数学建模运输优化模型

数学建模运输优化模型
数学建模运输优化模型

2012年数学建模培训第二次测试论文

题目运输优化模型

姓名马鹏

系(院)数学系

专业信息与计算科学、应用数学

2012 年8 月27 日

运输优化模型

[摘要]在社会的经济生产活动中,产地(厂家)与客户都会想方设法合理调拨资源、降低运输费用,实现利益最大化,完成资源优化配置。本文在运输费单价恒定,各产地发量一定,各客户的需求量也一定的条件下,努力解决多个特定目标实现问题。力求最优的运输方案。在确定问题为不平衡的运输问题时,先虚设一个产地,将问题装华为平衡运输问题,将问题转化为目标规划问题,按照目标规划问题的建模思想逐步建立模型。

本文的主要特点在于,将不平衡的线性规划问题合理地转化为目标规划问题,在求解时充分利用LINGO软件求解。

关键词: lingo 目标规划线性规划运输优化问题运费最少

一.问题重述

运输功能是整个现代物流七大基本功能之一,占有很重要的地位,运输成本在整个物流系统中所占的比重也很大,运输成本的有效控制对物流总成本的节约具有举足轻重的作用。通过物流流程的改善能降低物流成本,能给企业带来难以预料的效益,影响运输成本的因素是多样化、综合性的,这就要求对运输成本的分析要采用系统的观点,进行综合分析。由于影响物流运输成本的因素很多,控制措施既涉及运输环节本身,也涉及供应链的整个物流流程。要想降低物流运输成本,就必须运用系统的观点和方法,进行综合分析,发现问题,解决问题,使物流运输活动更加优化、物流运输成本更加合理化。

本文已知把一种产品从产地一、二运到客户1、2、3处,产地的发量、客户的收量及各产地到各客户的运输单价已知。本文要解决问题是:客户1为重要部门,必须全部满足需求量;满足客户2、3至少75%的的需求量;使总运费尽量少;从产地2到客户1的运量至少有1000个单位。

二.问题分析

根据题目中所给出的条件知:有现成的两个产地和需要产品的三个客户。且两个产地的产量不同,运送到各个客户的运费单价不同。三个客户所需的货物量不同。而三个客户对两个产地的总需求为2000+1500+5000=8500(单位),而两个产地总的发量为3000+4000=7000(单位),故需求量大于发量,属于需求量和发量不平衡问题。且提出四个不同的目标。故使用目标规划实现建模。首先设置目标约束的优先级,建立目标约束按目标的优先级,写出相应的目标规划模型 。再接着使用LINGO 软件实现模型的求解,并作出相应结果的分析。

三.模型假设

(1) 产品的运输过程不存在任何的导致产品发量和产品收量不相符的问题。产

品安全送到客户处。即有:产品的发量就等于产品的收量。 (2) 产品的运输单价始终恒定,不存在中途因为某种原因而导致产品的单价变

化问题。即运费只取决于所运输的产品的数量。

(3) 产地的生产量(即发量)有极限值,不可能超出本产地正常的生产范围。 (4) 客户需求量在一定的范围内或或是特定的具体值。

四.符号说明

基于题目及所要建立的模型所要用到的变量及参数,作如下符号说明: (1)产地用i A (2,1i =其中)表示,表示第产地i ;)2,1(=i a i 表示其发量; (2)客户用j B (其中j=1,2,3)表示,表示客户j;)3,2,1(=j b j 表示其需求量; (3)用ij c 1,2,3j 2;,1i ==其中表示产地i A (2,1i =其中)往客户j B (其中j=1,2,3)处运输产品的单位费用;

(4)用z 表示总的运输费用;

(5)用ij x 1,2,3j 2;,1i ==其中表示产地i A (2,1i =其中)运往客户j B (其

中j=1,2,3)处的物品数量;

五.模型建立

由发量和需求量可知,发量小于需求量,故我们需要添加一个虚拟产地(产地3),使各产地的总产量之和等于各客户的需求量之和。使问题为平衡的运输问题。且令虚拟产地到各客户的运费单价都为0,如表1所示: 客户1 客户2 客户3 发量 产地1 10 4 12 3000 产地2 8 10 3 4000 产地3 0 0 0 1500 需求量 2000 1500 5000 表1

至此,基于问题的分析与假设,将问题转化为目标规划问题。故分以下步骤进行模型的建立。

5.1设置目标约束的优先级

P1:客户1为重要部门,需求量必须全部满足; P2:满足其他两个客户至少75%的需要量; P3:使运费尽量少;

P4:从产地2到客户1的运量至少有1000个单位。 5.2建立目标约束

:1-d 达不到客户1的需求量 :1+d 超过客户1的需求量 :2-d 达不到客户2的需求量 :2+d 超过客户2的需求量 +3d :超过客户3的需求量

的需求量达不到客户3:3-

d -4d :达不到33000的运输费用

:4+d 超过33000的运输费用

:5-d 产地二达不到客户1的需求量 :5+d 超过客户1的需求量 5.3求最少费用 LINGO 程序: model :

sets:

supply/1,2,3/:a;

demand/1,2,3/:b;

link(supply,demand):c,x;

endsets

min=@sum(link(i,j):

c(i,j)*x(i,j););

@for(demand(j):

@sum(supply(i):

x(i,j))=b(j););

@for(supply(i):

@sum(demand(j):

x(i,j))<=a(i););

data:

a=3000,4000,1500;

b=2000,1500,5000;

c=10,4,12

8,10,3

0,0,0;

enddata

End

LINGO求解结果:

Global optimal solution found.

Objective value: 33000.00

Infeasibilities: 0.000000

Total solver iterations: 6

Variable Value Reduced Cost A( 1) 3000.000 0.000000 A( 2) 4000.000 0.000000 A( 3) 1500.000 0.000000 B( 1) 2000.000 0.000000 B( 2) 1500.000 0.000000 B( 3) 5000.000 0.000000 C( 1, 1) 10.00000 0.000000 C( 1, 2) 4.000000 0.000000 C( 1, 3) 12.00000 0.000000 C( 2, 1) 8.000000 0.000000 C( 2, 2) 10.00000 0.000000 C( 2, 3) 3.000000 0.000000 C( 3, 1) 0.000000 0.000000 C( 3, 2) 0.000000 0.000000

C( 3, 3) 0.000000 0.000000 X( 1, 1) 1500.000 0.000000 X( 1, 2) 1500.000 0.000000 X( 1, 3) 0.000000 2.000000 X( 2, 1) 0.000000 5.000000 X( 2, 2) 0.000000 13.00000 X( 2, 3) 4000.000 0.000000 X( 3, 1) 500.0000 0.000000 X( 3, 2) 0.000000 6.000000 X( 3, 3) 1000.000 0.000000

Row Slack or Surplus Dual Price 1 33000.00 -1.000000 2 0.000000 -10.00000 3 0.000000 -4.000000 4 0.000000 -10.00000 5 0.000000 0.000000 6 0.000000 7.000000 7 0.000000 10.00000

我们在将数据整理在一个表格中,如表2所示: 客户1 客户2 客户3 发量 产地1 1500 1500 0 3000 产地2 0 0 4000 4000 产地3 500 0 1000 1500 需求量 2000 1500 5000 表2

由上表可看出,最少的运输费用为33000,但第一个目标就不满足,用户1的需求的不到满足。

5.4按目标的优先级,写出相应的目标规划模型

客户1为重要部门,需求量必须全部满足;则目标可表示为:

}{

???=++++-

+-+2000

min 11221111d d x x d d 满足其他两个客户至少75%的需要量;则目标可表示为:

}{?

??=-++-

-

+2222212min 75

.0*1500d d d x x }

{???=-++-

+-

75

.0*5000min 3323123

d d x x d 从产地2到客户1的运量至少有1000个单位;则目标可表示为:

}

{???=-++-

+-

1000

min 55215d d x d 由最少费用,可建立目标约束为:

}

{?????=-+∑∑==-++

213

1

4

4433000min i j ij ij d d x c d 故模型建立为:

min z=-+---++++5

44332211)(d p d p d d p d p

4000

3000

232221131211<=++<=++x x x x x x

%

75*5000%75*15002

22313112212=+++=-+++-+-d d x x d d x x

3000*3

1

332

1

=-+∑∑

=+-=j ij ij

i d d x c

10004421=-++

-d d x

六.模型求解

使用LINDO 软件将模型求解如下: LINGO 程序: model : sets :

Level/1,2,3,4/:P,z,Goal;

s_Con_Nun/1,2,3,4,5/:dplus,dminus; supply/1,2/:a; customer/1,2,3/:b;

Routes(supply,customer):c,x; endsets data :

p=?,?,?,?; Goal=?,?,?,0; a=3000,4000;

b=2000,1500,5000; c=14,4,12 8,10,3; enddata

min =@sum (Level:P*z);

z(1)=dminus(1)

z(2)= dminus(2)+dminus(3);

z(3)=dplus(4);

z(4)=dminus(5);

@for(supply(i):

@sum(customer(j):x(i,j))<=a(i););

x(1,1)+x(2,1)+dminus(1)-dplus(1)=2000;

@for(customer(j):

@sum(supply(i):x(i,2))+dminus(2)-dplus(2)=1500*0.75;

@sum(supply(i):x(i,3))+dminus(3)-dplus(3)=1500*0.75;

@sum(Routes:c*x)+dminus(4)-dplus(4)=33000;

x(2,1)+dminus(5)-dplus(5)=1000;

@for(Level(i)|i#lt#@size(Level):

@bnd(0,z(i),Goal(i)););

End

LINGO求解结果:

No feasible solution found.

Infeasibilities: 1500.000

Total solver iterations: 5

Variable Value Reduced Cost

P( 1) 0.1000000+308 0.000000

P( 2) 0.1000000+308 0.000000

P( 3) 0.1000000+308 0.000000

P( 4) 0.1000000+308 0.000000

Z( 1) 0.000000 0.000000

Z( 2) 0.000000 0.000000

Z( 3) 13000.00 0.000000

Z( 4) 500.0000 0.000000

GOAL( 1) 0.1000000+308 0.000000

GOAL( 2) 0.1000000+308 0.000000

GOAL( 3) 0.1000000+308 0.000000

GOAL( 4) 0.000000 0.000000

DPLUS( 1) 0.000000 0.000000

DPLUS( 2) 375.0000 0.000000

DPLUS( 3) 3875.000 0.000000

DPLUS( 4) 13000.00 0.000000

DPLUS( 5) 0.000000 0.1000000+308

DMINUS( 1) 0.000000 0.1000000+308

DMINUS( 2) 0.000000

0.1000000+308

DMINUS( 3) 0.000000 0.1000000+308

DMINUS( 4) 0.000000 0.1000000+308

DMINUS( 5) 500.0000 0.000000

A( 1) 3000.000 0.000000

A( 2) 4000.000 0.000000

B( 1) 2000.000 0.000000

B( 2) 1500.000 0.000000

B( 3) 5000.000 0.000000

C( 1, 1) 14.00000 0.000000

C( 1, 2) 4.000000 0.000000

C( 1, 3) 12.00000 0.000000

C( 2, 1) 8.000000 0.000000

C( 2, 2) 10.00000 0.000000

C( 2, 3) 3.000000 0.000000

X( 1, 1) 1500.000 0.000000

X( 1, 2) 1500.000 0.000000

X( 1, 3) 0.000000 0.2000000+308

X( 2, 1) 500.0000 -0.1146654+297

X( 2, 2) 0.000000 0.1300000+309

X( 2, 3) 5000.000 0.000000

Row Slack or Surplus Dual Price

1 3000.000 -1.000000

2 0.000000 -0.1000000+308

3 0.000000 -0.1000000+308

4 0.000000 -0.1000000+308

5 0.000000 -0.1000000+308

6 0.000000 Infinity

7 -1500.000 Infinity

8 0.000000 -Infinity

9 0.000000 -Infinity

10 0.000000 -Infinity

11 0.000000 0.000000

12 0.000000 0.000000

13 0.000000 0.000000 14 0.000000 0.000000 15 0.000000 0.000000 16 0.000000 0.000000 17 0.000000 0.000000 18 0.000000 0.000000

19 0.000000 -0.1000000+308

20 0.000000 0.000000 21 0.000000 0.000000

22 0.000000 0.1000000+308

23 0.000000 0.000000 即:150011=x ,150012=x ,013=x ,50021=x ,022=x ,500023=x 。

七.模型分析

产地1A 运往客户1B 的货物量为1500个单位;产地1A 运往客户2B 的货物量为1500个单位;产地1A 不往客户3B 运输货物;产地2A 运往客户1B 的货物量为500个单位;产地2A 不往客户2B 运输货物。另一方面,由于收到生产能力的限制产地2A 运往客户3B 的货物量只能为4000个单位。即:150011=x ,150012=x ,

013=x ,50021=x ,022=x ,400023=x 。此时,最大限度地接近目标,使得最费用最小,为33000。

八.模型评价

优点:

1 将线性规划与目标规划联系,能体现二者的异同; ○

2采用的数学模型有成熟的理论基础,可信度高; ○

3建立的数学模型都有相应的专用软件支持,算法简便,编程实现简单; ○

4所得数据合理,可靠性很高,; ○

5本文建立的模型能与实际紧密联系,结合实际情况对所提出的问题进行模拟,

使模型更贴近实际,通用性、推广型更强。

缺点:

所建的模型只考虑具体运输的运输方案,而忽略了单价等对运输的影响,具有一定的局限性

参考文献:

[1]张干宗,线性规划[M],北京:武汉大学出版社,2004。

[2]朱洪文,宋立,王维国,应用统计[M],北京:高等教育出版社,2004。

数学建模-铺路问题的最优化模型

铺路问题的最优化模型 摘要 本文采用了两种方法,一种是非线性规划从而得出最优解,另一种是将连续问题离散化利用计算机穷举取最优的方法。 根据A地与B地之间的不同地质有不同造价的特点,建立了非线性规划模型和穷举取最优解的模型,解决了管线铺设路线花费最小的难题。 问题一:在本问题中,我们首先利用非线性规划模型求解,我们用迭代法求出极小值(用Matlab实现),计算结果为总费用最小为748.6244万元,管线在各土层中在东西方向上的投影长度分别为15.6786km,3.1827 km,2.1839 km,5.8887km,13.0661km。然后,我们又用穷举法另外建立了一个模型,采用C语言实现,所得最优解为最小花费为748.625602万元,管线在各土层中在东西方向上的投影长度分别为15.70km,3.20km,2.20km,5.90km,13.00km。 问题二:本问题加进了一个非线性的约束条件来使转弯处的角度至少为160度,模型二也是如此。非线性规划模型所得计算结果为最小花费为750.6084万元,管线在各土层中在东西方向上的投影长度分别为14.4566km,4.3591km,2.5984km,6.5387km,12.0472km。遍历模型所得最优解为最小花费为750.821154万元,管线在各土层中在东西方向上的投影长度分别为14.10km,4.30km, 2.70km,6.70km,12.20km。 问题三:因为管线一定要经过一确定点P,我们将整个区域依据P点位置分成两部分,即以A点正东30km处为界,将沙土层分成两部分。非线性规划模型最小花费为752.6432万元,管线在各土层中在东西方向上的投影长度分别为21.2613km,3.3459km,2.2639km,3.1288km,2.4102km,7.5898km。遍历模型最小花费为752.649007万元,管线在各土层中在东西方向上的投影长度分别为21.30km,3.30km,2.30km,3.10km,2.40km,7.60km。 关键词:非线性规划逐点遍历穷举法

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

数学建模最优路径设计

2015高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名 参赛队员(打印并签名) :1 2 指导教师或指导教师组负责人(打印并签名):

(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:2015年7 月27 日赛区评阅编号(由赛区组委会评阅前进行编号):

2015高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

数学建模面试最优化问题

C题面试时间问题 有4名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先找公司秘书初试,然后到部门主管处复试,最后到经理处参加面试,并且不允许插队(即在任何一个阶段4名同学的顺序是一样的)。由于4名同学的专业背景不同,所以每人在三个阶段的面试时间也不同,如下表所示(单位:分钟): 这4名同学约定他们全部面试完以后一起离开公司.假定现在时间是早晨8:00问他们最早何时能离开公司? 面试时间最优化问题 摘要: 面试者各自的学历、专业背景等因素的差异,每个面试者在每个阶段的面试时间有所不同,这样就造成了按某种顺序进入各面试阶段时不能紧邻顺序完成,即当面试正式开始后,在某个面试阶段,某个面试者会因为前面的面试者所需时间长而等待,也可能会因为自己所需时间短而提前完成。因此本问题实质上是求面试时间总和的最小值问题,其中一个面试时间总和就是指在一个确定面试顺序下所有面试者按序完成面试所花费的时间之和,这样的面试时间总和的所有可能情况则取决于n 位面试者的面试顺序的所有排列数 根据列出来的时间矩阵,然后列出单个学生面试时间先后次序的约束和学生间的面试先后次序保持不变的约束,并将非线性的优化问题转换成线性优化目标,最后利用优化软件lingo变成求解。 关键词:排列排序0-1非线性规划模型线性优化 (1)

(一)问题的提出 根据题意,本文应解决的问题有: 1、这4名同学约定他们全部面试完以后一起离开公司。假定现在的时间是早晨8:00,求他们最早离开公司的时间; 2、试着给出此类问题的一般描述,并试着分析问题的一般解法。 (二)问题的分析 问题的约束条件主要有两个:一是每个面试者必须完成前一阶段的面试才能进入下一阶段的面试(同一个面试者的阶段次序或时间先后次序约束),二是每个阶段同一时间只能有一位面试者(不同面试者在同一个面试阶段只能逐一进行)。 对于任意两名求职者P、Q,不妨设按P在前,Q在后的顺序进行面试,可能存在以下两情况: (一)、当P进行完一个阶段j的面试后,Q还未完成前一阶段j-1的面试,所以j阶段的考官必须等待Q完成j-1阶段的面试后,才可对Q进行j阶段的面试,这样就出现了考官等待求职者的情况。这一段等待时间必将延长最终的总时间。 (二)、当Q完成j-1的面试后,P还未完成j阶段的面试,所以,Q必须等待P完成j阶段的面试后,才能进入j阶段的面试,这样就出现了求职者等待求职者的情况。同样的,这个也会延长面试的总时间。 以上两种情况,必然都会延长整个面试过程。所以要想使四个求职者能一起最早离开公司,即他们所用的面试时间最短,只要使考官等候求职者的时间和求职者等候求职者的时间之和最短,这样就使求职者和考官的时间利用率达到了最高。他们就能以最短的时间完成面试一起离开公司。这也是我们想要的结果。 (三)模型的假设 1.我们假设参加面试的求职者都是平等且独立的,即他们面试的顺序与考官无关; 2.面试者由一个阶段到下一个阶段参加面试,其间必有时间间隔,但我们在这里假定该时间间隔为0; 3.参加面试的求职者事先没有约定他们面试的先后顺序; 4.假定中途任何一位参加面试者均能通过面试,进入下一阶段的面试。即:没有中途退出面试者; 5.面试者及各考官都能在8:00准时到达面试地点。 (四)名词及符号约束 1. aij (i=1,2,3,4;j=1,2,3)为求职者i在j阶段参加面试所需的时间 甲乙丙丁分别对应序号i=1,2,3,4 2.xij (i=1,2,3,4;j=1,2,3) 表示第i名同学参加j阶段面试的开始时间(不妨把早上8:00记为面试的0时刻) (2)

数学建模 四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

数学建模课程设计——优化问题

在手机普遍流行的今天,建设基站的问题分析对于运营商来说很有必要。本文针对现有的条件和题目的要求进行讨论。在建设此模型中,核心运用到了0-1整数规划模型,且运用lingo 软件求解。 对于问题一: 我们引入0-1变量,建立目标函数:覆盖人口最大数=所有被覆盖的社区人口之和,即max=15 1j j j p y =∑,根据题目要求建立约束条件,并用数学软件LINGO 对其模型求解,得到最优解。 对于问题二: 同样运用0-1整数规划模型,建立目标函数时,此处假设每个用户的正常资费相同,所以68%可以用减少人口来求最优值,故问题二的目标函数为:max=∑=15 1j j j k p 上述模型得到最优解结果如下: 关键字:基站; 0-1整数规划;lingo 软件

1 问题的重述.........................3 2 问题的分析.........................4 3 模型的假设与符号的说明...................5 3.1模型的假设...................... 5 3.2符号的说明...................... 5 4 模型的建立及求解...................... 5 4.1模型的建立...................... 5 4.2 模型的求解...................... 6 5 模型结果的分析.......................7 6 优化方向..........................7 7 参考文献..........................8 8、附录........................... 9

数学建模实验答案_简单的优化模型

实验03 简单的优化模型(2学时) (第3章简单的优化模型) 1. 生猪的出售时机p63~65 目标函数(生猪出售纯利润,元): Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640 其中,t≥0为第几天出售,g为每天价格降低值(常数,元/公斤),r为每天生猪体重增加值(常数,公斤)。 求t使Q(t)最大。 1.1(求解)模型求解p63 (1) 图解法 绘制目标函数 Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640 的图形(0 ≤t≤ 20)。其中,g=0.1, r=2。 从图形上可看出曲线Q(t)的最大值。 (2) 代数法 对目标函数 Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640 用MATLAB求t使Q(t)最大。其中,r, g是待定参数。(先对Q(t)进行符号函数求导,对导函数进行符号代数方程求解) 然后将代入g=0.1, r=2,计算最大值时的t和Q(t)。 要求: ①编写程序绘制题(1)图形。

②编程求解题(2). ③对照教材p63相关内容。 相关的MATLAB函数见提示。 ★要求①的程序和运行结果:程序: 图形: ★要求②的程序和运行结果:程序:

运行结果: 1.2(编程)模型解的的敏感性分析p63~64 对1.1中(2)所求得的符号表达式t(r,g),分别对g和r进行敏感性分析。 (1) 取g=0.1,对t(r)在r=1.5:0.1:3上求r与t的关系数据,绘制r与t的关系图形(见教材p65)。 (2) 取r=2,对t(g)在g=0.06:0.01:0.15上求g与t的关系数据,绘制g与t 的关系图形(见教材p65)。 要求:分别编写(1)和(2)的程序,调试运行。 ★给出(1)的程序及运行结果: 程序:

数学建模一等奖-输油管布置的优化模型

输油管布置的优化模型 摘要 本文建立了输油管线布置的优化问题.为了使两家炼油厂到铁路线上增建的车站的管线铺设费用最省,依据题目提供的有关数据及相关信息,设计出了总费用最少的输油管布置方案以及增建车站的具体位置,最终在讨论分析后,对模型做出了评价和推广. 模型Ⅰ:对问题1,根据两炼油厂到铁路线距离和两炼油厂间的不同距离以及共用管线与非共用管线的两种不同情况,给出了四种处理方案,并从图形上加以说明. 模型Ⅱ:对问题2,建立了最优模型.在单目标非线性规划模型中,将输油管道铺设分为两个过程.先将输油管道从城区铺设到城郊区域边界线上一点,再从该点铺设到铁路线上.这样,总的费用就化为这两个过程的管道费用之和.本模型兼顾到管线的铺设费用,在城区铺设管线需增加的拆迁和工程补偿等附加费用,运用Lingo9.0数学软件得到新增车站的建设位置、管线的具体布置方案及管线费用最小值281.6893万元. 模型Ⅲ:根据炼油厂的实际能力,借助题目提供的输送A、B两厂原油的管线铺设费用,在模型Ⅱ的基础上建立最优模型,给出管线最佳布置方案及相应的最省管线铺设费用为250.9581万元. 关键词:输油管共用管线非共用管线 Lingo9.0 非线性规划

一、问题重述 某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油。由于这种模式具有一定的普遍性,油田设计院希望建立管线建设费用最省的一般数学模型和方法。 现欲解决下列问题: 问题1:针对炼油厂到铁路线距离和两炼油厂间距离的各种不同情形,提出设计方案。在方案设计时,若有共用管线,考虑共用管线与非共用管线相同或不同的情形。 问题2:设计院目前需对一更为复杂的情形(两炼油厂的具体位置)进行具体的设计。两炼油厂的具体位置如下图: 若所有管线的费用均为7.2万元/千米。铺设在城区的管线还需增加迁拆和工程补偿等附加费用,为对此附加费用进行估计,聘请三家工程咨询公司(其中一具有甲级资质,公司二和公司三具有乙级资质)进行了估算。估算结果如下表所示: 工程咨询公司公司一公司二公司三附加费用(万元/千米)212420 要求我们为设计院给出管线布置方案及相应的费用。 问题3:在实际问题中,为进一步节省费用,可以根据炼油厂的生产能力,选用相应的油管。这时的管线铺设费用将分别降为输送A厂成品油为5.6万元/千米,输送B厂成品油为6.0万元/千米,共用管线费用为7.2万元/千米,拆迁等附加费用同上。请给出管线最佳布置方案及相应的费用。

数学建模常用算法模型

数学模型得分类 按模型得数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型得特征分: 静态模型与动态模型,确定性模型与随机模型,离散模型与连续性模型,线性模型与非线性模型等 按模型得应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等. 按建模得目得分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文得时候,就是按照建模得目得去分类得,并且就是算法往往也与建模得目得对应 按对模型结构得了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般就是离散模型与连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,就是通过计算机仿真来解决问题得算法,同时可以通过模拟可以来检验自己模型得正确性,比较好用得算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量得数据需要处理,而处理数据得关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论得问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法就是算法设计中比较常用得方法,很多场合可以用到竞赛中) 6、最优化理论得三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题就是用来解决一些较困难得最优化问题得算法,对于有些问题非常有帮助,但就是算法得实现比较困难,需慎重使用) 7、网格算法与穷举法 (当重点讨论模型本身而轻视算法得时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都就是从实际来得,数据可以就是连续得,而计算机只认得就是离散得数据,因此将其离散化后进行差分代替微分、求与代替积分等思想就是非常重要得) 9、数值分析算法 (如果在比赛中采用高级语言进行编程得话,那一些数值分析中常用得算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片得这些图形如何展示,以及如何处理就就是需要解决得问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握) 解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。 满足两个条件可用: ①数据样本点个数少,6-15个 ②数据呈现指数或曲线得形式 2、微分方程预测(高大上、备用) 微分方程预测就是方程类模型中最常见得一种算法。近几年比赛都有体现,但其中得要求,不言而喻.学习过程中 无法直接找到原始数据之间得关系,但可以找到原始数据变化速度之间得关系,通过公式推导转化为原始数据得关系。 3、回归分析预测(必掌握) 求一个因变量与若干自变量之间得关系,若自变量变化后,求因变量如何变化; 样本点得个数有要求: ①自变量之间协方差比较小,最好趋近于0,自变量间得相关性小; ②样本点得个数n〉3k+1,k为自变量得个数;

数学建模案例分析--最优化方法建模6动态规划模型举例(新)

§6 动态规划模型举例 以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。例如: (1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。 (2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。 (3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。使用时间俞长,处理价值也俞低。另外,每次更新都要付出更新费用。因此,应当如何决定它每年的使用时间,使总的效益最佳。 动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。 (1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。 (2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。各阶段的状态通常用状态变量描述。常用k x 表示第k 阶段的状态变量。n 个阶段的决策过程有1+n 个状态。用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。 (3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量。决策变量限制的取值范围称为允许决策集合。用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。 (4)策略 一个由每个阶段的决策按顺序排列组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为)}(,),(),({)(11n n k k k k k k x u x u x u x p ++=。在实际问题中,可供选择的策略有一定范围,称为允许策略集合。其中达到最优效果的策略称为最优策略。 (5)状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第1+k 阶段的状态变量1+k x 也被完全确定。用状态转移方程表示这种演变规律,写作(1k k T x =+k x ,)k u (6)最优值函数 指标函数是系统执行某一策略所产生结果的数量表示,是用来衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上。指标函数的最优值称为最优值函数。 下面的方程在动态规划逆序求解中起着本质的作用。

数学建模_电梯控制优化调度模型

太原工业学院数学建模竞赛 承诺书 我们仔细阅读了太原工业学院数学建模竞赛的竞赛规则与赛场纪律。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛的题目是(从A/B/C中选择一项填写):A [注]答卷评阅前由主办单位将论文第一页取下保存,同时在第一页和第二页建立“评阅 编号。 日期:2011 年5_月22 日

电梯调度方案问题 摘要 本文的目的是设计电梯控制的优化调度模型以解决师生等待时间长的问题。 前期准备阶段通过对教学主楼电梯的运行情况和学生使用电梯的情况进测量、调 查研究,得到建立模型的相关数据。通过对实际情况作合理假设,将问题归结为:(一)减少师生等待电梯、乘坐电梯以及爬行楼梯所需的时间; (二)使电梯的能量损耗尽可能小。综合以上两种因素建立出合理模型,制定出优化调度方案。 模型I对以上三项指标进行综合考虑,将等待电梯时间Ti 1,乘坐电梯时间Ti2,爬行楼梯时间T i 3按照一定比例量化,对目标函数T(C1, c 2,... c k)利用Visual C++面向对象程序设计语言进行枚举求解,穷尽各种情况,取得最优解。而模型U是对模型I的改进与完善,并将电梯能量损耗E k作为目标函数 s G,C2,llb k的一部分,求解出1号电梯在第8,10层停靠,2号电梯在第7, 9层停靠的结果。此结果基本上能够使师生的不满意度达到最小,同时保证电梯的能 耗相对较小。 我们认为,本文的模型假设简单但合乎情理,利用Visual C++面向对象程 序设计语言,对各种情况进行枚举,所得到的结果具有科学性。在模型讨论与分析阶段中,本文根据实际情况对电梯的优化调度方案进行理论剖析,并对极端情 况进行分解。从数据处理方面,本文给出了模型参数灵敏度分析,提高结果的可信度。如果要考虑更复杂的情况,该模型也可以对假设和其他各方面进行改进, 容易进行推广。因此这是一个比较理想的优化模型

数学建模 田径选拔比赛安排优化模型

楚雄师范学院 2013年数学建模培训第一次预赛论文题目田径赛安排优化模型 姓名马杰 系(院)数学系 专业信息与计算科学 年月日

田径赛安排优化模型 摘要:本文通过对某校田径选拔赛比赛日程安排表进行分析规划,并针对参赛项目即跳高、跳远、标枪、铅球、100米和200米短跑,在规定每个选手至多参加三个项目的比赛,有七名选手报名的情况下,设计比赛日程安排表,使得在尽可能短的时间内完成比赛,找出最小目标函数和各项约束条件的数学表达式,建立数学规划模型。模型的求解过程中,采用数据结构图解法及数学软件LINGO等编写相应的程序,对建立的模型进行求解,得出最优结果。 关键字:LINGO数学软件离散数学0-1变量线性规划数据结构

一、问题重述 假设某校的田径选拔赛共设六个项目的比赛,即跳高、跳远、标枪、铅球、100米和200米短跑,规定每个选手至多参加三个项目的比赛,现有七名选手报名,选手所选项目如表所示。现在要求设计一个比赛日程安排表,使得在尽可能 二、问题分析 根据条件分析:七名选手参加的比赛项目都没超过三个,说明他们所报的项目都可以比赛。 对于这七个同学参加六项田径选拔比赛,要使比赛时间在短时间内尽可能完成比赛,主要考虑每个项目尽能在同时间内可以同时进行几个足够多项目的比赛,并且保证每个选手都有时间参加每个项目。我们最容易想到的一个办法就是穷举法,这种赛日安排方法共有6!=720种,显然不能用这种方法解决这类题。 根据条件,我们可以重新把上表重新排列出每个项目分有哪些项参加(如下表),通过下表我们就可以准确的找出相关的限制条件:每个时间段只能参加一项目,不能同时参加几个项目(例赵宁在同一时刻参加了跳高,就不能参加跳远和铅球)。我们可以用1 0-变量表示每个项目是否在同一段时间是否进行,从

数学建模工厂最优生产计划模型

数学建模与数学实验 课程设计报告 学院数理学院专业数学与应用数学 班级学号 学生姓名指导教师 2015年6月 工厂最优生产计划模型 【摘要】本文针对工厂利用两种原料生产三种商品制定最优生产计划的问题,建立优化问题的线性规划模型。在求解中得到了在不同生产计划下收益最优化的各产品的产量安排策略、最大收益,以及最优化生产计划的灵敏度分析。 对于问题一,通过合理的假设,首先根据题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX。由题目中所得,工厂原料及价格的约束条件下运用lingo 软件算出最优生产条件下最大收益为1920元,其次是不同产品的产量。 对于问题二,灵敏度分析是研究当目标函数的费用系数和约束右端项在什么范围变化时,最优基保持不变。对产品结构优化制定及调整提供了有效的帮助。根据问题一所给的数据,运用lingo软件做灵敏度分析。 关键词:最优化线性规划灵敏度分析 LINGO 一、问题重述 某工厂利用两种原料甲、乙生产A1、A2、A3三种产品。如果每月可供应的原料数量(单位:t),每万件产品所需各种原料的数量及每万件产品的价格如下表所示:(1)试制定每月和最优生产计划,使得总收益最大; (2)对求得的最优生产计划进行灵敏度分析。

模型假设 (1) 产品加工 时不考虑 排队等待 加工的问 题。 (2)假设工厂的原材料足够多,不会出现原材料断货的情况。 (3)忽略生产设备对产品加工的影响。 (4)假设工厂的原材料得到充分利用,无原材料浪费的现象。 三、符号说明 Xij(i=1,2,;j=1,2,3;)表示两种原料分别生产出产品的数量(万件); Max为最大总收益; A1,A2,A3为三种产品。 四、模型分析 问题一分析:对于问题一的目标是制定每月和最优生产计划,求其最大生产效益。由 题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX。由题目中所得, 工厂原料工厂原料及价格的约束,列出约束条件。 问题二分析:研究当目标函数的费用系数和约束右端项在什么范围变化时,最优基保 持不变。通过软件数据进行分析。 五、模型建立与求解 问题一的求解: 建立模型:

数学建模常用模型有哪些

数学建模常用模型有哪些??? 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题 属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉 及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计 中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是 用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛 题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只 认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常 用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调

数学建模常用算法模型

数学建模常用算法模型文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法

(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法

全国数学建模竞赛易拉罐形状和尺寸的最优设计模型全国一等奖

易拉罐形状和尺寸的最优设计模型 (2006年获全国一等奖) 摘 要:本文主要考虑当容积一定时,如何设计易拉罐的形状和尺寸,使得所用材料最省。首先对易拉罐进行测量,对问题二、问题三、问题四建立数学模型,并利用LINGO 软件结合所测的数据进行计算,得出最优易拉罐模型的设计。 模型一,对正圆柱体形状的易拉罐,当容积一定时,以材料体积最小为目标,建立材料体积的函数关系式,并通过求二元函数条件极值得知,当圆柱高为直径两倍时,最经济,并用容积为360 ml 进行验算,算得mm H 63.122=,mm R 58.30=与市场上净含量为355ml 的测得的数据基本接近。 模型二,对上面部分为正圆台、下面部分为正圆柱的易拉罐同样在容积量一定时,考虑所用材料最省,建立优化模型,并通过LINGO 软件仍用容积为360 ml 进行验算,算得mm R 58.30=,mm r 33.291=,mm h 94.81=,mm h 8.1112=,高之和约为直径的两倍。 模型三,考虑到罐底承受的压力,根据力学上横梁支点的受力与拱桥设计的原理,设计底部支架(环形)与一定弧度的拱面,同时利用黄金分割,将直径与高之比设为0.618,建立容积量一定时材料最省的优化模型,再将有关数据代入计算,得到结论,现行易拉罐的设计从某种意义上不乏是最优设计。 关键词:优化模型 易拉罐 非线性规划 正圆柱 正圆台 一、问题重述 销量很大的饮料容器(即易拉罐)的形状和尺寸几乎都是一样的。这应该是某种意义下的最优设计,而不是偶然。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。 现针对以下问题,研究易拉罐的形状和尺寸的最优设计问题。 问题一:取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是测量得到的,那么必须注明出处。 问题二:设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。 问题三:设易拉罐的中心纵断面如图1所示,即上面部分是一个正圆台,下面部分是一个正圆柱。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸。 问题四:利用所测量的易拉罐的洞察和想象力,做出关于易拉罐形状和尺寸的最优设计。 同时,以做本题以及以前学习和实践数学建模的亲身体验,写一篇短文(不超过1000字,论文中必须包括这篇短文),阐述什么图1 是数学建模、它的关键步骤,以及难点。

相关文档
最新文档