系统的能控性、能观测性、稳定性分析
第三章 线性系统的能控性与能观测性

。 显见第二、三行元素相同。 rank Qk 2 3 故不能控。
例6 桥式电路图中,若取电感L的电流 i及电容 L C的电压 v 为状态变量,取 为输出变量,则系 iL c 统方程为:
R R 1 R R iL ( 1 2 3 4 ) d L R1 R2 R3 R4 1 dt ( R2 R4 ) vC C R1 R2 R3 R4 1 R3 1 R1 ( ) iL L R1 R2 R3 R4 L u 1 1 1 ( ) vC 0 C R1 R2 R3 R4
1 0 ~ 2 A n 0 中,输入矩阵
~ b11 ~ ~ b21 , B ~ bn1
~ b12 ~ b21 ~ bn 2
~ b1r ~ b2r ~ bnr
(3.4)
.
表明: 状态变量 , x1 都可通过选择输入u而 x2 由始点 终点完全能控。 输出y只能反映状态变量 ,所以 不能观测。 x x
2
1
完全能控,不完全能观系统!
例3: 桥式电路如图所示, 选取电感L的电流为 为 状态变量, i (t ) x(t )
u (t ) 为电桥输 入,输出
量为 y (t ) 。 解: 从电路可以直观看出,如果 x(t 0 ) 0 u (t ,则不论 如何 ) 选取,对于所有 ,有 t 0 ,即ut(t)不能控制x(t)的变化, x( ) 0 t 故系统状态为不能控。 若u(t)=0,则不论电感L上的 x(t 0 ) 初始电流 取为多少, 对所有时刻 t 都恒有y(t)=0,即状态x(t)不能由输出y(t)反映,故 t0 系统是状态不能观测的。 该电路为状态既不能控,也不能观测系统。
系统的能控性能观测性稳定性分析报告

实 验 报 告课程 线性系统理论基础 实验日期 年 月 日专业班级 学号 同组人实验名称 系统的能控性、能观测性、稳定性分析及实现 评分批阅教师签字一、实验目的加深理解能观测性、能控性、稳定性、最小实现等观念。
掌握如何使用MATLAB 进行以下分析和实现。
1、系统的能观测性、能控性分析;2、系统的稳定性分析;3、系统的最小实现。
二、实验容(1)能控性、能观测性及系统实现(a )了解以下命令的功能;自选对象模型,进行运算,并写出结果。
gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ;(b )已知连续系统的传递函数模型,182710)(23++++=s s s a s s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性;(c )已知系统矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2101013333.06667.10666.6A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110B ,[]201=C ,判别系统的能控性与能观测性;(d )求系统1827101)(23++++=s s s s s G 的最小实现。
(2)稳定性 (a )代数法稳定性判据 已知单位反馈系统的开环传递函数为:)20)(1()2(100)(+++=s s s s s G ,试对系统闭环判别其稳定性(b )根轨迹法判断系统稳定性 已知一个单位负反馈系统开环传递函数为)22)(6)(5()3()(2+++++=s s s s s s k s G ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。
(c )Bode 图法判断系统稳定性已知两个单位负反馈系统的开环传递函数分别为ss s s G s s s s G 457.2)(,457.2)(232231-+=++= 用Bode 图法判断系统闭环的稳定性。
(d )判断下列系统是否状态渐近稳定、是否BIBO 稳定。
控制系统的能控性和能观测性

解
根据定理3-5, 系统(1)能控 ; 系统(2)不能控
(定理(3-4)、定理(3-5)不仅可以判断系统能控性,而且对 于不能控的系统,可以知道哪个状态分量不能控。) 说明:1.上面通过几个定理给出判断系统能控性的判据。虽然它们 的表达形式、方法不同,但是,在判断线性定常系统能控性时是等 价的。
2.在线性连续定常系统中,由于能达性和能控性是等价的,因此, 能控性判据同样可以判断能达性。
一般情况下,系统方程可以表示为
Ax Bu x y Cx
(1)
状态能控与否,不仅取决于B 阵(直接关系),还取决于A 阵(间 接关系)。 系统能观测问题是研究测量输出变量 y 去确定状态变量的问题。
y(t )为输出量,两个电 例3-3 电路如下图所示。选取 u(t )为输入量, 感上的电流分别作为状态变量,则系统方程为
λi Ji 0
1 λi
0 1 阵 B 中与每一个约当子块最下面 一行对应行的元素不全为零。
例3-7 有如下两个线性定常系统,判断其能控性。
0 4 1 0 (1) x 0 4 0 x 4 u 0 2 0 3 0 4 1 4 2 (2) x 0 4 0 x 0 0 u 0 2 0 3 0
3)只有整个状态空间中所有的有限点都是能控的,系统才是能 控的。 4)满足(3)式的初始状态,必是能控状态。
x(0) e Aτ Bu( τ ) d τ
0
t1
(3)
5)当系统中存在不依赖于 u(t ) 的确定性干扰 f (t ) 时,f (t ) 不会改 变系统的能控性。 Ax Bu f (t ) x (4)
线性离散系统的分析

§10-4 线性离散系统的分析前面讨论了线性离散系统的数学模型:一种是输入输出模型,一种是状态空间模型。
本节将要根据这些数学模型来分析线性离散系统的特性,例如稳定性、能控性和能观测性。
一、稳定性稳定性是动力学系统的一个十分重要的性质。
本节只讨论线性定常系统的稳定性,而时变系统的稳定性问题是比较复杂的。
有两大类的稳定性分析方法。
一类是分析离散系统极点在z 平面内的位置。
一个闭环系统是稳定的充分必要条件是其特征方程的全部根都必须分布在z 平面内以原点为圆心的单位圆内。
当然,我们可以用直接的方法求出特征方程,然后再求出其根(例如用贝尔斯特-牛顿叠代法)。
但是在工程上希望不经过解特征方程而找到一些间接的方法,例如代数判据法,基于频率特性分析的奈奎斯特法,或通过双线性变换把z 平面问题变成s 平面的问题,再用连续系统的稳定判据。
另一类研究稳定性的方法是李雅普诺夫第二方法,它规定了关于稳定性的严格定义和方法。
本节只介绍代数判据法。
Routh 、Schur 、Cohn 和Jury 都研究过相类似的稳定判据。
如果已知一个系统的特征多项式()n n na za z a z A +++=- 110 (10.87)Jury 把它的系数排列成如下的算表:11110a a a a a a a a a a nn n nn n =--α―――――――――――――――――――10111101211111110-------------=n n n n n n n n n n n n n a a aaaa a a α――――――――――――――――――――――――――――――――――――――10111110a a a a 10111a a =α―――――――――――――――――――0a 其中kk i k kik k k i k i a a a a a a 01=-=--α表中第一行和第二行分别是(10.87)中的系数按正序和倒序排列的。
计算机控制技术-13离散系统的能控(观测)性及稳定性

rank
CG
CG 2
2 rank 1
4
0 2 0
0 0 2 3 0
系统状态 不完全能观测
0 4 0
3/3/2020
12
3、能观测性判别准则二(标准型法) 同线性连续定常系统的标准型判据:
1)对角线标准型:特征值互异时,C中不包含元素全为0的列; 重特征根时,一定不可观测。
(1)
如果G非奇异阵,则式(1)是系统状态完全能控的充分必要条件; 如果G是奇异阵,则式(1)是系统 状态完全能控的充分条件。
3/3/2020
3
线性定常离散系统 x(k 1) Gx(k) Hu(k)
k 1
解为 x(k) G k x(0) G ki1Hu(i) i0
n1
端状态的控制序列是否存在,不涉及具体转移几步。 2)对于n阶SI定常系统,若在第n步上不能将初始状态(零
态)转移到零态(任意终端状态),则在n+1及以后的任 何一步都不能转移。
[例]:系统的状态方程如下,试判定系统的状态能达性和能控性。
x1(k 1) 1 0 0 x1(k) 1
所以 x(n) G n x(0) G ni1Hu(i) i0
证明:对能达性,有 x(0) 0
n1
所以 x(n) G ni1Hu(i) G n1Hu(0) GHu(n 2) Hu(n 1) i0
u(n 1)
H GH Gn1H
统,也可能可控。所以:可达系统一定可控,可控系统
不一定可达。
结论2:如果一个离散时间系统为连续时间线性时不变系统的时
(整理)控制系统的能控性和能观测性

第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。
可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。
二:线性定常系统能控性判据设系统动态方程为:x 2不能控y2则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x设初始时刻为t 0=0,对于任意的初始状态x(t 0),有: 根据系统能控性定义,令x(t f )=0,得:即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。
判据1:线性定常系统状态完全能控的充分必要条件是:⎰-+=ft f f f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ⎰--=f t d Bu x 0)()()0(τττφ∑-=-==-1)()(n k kk A A eτατφτ∑⎰⎰∑-=-=-=-=101)()()()()0(n k t k k t n k k k ff d u B A d Bu A x ττταττταkt k u d u f=⎰)()(ττταUQ u u u u B A B A AB B Bu A x c k n n k kk -=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。
对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b] 如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。
现代控制理论能控性和能观测性

I A1
B
I A
B f
(3-21)
式中B 为元素埏是I A的伴随矩阵。方程(3-21)两端右 乘 I A得:
BI A f I
(3-22)
由于 B 的元素 I A代数余子式,均为 n 1 次多项式,
故据矩阵加法运算规则,可将其分解为n个矩阵之和:
B
B n1 n1
B n2 n2
Bn1 I
Bn2 Bn1A an1I
Bn3 Bn2A an2I
M
B0 B1A a1I
B0A a0I
Bn1An An
Bn2An1 Bn1An an1An1
Bn3An2 Bn2An1 an2An2 M
0 1 M 1 -2 M 2 3
S2 G2 G2 L 2G2 0 0 M 0 1 0 M 0
0 M 0 0 1 M 1 -2
显见出现全零行,rankS2 2 3 ,故不能控。
多输入系统能控阵 S2,其行数小于列数,在计算列写能控阵时, 若有显时见可通过矩计S阵2算的秩为Sn的2,秩S便T2 是不否必为把n来判矩断S阵2多的输所入有系列统都的写能出控。性。 这只是需因计为算,一当次n阶非行奇列S异式2 时即,可确定能必S控非2 性奇ST2,异但,在而计算 为S方2 S阵T2 ,
系统矩阵 的阶数,或系统特征方程的阶次数。
以上研究假定了终态 x 0 0。若令终态为任意给定状态xn
则方程(3-2)变为:
n 1
nx 0 x n n1igu i
i0
(3-9)
方程两端左乘 n ,有
x 0-nx n 1g 2g L
u0
ng
u 1
M
u n 1
(3-10)
系统的能控性能观测性稳定性分析

系统的能控性能观测性稳定性分析1. 能控性(Controllability)能控性是指系统输出能否通过适当的输入方式对系统进行控制。
如果一个系统是能控的,意味着通过控制器的输入信号,我们能够将系统的输出发展到我们所期望的状态。
对于一个线性时不变(LTI)系统,能控性可以通过判断其控制矩阵的秩来确定。
控制矩阵(也称为控制可达矩阵)是由系统的状态方程和控制器的输入方程组成的。
如果控制矩阵的秩等于系统的状态数量,则系统是能控的;否则,系统是无法被完全控制的。
能控性的分析可以帮助我们选择合适的控制策略和控制器设计。
当系统的能控性差时,我们可能需要通过增加或修改系统的状态变量或控制器的输入方式来提高系统的能控性。
2. 能观测性(Observability)能观测性是指系统的内部状态能否通过系统的输出信号来判断。
一个能观测的系统意味着我们可以通过观测系统的输出来估计系统的状态。
对于一个线性时不变系统,能观测性可以通过判断其观测矩阵的秩来确定。
观测矩阵(也称为观测可达矩阵)是由系统的状态方程和输出方程组成的。
如果观测矩阵的秩等于系统的状态数量,则系统是能观测的;否则,系统的一些状态是无法通过输出来观测到的。
能观测性的分析可以帮助我们选择合适的观测器设计,以实现对系统状态的估计。
当系统的能观测性差时,我们可能需要增加或改变系统的输出方程来提高系统的能观测性。
3. 稳定性(Stability)稳定性是指系统在受到扰动后是否会逐渐恢复到原来的状态。
对于线性时不变系统,稳定性可以分为几种类型:零状态稳定、有限状态稳定和无限状态稳定。
零状态稳定(Zero-state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到零。
有限状态稳定(Finite state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到一些有限值。
无限状态稳定(Infinite state stability)是指当系统受到初始条件扰动时,输出信号会在无限时间内收敛到一些有限值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
Lyap:解lyapunov方程
A=[0 0 -6;1 0 -11;0 1 -6];
B=[1 2 3;4 5 6;7 8 0];
X=lyap(A,B)
X =
-3.2833 -3.9000 -0.1167
-5.5000 -8.6500 -0.4000
0.2833 -0.0000 -0.0333
五、程序源代码
1.(a)了解以下命令的功能;自选对象模型,进行运算,并写出结果。
gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal;
gram:求解用状态空间表示的系统的可控或客观Gramian矩阵
num=[6 -0.6 -0.12];
Байду номын сангаасden=[1 -1 0.25 0.25 -0.125];
A=[-2.2 -0.7 1.5 -1;0.2 -6.3 6 -1.5;0.6 -0.9 -2 -0.5;1.4 -0.1 -1 -3.5]
B=[6 9;4 6;4 4;8 4];
Tc=ctrb(A,B);
rank(Tc)
A =-2.2000 -0.7000 1.5000 -1.0000
0.2000 -6.3000 6.0000 -1.5000
已知两个单位负反馈系统的开环传递函数分别为
用Bode图法判断系统闭环的稳定性。
(d)判断下列系统是否状态渐近稳定、是否BIBO稳定。
三、实验环境
1、计算机120台;
2、MATLAB6.X软件1套。
四、实验原理(或程序框图)及步骤
1、系统能控性、能观性分析
设系统的状态空间表达式如(1-1)所示。
系统的能控性、能观测性分析是多变量系统设计的基础,包括能控性、能观测性的定义和判别。
Discrete-time transfer function.
Lc =10.7651 7.8769 3.6759 -0.0000
7.8769 10.7651 7.8769 1.8379
3.6759 7.8769 10.7651 3.9385
-0.0000 1.8379 3.9385 2.6913
Ctrb:计算矩阵可控性
H=tf(num,den,'Ts',0.1)
Lc=gram(ss(H),'c')
H = 6 z^2 - 0.6 z - 0.12
-------------------------------------
z^4 - z^3 + 0.25 z^2 + 0.25 z - 0.125
Sample time: 0.1 seconds
系统状态能控性定义的核心是:对于线性连续定常系统(1-1),若存在一个分段连续的输入函数u(t),在有限的时间(t1-t0)内,能把任一给定的初态x(t0)转移至预期的终端x(t1),则称此状态是能控的。若系统所有的状态都是能控的,则称该系统是状态完全能控的。
能控性判别分为状态能控性判别和输出能控性判别。
Ctrbf:对线性系统进行能控性分解
二、实验内容
(1)能控性、能观测性及系统实现
(a)了解以下命令的功能;自选对象模型,进行运算,并写出结果。
gram, ctrb, obsv, lyap, ctrbf, obsvf,minreal;
(b)已知连续系统的传递函数模型, ,当a 分别取-1,0,1时,判别系统的能控性与能观测性;
(c)已知系统矩阵为 , , ,判别系统的能控性与能观测性;
状态能观测性也分为一般判别和直接判别法,后者是针对系统的系数阵A是对角标准形或约当标准形的系统,状态能观性判别时不用计算,应用公式直接判断,是一种直接简易法;前者状态能观测性分为一般判别是应用最广泛的一种判别法。
状态能观测性判别式为:
(2-3)
系统的传递函数阵和状态空间表达式之间的有(1-2)式所示关系。已知系统的传递函数阵表述,求其满足(1-2)式所示关系的状态空间表达式,称为实现。实现的方式不唯一,实现也不唯一。其中,当状态矩阵A具有最小阶次的实现称为最小实现,此时实现具有最简形式。
状态能控性分为一般判别和直接判别法,后者是针对系统的系数阵A是对角标准形或约当标准形的系统,状态能控性判别时不用计算,应用公式直接判断,是一种直接简易法;前者状态能控性分为一般判别是应用最广泛的一种判别法。
输出能控性判别式为:
(2-1)
状态能控性判别式为:
(2-2)
系统状态能观测性的定义:对于线性连续定常系统(2-1),如果对t0时刻存在ta,t0<ta< ,根据[t0,ta]上的y(t)的测量值,能够唯一地确定系统在t0时刻的任意初始状态x0,则称系统在t0时刻是状态完全能观测的,或简称系统在[t0,ta]区间上能观测。
0.6000 -0.9000 -2.0000 -0.5000
1.4000 -0.1000 -1.0000 -3.5000
ans =
3
Obsv:计算可观察性矩阵
A=[-2.2 -0.7 1.5 -1;0.2 -6.3 6 -1.5;0.6 -0.9 -2 -0.5;1.4 -0.1 -1 -3.5]
B=[6 9;4 6;4 4;8 4];
实 验 报 告
课程线性系统理论基础实验日期年月日
专业班级姓名学号同组人
实验名称系统的能控性、能观测性、稳定性分析及实现评分
批阅教师签字
一、实验目的
加深理解能观测性、能控性、稳定性、最小实现等观念。掌握如何使用MATLAB进行以下分析和实现。
1、系统的能观测性、能控性分析;
2、系统的稳定性分析;
3、系统的最小实现。
C=[1 2 3 4];
Qo=obsv(A,C);
Ro=rank(Qo)
A =-2.2000 -0.7000 1.5000 -1.0000
0.2000 -6.3000 6.0000 -1.5000
0.6000 -0.9000 -2.0000 -0.5000
1.4000 -0.1000 -1.0000 -3.5000
(d)求系统 的最小实现。
(2)稳定性
(a)代数法稳定性判据
已知单位反馈系统的开环传递函数为: ,试对系统闭环判别其稳定性
(b)根轨迹法判断系统稳定性
已知一个单位负反馈系统开环传递函数为 ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。
(c)Bode图法判断系统稳定性