数列) A 1, A 2, A 3, ⋅ ⋅ ⋅ , A n , ⋅ ⋅ ⋅当n →∞时的极限.数列的概念:如果按照某一法则, 使得对任何一个正整数n 有一个确定的数x n , 则得到一列有次序的数x 1, x 2, x 3, ⋅ ⋅ ⋅ , x n , ⋅ ⋅ ⋅这一列有次序的数就叫做数列, 记为{x n }, 其中第n 项x n 叫做数列的一般项. 数列的例子:{1+n n }: 21, 32, 43, ⋅ ⋅ ⋅ , 1+n n ⋅ ⋅ ⋅; {2n }: 2, 4, 8, ⋅ ⋅ ⋅ , 2n , ⋅ ⋅ ⋅;{n 21}: 21, 41, 81, ⋅ ⋅ ⋅ , n 21, ⋅ ⋅ ⋅ ; {(-1)n +1}: 1, -1, 1, ⋅ ⋅ ⋅ , (-1)n +1, ⋅ ⋅ ⋅ ;{n n n 1)1(--+}: 2, 21, 34, ⋅ ⋅ ⋅ , n n n 1)1(--+, ⋅ ⋅ ⋅ . 它们的一般项依次为1+n n , 2n , n 21, (-1)n +1, n n n 1)1(--+. 数列的几何意义:数列{x n }可以看作数轴上的一个动点, 它依次取数轴上的点x 1, x 2, x 3, ⋅ ⋅ ⋅ , x n , ⋅ ⋅ ⋅.数列与函数:数列{x n }可以看作自变量为正整数n 的函数:x n =f (n ),它的定义域是全体正整数.数列的极限:数列的极限的通俗定义:对于数列{x n }, 如果当n 无限增大时, 数列的一般项x n 无限地接近于某一确定的数值a , 则称常数a 是数列{x n }的极限, 或称数列{x n }收敛a . 记为a x n n =∞→lim . 如果数列没有极限, 就说数列是发散的.例如11lim =+∞→n n n ,021lim =∞→n n , 1)1(lim 1=-+-∞→nn n n ; 而{2n}, { (-1)n +1}, 是发散的.对无限接近的刻划:x n 无限接近于a 等价于|x n -a |无限接近于0,极限的精确定义:定义 如果数列{x n }与常a 有下列关系:对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切x n , 不等式|x n -a |<ε都成立, 则称常数a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为a x n n =∞→lim 或x n →a (n →∞). 如果数列没有极限, 就说数列是发散的.数列极限的几何解释: 例题:例1. 证明1)1(lim 1=-+-∞→nn n n . 分析: |x n -1|=nn n n 1|1)1(|1=--+-. 对于∀ε >0, 要使|x n -1|<ε , 只要ε<n 1, 即ε1>n . 证明: 因为∀ε >0, ∃]1[ε=N ∈N +, 当n >N 时, 有 |x n -1|=ε<=--+-n n n n 1|1)1(|1, 所以1)1(lim 1=-+-∞→nn n n . 例2. 证明0)1()1(lim2=+-∞→n n n . 分析: |x n -0||0)1()1(|2-+-=n n 11)1(12+<+=n n . 对于∀ε >0, 要使|x n -0|<ε , 只要ε<+11n , 即11->εn . 证明: 因为∀ε >0, ∃]11[-=εN ∈N +, 当n >N 时, 有 |x n -0|=ε<+<+=-+-11)1(1|0)1()1(|22n n n n , 所以0)1()1(lim 2=+-∞→n n n . 例3. 设|q |<1, 证明等比数列1, q , q 2, ⋅ ⋅ ⋅ , q n -1, ⋅ ⋅ ⋅的极限是0.分析: 对于任意给定的ε >0, 要使|x n -0|=| q n -1-0|=|q | n -1<ε ,只要n >log |q |ε +1就可以了, 故可取N =[log |q |ε +1]。

数列极限的定义1资料.

数列极限的定义1资料.

lim
n
xn
a
或 xn a (n )
此时也称数列收敛 , 否则称数列发散 . a xn a
(n N)
几何解释 :
(
a xN 1
)
xN2 a
即xn U ( a , )
(n N)
例如, 1 , 2 , 3 , , n , 2 3 4 n1
xn
n n 1
1
(n )


xn
举例
刘徽《九章算书注》中言:“割之弥细, 所失弥少,割之又割,以至于不可 分割,则与圆合体而无所失矣。”
割圆术,即是不断倍增内接正多边形的 边数,求出圆面积的方法。
定义: 自变量取正整数的函数称为数列, 记作

称为通项(一般项) .
若数列
及常数 a 有下列关系 :
当 n > N 时, 总有
则称该数列 的极限为 a , 记作
割圆术,即是不断倍增内接正多边形的 边数,求出圆面积的方法。
导入
刘徽的割圆术
刘徽《九章算书注》中言:“割之弥细, 所失弥少,割之又割,以至于不可 分割,则与圆合体而无所失矣。”
割圆术,即是不断倍增内接正多边形的 边数,求出圆面积的方法。
导入
刘徽的割圆术
刘徽《九章算书注》中言:“割之弥细, 所失弥少,割之又割,以至于不可 分割,则与圆合体而无所失矣。”
n (1)n1 n
1
(n )
2 , 4 , 8 , , 2n , xn 2n (n ) 发

xn (1)n1 趋势不定
例1. 已知Байду номын сангаас
证明数列
的极限为1.
证:
xn 1

《高等数学》(同济六版)教学课件★第1章.函数与极限(2)

《高等数学》(同济六版)教学课件★第1章.函数与极限(2)
跳跃间断点
左右极限都存在
第二类间断点
无穷间断点
振荡间断点
左右极限至少有一个不存在
在点
间断的类型
在点
连续的等价形式
思考与练习
1. 讨论函数
x = 2 是第二类无穷间断点 .
间断点的类型.
2. 设

提示:
3. P65 题 3 , *8

连续函数.
答案: x = 1 是第一类可去间断点 ,
P65 题*8 提示:
显然
正根 .
二、 连续与间断
一、 函数
三、 极限
习题课
函数与极限
第一章
一、 函数
1. 概念
定义:
定义域
值域
图形:
( 一般为曲线 )

函数为特殊的映射:
其中
2. 特性
有界性 ,
单调性 ,
奇偶性 ,
周期性
3. 反函数
设函数
为单射,
反函数为其逆映射
4. 复合函数
给定函数链
则复合函数为
作业 P65 4 ; 5
备用题 确定函数
间断点的类型.
解: 间断点
为无穷间断点;

为跳跃间断点.
一、连续函数的运算法则
第九节
二、初等函数的连续性
连续函数的运算与
初等函数的连续性
第一章
定理2. 连续单调递增函数的反函数也连续单调递增.
在其定义域内连续
一、连续函数的运算法则
, 使



内连续,
存在, 则
必在
内有界.
上连续 , 且恒为正 ,
例5. 设
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
a
x N 2 x3
a
x
当n N时, 所有的点 x n都落在 (a , a )内, 只有有限个 (至多只有N个) 落在其外.
数列收敛的表述——用逻辑符号:
lim xn a
n
0, N 0, n N , xn a . one of all , for every , exist .
Chap01 函数、极限与连续 不介绍、不需要掌握的内容:
1. P17 双曲函数_双曲正弦,双曲余弦,双曲正切;
P19 反双曲函数_...; 2. P55 柯西Cauchy收敛准则; 3. P72 一致连续性.
Chap01 函数、极限与连续
重点内容:
1.极限定义,极限运算法则,
极限存在准则,两个重要极限, 等价无穷小量;
( 1)n1 例如,当 n 无限增大时, xn 1 无限接近于 1. n
问题: “无限接近”意味着什么?如何用数学语言 刻划它.
xn 1 ( 1)
n 1
1 1 n n
给定 10 , 只要 n 10 时, 有 xn 1 10 ,
2 3
2 3
2 3
给定 10 , 只要 n 10 时, 有 xn 1 10 , 给定 104 , 只要 n 104 时, 有 xn 1 10 4 , 给定 0, 只要 n N 1
A2 1 3 显然n越大, An越接近于A. An R 2 3 2n1 sin
, An表示圆内接正—— 62n-1 边形面积, 刘徽
因此, 需要考虑当n时, An的变化趋势.
n 1 3 2
刘 徽 | 牟 合 方 盖
V牟 : V球 4 :
2. 曲边三角形的面积问题: y 与割圆问题 1 同样的是
2. 函数的连续性,连续函数的运算,闭区间上连
续函数的性质.
难点: 1.极限存在准则,等价无穷小量的使用; 2.函数的间断点,闭区间上连续函数性质的应用.
今日讲课内容: 数列极限定义 函数极限定义 长假后讲课内容: 极限运算法则 极限存在准则 两个重要极限
数列的极限
一. 概念的引入
二. 数列极限的概念
['epsi l n]
Greek alphabet : E
n ( 1) n 1 1. 下的杖长总和为X n 2 n ; 2 2 2 1 Xn 1 n 1 2
数 列
定义:按自然数1,2,3, 编号依次排列的一列数
x1 , x 2 , , x n ,
(1)
称为无穷数列, 简称数列. 其中的每个数称为数 列的项, x n 称为通项(一般项).数列(1)记为{ x n } .
n
或 x n a ( n ).
如果数列没有极限,就说数列是发散的.
xn a N定义 : lim n 0, N 0, 使n N时, 恒有 x n a .
; : 至少有一个或存在. 其中 : 每一个或任给的
几何解释:
a
x2 x1 x N 1
——曲边
yx
2
三角形的
面积 A 如何计算?
o
1
x
我们通常的做法是:将区间[0,1] n 等份,用小 矩形的面积来近似地表示小曲边梯形的面积.
不足近 似 (橘 色部分)
1 i 1 1 2 ( n 1) 3 n n n i 1 n( n 1)(2n 1) 1 1 1 (1 )(2 ) 3 6n 6 n n
}
2, 2 2 ,
, 2 2
2,
注意: 数列对应着数轴上一个点列.可看作一动 点在数轴上依次取 x1 , x2 ,, xn ,.
x3
x1
x 2 x4
xn
问 当 n 无限增大时, x n 是否无限接近于某一 题 确定的数值?如果是,如何确定?
二. 数列极限的定义
问题: 当 n 无限增大时, x n是否无限接近于某一 确定的数值?如果是,如何确定?
n 2 2 n 2 2 2 2
2
2
1 i 1 2 n 过剩近 3 n 似(橘色 i 1 n n 加蓝色 n( n 1)(2n 1) 1 1 1 (1 )(2 ) 部分) 3 6n 6 n n
可以看到,随着 n 的不断增大,不足近似 不断增加,过剩近似不断减少,越来越接 近于所要求的曲边三角形面积 A 的真值。
例如 2,4,8,,2 n ,; {2 n }
1 1 1 1 , , ,, n ,; { 1 } 2 4 8 2 2n
1,1,1, , ( 1) n 1 ,;
{(1)
n 1
}
n 1
1 4 n ( 1) n 1 2, , , , ,; 2 3 n
n ( 1) { n
三. 数列极限的性质
一、概念的引入
1. 如何用渐近的方法求圆的面积A? 用圆内接正多边形的面积近似圆的面积 A. 刘徽割圆术: A1“ 表示圆内接正 6边形面积, …割之弥细,所失弥 A2少,割之又割,以至于 表示圆内接正12边形面积,
不可割,则与圆周合体 A3 表示圆内接正24边形面积, 而无所失矣”
1 (1 6 1 (1 6
1 )(2 n 1 )(2 n
1 n ) A n 1 n ) A n
1 , 3 1 . 3
3. 截杖问题: “一尺之棰,日截其半,万世不竭” 1 第一天截下的杖长为X 1 ; 2 1 1 第二天截下的杖长总和 为 X2 2 ; 2 2

时,
有 xn 1 成立.
定义 1 如果对于任意给定的正数 (不论它多么 小), 总存在正数 N ,使得对于 n N 时的一切 x n , 不等式 x n a 都成立 , 那末就称常数 a 是数 列 x n 的极限, 或者称数列 x n 收敛于 a , 记为
lim x n a ,
相关文档
最新文档