离散数学期末试卷1-B-2016-12
离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。
B. 如果今天是周一,则明天不是周二。
答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。
答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。
这种性质称为函数的______。
答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。
如果一个图的直径为1,则该图被称为______。
答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。
布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。
答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。
答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。
例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。
2. 请解释什么是二元关系,并给出一个二元关系的例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。
最新离散数学期末考试试题与答案[1]课件ppt
![最新离散数学期末考试试题与答案[1]课件ppt](https://img.taocdn.com/s3/m/9ceca2c04431b90d6d85c7c2.png)
19. (5分) 已知公理 A: (pq) ((qp) (pq)) B: pp∨q
C: pp D: (pr) ((qr) ((p∨q) r)) E: p∧qp 证明定理: p(p∨p)
证明:
(1) pp∨q
公理B
(2) pp∨p
代入
(3) (pr) ((qr) ((p∨q) r))
公理D
(4) (pp) ((pp) ((p∨p) p)) 代入
∑d(v) ≥1+2(|V|-1)=2|E|+1, 这与结论 ∑ d(v) =2|E| 矛盾! 矛盾说明 T 不止
一片树叶。
12. (8分) (G, ·)是一个群,取定u ∊ G. ∀g1,g2∊G,定义: g1*g2= g1·u-1·g2. 证明: (G,*)是群。
证明: (1) 封闭性 (2) 可以结合性 (3) 幺元 e*=u. 事实上, g*e*=g*u=g·u-1·u=g·e=g e**g=u*g=u·u-1·g=e·g=g (4) 逆元 对于∀g∊G, 在代数运算*下的逆元记为g*-1 于是, g*-1=u·g-1·u
所以,根据连通的定义知:G的补图一定连通 。
9. (4分) 一个有奇数条边、偶数个顶点的欧拉图,但不是哈 密尔顿图。
10 (6分) 画出K4,4,判断K4,4是否平面图. 否!
11. (5分) 证明: 多于一个顶点的树,至少有两片树叶。
证明:设 T=(V,E)是一棵树,若T中最多只有一片树叶, 则有
g*a*g-1H,
g*a*g-1K, 从而有g*a*g-1HK, 故HK是G的正规子群。
14. (4分) 已知(G, *),(A, △)是两个群,f: G→A是群同态的。
证明: (1) f(eG)=eA (eG G是幺元, eA A是幺元). (2) ∀g∊G, f(g-1)=(f(g))-1.
离散数学期末考试试题及答案

离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。
证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E,⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。
离散数学期末测试卷I及答案

答案:瑞士数学家 L.Euler(欧拉) 22.两个图同构是指其中一个图近经过哪些变换可以变为另一个图?
答案:1.挪动点的位置; 2.伸缩边的长短。
23. 什么是孤立点和悬挂点? 答案:孤立点:在任意图 G(V,E)中,度数为 0 的结点。
悬挂点:在任意图 G(V,E)中,度数为 1 的结点。 24.域和环相比增加了哪些要求? 答案:域:设(F,+,•)是环,若(F-{0},•)是阿贝尔群,则称(F,+,•)是域。 25.阿贝尔群具有哪些特点?比普通群增加了什么? 答案:阿贝尔群:设(G,•)是群,若其运算•是可交换的,则称(G,•)为阿贝尔群。 二、填空题 1.鸽笼原理是指什么? 答:n+1 只或更多的鸽子飞进 n 个笼子时,一定有一个笼子里面至少有 2 只鸽子。 2.哪位挪威数学家和法国数学家先后为群的研究做出了杰出的贡献? 答案:挪威数学家 Niels Henrik Abel (尼尔斯· 亨利克·阿贝尔)和法国数学家 Évariste Galois(埃瓦里斯特•伽罗瓦) 为群的研究做出了杰出的贡献。 3.单独一个节点 v 构成的序列 v 到 v 的长度为多少的路?叫做什么? 答案:单独一个节点 v 构成的序列 v 到 v 的长度为 0 的路叫做平凡路 4.命题公式(p→q)→r 的析取范式与合取范式各为什么?
7.设 A, 是一个偏序集,如果 A 中任意两个元素都有上确界和下确界,则称 A, 是一个格。 答:正确。也称(A, )为偏序格。
8.命题公式 P Q 的逆反式是 Q P 。
答:正确。左边= P Q P Q Q P Q P =右边
9.图
是弱连通图。
答:正确。该图为强连通图且属于弱连通图。
离散数学期末考试试题及答案

离散数学期末考试试题及答案离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。
下面是小编整理的离散数学期末考试试题及答案,欢迎阅读参考!一、【单项选择题】(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。
[A] 3 [B] 8 [C]9 [D]272、设A1,2,3,5,8,B1,2,5,7,则AB( )。
[A] 3,8 [B]3 [C]8 [D]3,83、若X是Y的子集,则一定有( )。
[A]X不属于Y [B]X∈Y[C]X真包含于Y [D]X∩Y=X4、下列关系中是等价关系的'是( )。
[A]不等关系 [B]空关系[C]全关系 [D]偏序关系5、对于一个从集合A到集合B的映射,下列表述中错误的是( )。
[A]对A的每个元素都要有象 [B] 对A的每个元素都只有一个象[C]对B的每个元素都有原象 [D] 对B的元素可以有不止一个原象6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。
[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},则A到A的双射共有( )。
[A]3个 [B]6个 [C]8个 [D]9个8、一个连通G具有以下何种条件时,能一笔画出:即从某结点出发,经过中每边仅一次回到该结点( )。
[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点 [D] G没有或有2个奇数度结点9、设〈G,*〉是群,且|G|>1,则下列命题不成立的是( )。
[A] G中有幺元 [B] G中么元是唯一的[C] G中任一元素有逆元 [D] G中除了幺元外无其他幂等元10、令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( )[A] p→┐q [B] p∨┐q[C] p∧q [D] p∧┐q11、设G=的结点集为V={v1,v2,v3},边集为E={,}.则G的割(点)集是( )。
离散期末考试题及答案

离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。
离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是图的边数与顶点数的关系?A. 边数小于顶点数B. 边数等于顶点数C. 边数大于顶点数D. 边数与顶点数无固定关系答案:D2. 有限自动机的英文缩写是什么?A. FAB. PDAC. TMAD. NFA答案:A3. 布尔代数中,德摩根定律是指什么?A. ¬(A ∧ B) 等于¬ A ∨ ¬ BB. ¬(A ∨ B) 等于¬ A ∧ ¬ BC. A ∧ B 等于¬(A ∨ B)D. A ∨ B 等于¬(¬ A ∧ ¬B)答案:B4. 在命题逻辑中,以下哪个符号表示蕴含?A. ∧B. ∨C. →D. ↔答案:C5. 集合A = {1, 2, 3},B = {2, 3, 4},则A ∪ B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 3, 4}答案:A6. 以下哪个选项是正确的递归定义?A. 一个数是偶数当且仅当它是2的倍数B. 一个数是偶数当且仅当它不是2的倍数C. 一个数是偶数当且仅当它是另一个偶数加1D. 以上都是正确的递归定义答案:A7. 有向图和无向图的主要区别是什么?A. 有向图的边有方向,无向图的边没有方向B. 有向图的顶点有方向,无向图的顶点没有方向C. 有向图的边可以相交,无向图的边不可以相交D. 有向图可以有环,无向图不可以有环答案:A8. 在命题逻辑中,以下哪个公式是矛盾的?A. A ∧ ¬ AB. A ∨ ¬ AC. A → BD. A ∧ B ∧ ¬ A答案:A9. 以下哪个是图的同义术语?A. 网络B. 矩阵C. 树D. 以上全部答案:A10. 以下哪个命题逻辑公式是有效的?A. (A → B) ∧ (B → A)B. (A ∧ B) → AC. (A ∨ B) → AD. (A ∧ B) → B答案:B二、填空题(每题2分,共20分)11. 在命题逻辑中,_________ 表示一个命题是真的,而 _________ 表示一个命题是假的。
离散数学期末考试试题(配答案)[1]
![离散数学期末考试试题(配答案)[1]](https://img.taocdn.com/s3/m/290ce1f4cc22bcd127ff0c64.png)
离散数学期末考试试题(配答案)[1]模拟试题科 目:离散数学考试形式:闭卷 考试时间: 120 分钟 系别、班级: 姓名: 学号:一.填空题(每小题2分;共10分)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是__ ∃x ∃y¬P(x)∨Q(y) __________。
2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =__{2}__;=A _{4;5}____;=B A Y __ {1;3;4;5} _____3. 设{}{}b a B c b a A ,,,,==;则=-)()(B A ρρ__ {{c};{a ;c};{b ;c};{a ;b ;c}} __________;=-)()(A B ρρ_____Φ_______。
4. 在代数系统(N ;+)中;其单位元是0;仅有 _1___ 有逆元。
5.如果连通平面图G 有n 个顶点;e 条边;则G 有___e+2-n ____个面。
二.选择题(每小题2分;共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=;A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 3. 在图>=<E V G ,中;结点总度数与边数的关系是( ) (A)E v i 2)deg(= (B) E v i =)deg((C)∑∈=Vv iE v 2)deg((D) ∑∈=Vv iE v )deg(4. 设D 是有n 个结点的有向完全图;则图D 的边数为( ) (A))1(-n n (B))1(+n n (C)2/)1(+n n (D)2/)1(-n n5. 无向图G 是欧拉图;当且仅当( )(A) G 的所有结点的度数都是偶数 (B)G 的所有结点的度数都是奇数(C)G 连通且所有结点的度数都是偶数 (D) G 连通且G 的所有结点度数都是奇数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请将选择题答案填入下表
一、单项选择题(请从4个备选答案中选择最适合的一项,每小题2分,共30分)
1.下列哪个命题是真命题( ).
A .如果2+3=5,则太阳从西方升起;
B .严禁吸烟;
C .如果2+5=6,则太阳从东方升起;
D .我正在说谎.
2.设集合{0,1,2}X =,R 是X 上的二元关系,{0,0,0,2,1,2,2,0,2,1}R =〈〉〈〉〈〉〈〉〈〉,则R 的关系
矩阵R M 是( ) .
A .111001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
B .101001110⎡⎤
⎢⎥⎢⎥
⎢⎥⎣⎦
C . 000101010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
D .101110000⎡⎤
⎢⎥⎢⎥⎢⎥⎣⎦
3.令()F x :x 是金属,()G y :y 是液体,(,)H x y :x 可以溶解在y 中,则命题“任何金属可
以溶解在某种液体中”可符号化为( ) .
A .(()(()(,)))x F x y G y H x y ∀→∃→
B .(()(()(,)))x xF x G y H x y ∀∃→→
C .(()(()(,)))x F x y G y H x y ∀∧∃∧
D .(()(()(,)))x F x y G y H x y ∀→∃∧
4.设{,,}A a b c =,集合A 上的等价关系R 所确定的A 的划分是{{},{,}}a b c ,则R =( ) .
A .{,,,,,}a b b a c b
B .{,,,,,,,}a b a b c c b
C .{,,,,,,,,,}a a b b c c b c c
D .{,,,,,,,,,,,}a a a b b a c c b c c 5.下列等价公式错误的是( ).
A .()P P Q Q ∨∧⇔;
B .P Q P Q →⇔⌝∨;
C .P Q Q P →⇔⌝→⌝;
D .()P P Q P ∨∧⇔.
6.下图中是哈密尔顿图的是( ) .
7.谓词公式(()(,))()x P x yR x y Q x ∀∨∃→中量词(x ∀)辖域是( ).
A .(()(,))x P x yR x y ∀∨∃;
B .()P x ;
C .()Q x ;
D .(()(,))P x yR x y ∨∃. 8. 设:f A B →,:g B C →,下列哪个命题是真命题( ).
A .若g f 是单射,则f 是单射.
B .若g f 是单射,则g 是单射.
C .若g f 是双射,则f 和g 都是双射.
D .若g f 是满射,则f 是满射. 9.下列等价式不成立的是( ).
A .(,)(,)x yF x y y xF x y ∀∀⇔∀∀;
B .(())()x F x G xF x G ∃∧⇔∃∧;
C .(,)(,)x yF x y y xF x y ∃∃⇔∃∃ ;
D .(,)(,)x yF x y y xF x y ∀∃⇔∃∀.
10.以下推理错误的是( ).
A .P Q P ∨⇒;
B .,P P Q Q →⇒
C .P Q P ∧⇒;
D .P Q Q ∧⇒. 11.下面哪一种图不一定是树( ). A .无圈连通图; B .有n 个结点1n -条边的连通图;
C .每对结点间都有路的图;
D .连通但删去一条边就不连通的图. 12.下面哪个图是强连通的( ).
13.设{1,2,3}X =上的关系R 的关系图如右图,从关系图可知R 具有 的性质是( ).
A .自反性、对称性和传递性;
B .自反性、反对称性和传递性;
C .反自反性、对称性和传递性;
D .反自反性、反对称性和传递性.
14.设A 是图,G V E =的邻接矩阵,()()k k ij A a =,则()k ij
a 为( ).
A.图,
G V E
=中由
i
v到
j
v长度为k的路径的条数;B.结点
j
v的度数;
C.结点
i
v的度数;D.结点
i
v的入度.
15.下列各图是欧拉图的是().
二、填空题(每空2分,共40分)
得分
1.谓词公式(,)
x yP x y
⌝∀∃⇔.
2.设集合A={1,2,3,4,6,8,12,14},≤是A中的整除关系,则在偏序集,A≤中,集合D={2,3,4,6} 的极小元是,最小元是,下确界是.
3.若集合A的基数为4,则集合A上的共有个不同的等价关系.
4.设图,
G V E
=(V={
1
v,
2
v,
3
v,
4
v})的邻接矩阵()
A G=
0110
0011
0100
0110
⎡⎤
⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎣⎦
,则从
1
v到
4
v长度
为2的路共有条.
5.设命题公式A的真值表为
P
Q
R
1
1
1
1
1
1
1
1
1
1
1
1
A 1 1 0 1 0 1 1 1
则命题公式A的主合取范式为.6.设f是A到B的函数,如果f是,则1-f是B到A的函数,此时有f
f 1-= .
7.设P表示:上午下雨,Q表示:我去看电影,R表示:我在家里读书,S表示:我在家里看报纸。
则命题“如果上午不下雨,我就去看电影,否则我就在家里读书或看报纸。
” 符
号化为.
8.谓词公式()()()()
x F x x G x
∀∨⌝∃的前束范式为.9.设有40盏灯,拟公用一个电源,则至少需要4插头的接线板的数目为.10.设A=Φ,则(())
P P A= .其中()
P A表示集合A的幂集.
11.写出下表中各列所定义的命题联结词.
12.设个体域{,,}
A a b c
=,消去公式中的量词,则()()
x P x
∀∧()()
x Q x
∃⇔.13.在一棵根树中,有且只有一个结点的入度为,其余所有结点的入度均为1.
其中入度为0的结点称为树根,出度为_____的结点称为树叶.
14.一棵树有2个4度结点,3个3度结点,其余结点都是叶子,则T有
个叶结点.
15.设()
G x表示“x是金子”,()
F x表示“x是闪光的”,则命题“金子是闪光的,但闪光的不一
定是金子”符号化为.三、计算题(每小题6分,共18分)
1.以给定权6,9,10,10,15,20,30构造一棵最优二叉树.
2.设A ={2,3,6,12,24,36},”/”为A 的整除关系. 说明〈A ,/〉是否为偏序集,若是,
画出其哈斯图.
3.设 A ={1,2,3,4,5,6},集合A 上的关系{1,3,1,5,2,5,4,4,4,5,5,4,,6,6}R =
求(),()r R S R 及 ()t R .
四、证明题(每小题6分,共12分)
1.证明:A B ∨, B P →⌝,Q R →⌝,Q P ⌝→,R ⇒A .
2.用谓词演算的推理规则证明:
∀→⌝∧∀∨∧∃⌝⇒∃⌝
((()())(()())())(())
x M x S x x S x A x x A x x M x。