共焦显微拉曼光谱仪介绍
显微共聚焦拉曼光谱

显微共聚焦拉曼光谱
显微共聚焦拉曼光谱(confocal Raman spectroscopy)是一种分析技术,它可用于诊断某一物质的成分,以及检测生物材料表面的化学成分。
它利用共聚焦拉曼散射(CRDS)技术,将激光束集中到采样表面上。
此技术不仅可用于研究三维物体的化学结构,而且可以用于构建显微共聚焦图像,并研究表面的化学成分分布。
显微共聚焦拉曼光谱通常由四个主要组成部分组成,分别是激光源、光学系统、数据收集系统和分析系统。
激光源将激光束集中到指定的采样表面上,而光学系统可以调节激光束的尺寸和强度,从而获得良好的数据质量。
数据收集系统通过一个光电探测器来获取扫描区域的拉曼信号,而分析系统则通过计算机程序对这些信号进行分析。
显微共聚焦拉曼光谱技术使科学家可以以更快的速度来进行复杂物质的密度动力学研究,并获得更清晰的结构信息。
它是实现多尺度研究的重要工具,将大尺度的性质(包括多维表面分布)与小尺度的性能(包括原子结构)结合起来。
显微共聚焦拉曼光谱可以迅速地获取表面化学结构和缺陷的扫描,因此可以有效地消灭大量的假设并准确的引导实验研究。
共焦显微拉曼光谱

共焦显微拉曼光谱
共焦显微拉曼光谱(confocal Raman microscopy)是一种将共焦显微镜与拉曼光谱技术结合的方法。
在这种技术下,拉曼散射信号是由样品中的激光与拉曼散射产生的光信号相互干涉而发生的。
共焦显微镜的优势在于可以获得高分辨率和高对比度的图像,并且可以在三维空间中对样品进行扫描。
共焦显微拉曼光谱可以提供关于样品化学成分、结构和相互作用的信息。
通过测量样品中的拉曼散射光谱,可以确定样品的化学组成,识别分子和晶体结构,并且可以通过拉曼增强效应来研究分子之间的相互作用。
由于共焦显微镜的高分辨率和高对比度,可以对样品内部的微观结构进行三维成像。
共焦显微拉曼光谱在材料科学、生物医学、环境科学等领域具有广泛的应用。
例如,在材料科学中,可以通过共焦显微拉曼光谱来研究材料的晶体结构、缺陷和杂质,以及材料之间的相互作用。
在生物医学领域,可以用共焦显微拉曼光谱来研究细胞和组织的化学组成,诊断疾病,并研究药物的输送和作用机制。
在环境科学中,可以利用共焦显微拉曼光谱来分析水体、土壤和大气中的化学成分,以及监测环境中的污染物。
总而言之,共焦显微拉曼光谱是一种非常有用的技术,可以为科学研究和工业应用提供关于样品化学成分、结构和相互作用的宝贵信息。
显微共聚焦拉曼光谱仪工作原理

显微共聚焦拉曼光谱仪工作原理
显微共聚焦拉曼光谱仪是一种高分辨率的显微镜,结合了共聚焦显微镜和拉曼光谱学的优势,可以实现高分辨率、高灵敏度的化学成分分析和三维成像。
其工作原理如下:
显微共聚焦拉曼光谱仪采用激光作为光源,经过一个可调焦透镜聚焦到样品表面。
样品吸收部分光子能量,其余光子被散射。
散射光通过物镜进入光谱仪,经过分光镜分为不同波长的光线。
其中一部分光线进入拉曼光谱仪,通过波谱仪分析样品的拉曼光谱,得到样品的化学成分信息。
另一部分光线则进入共聚焦显微镜,经过准直器和反射镜聚焦到样品表面,形成高分辨率的光学图像。
显微镜采用扫描镜片技术,通过扫描样品表面,获取样品的三维成像和化学成分分布信息。
显微共聚焦拉曼光谱仪具有高分辨率、高灵敏度、非接触式测量等优点,广泛应用于材料科学、生物医学等领域的研究。
- 1 -。
纳米技术激光共聚焦显微拉曼光谱仪性能

纳米技术激光共聚焦显微拉曼光谱仪性能1 范围本标准规定了激光共聚焦显微拉曼光谱仪的术语和定义、仪器结构、技术要求、测试方法等。
本标准适用于以连续激光为激发光源,具有单级、二级或三级光谱仪的色散型共聚焦显微拉曼光谱仪(以下简称仪器)。
本标准不适用于傅立叶变换拉曼光谱仪等非色散型拉曼光谱仪和基于脉冲激光光源的拉曼光谱仪。
2 术语和定义下列术语和定义适用于本文件。
2.1拉曼光谱 Raman spectrum / spectra当物质收到单色辐射能照射时,由于非弹性散射产生的已调制频率的光谱。
2.2拉曼谱线(频带,峰) Raman line (band,peak)构成拉曼光谱的谱线(带)。
2.3拉曼频移 Raman shift拉曼谱线(带)的波数相对于入射单色光束波数的位移注:单位为cm-1。
2.4共聚焦 confocal指光路(激发和发射)在两个位置上聚焦。
在共聚焦扫描仪中,激发光聚焦在样品点表面,而发射光聚焦在针孔上。
2.5激光共聚焦显微拉曼光谱仪 laser confocal microscope Raman spectrometer以激光为激发光源,将拉曼光谱分析技术与显微分析技术结合起来的一种光谱仪。
3 仪器结构从激光器发出的激光经干涉滤光片到达样品表面激发样品,激发光经瑞利滤光片及共聚焦针孔、狭缝、光栅,最后到达探测器探测拉曼信号。
仪器结构示意图见图1。
详细内容参见附录A。
12说明:1—激光器;2—干涉滤光片;3—半波片;4—瑞利滤光片;5—偏振片;6—四分之一波片;;7—共聚焦针孔;8—狭缝;9—光栅;10—探测器;11—显微镜;12—样品。
图1 常规激光共聚焦显微拉曼光谱仪结构示意图4 要求4.1 测试条件环境温度为(20~25)℃,使用温度波动范围不超过±2℃。
相对湿度≤60%。
电源电压及冷却水等应符合设备主机及附件要求4.2 激光器由于拉曼光谱特殊性的要求,激光共聚焦显微拉曼系统采用的激光器偏振比不低于100:1。
激光显微共焦拉曼光谱仪用途

激光显微共焦拉曼光谱仪用途
激光显微共焦拉曼光谱仪(Laser Micro-Confocal Ram an Spectroscope)是一种高精度的分析仪器,它结合了激光光源、显微镜和拉曼光谱技术,用于获取样品的化学和结构信息。
以下是激光显微共焦拉曼光谱仪的一些主要用途。
1.材料分析:用于研究各种材料的组成、结构和相变,包括但不限于无机材料、有机材料、生物材料和纳米材料。
2.表面分析:由于拉曼光谱能够提供关于样品表面几微米深度的信息,因此它可以用于研究样品表面的化学成分和结构。
3.药物分析:在药物研发和质量控制中,激光显微共焦拉曼光谱仪可以用于分析药物的化学成分、结晶状态和杂质。
4.生物医学研究:用于研究细胞、组织和其他生物样本的化学特征,有助于疾病诊断和生物分子机制的研究。
5.污染物检测:用于环境和食品安全领域,检测和监测污染物和有害物质的含量。
6.文物修复:在考古和文物修复领域,用于无损分析文物的材料组成,以指导修复工作。
7.材料科学:用于研究新型材料的合成、结构和性能关系,推动材料科学的发展。
8.纳米技术:在纳米技术领域,用于监测和分析纳米粒子的尺寸、形状和组成。
激光显微共焦拉曼光谱仪由于其高灵敏度、高空间分辨率和对样品的非破坏性,已经成为科学研究、工业生产和质量控制等领域的重要工具。
DXR激光共焦显微拉曼光谱仪

DXR激光共焦显微拉曼光谱仪
DXR拉曼显微镜是专门为现在繁忙的分析实验室而设计的研究级工具。
此款显微镜可满足用户对高空间分辨率,样品制备简单和拉曼光谱法的强大功能等要求,无需苛求工作繁忙的用户成为拉曼专家。
DXR拉曼显微镜的空间分辨率等同于或远胜于市面上已有仪器,其独特的设计可帮助用户轻而易举获取高质量的结果。
性能参数
激光光源:532nm,780nm
激光功率:1~50Mw 曝光时间:1~100s
曝光次数:5~50次波数范围:50~3500cm-1
显微镜:Olympus研究级BX51显微镜,目镜:10X;物镜:10X、50X、100X
附件:高精度自动平台,进行高分辨率面扫描与深度扫描及亚微米级别的样品分析;
控温平台,可进行动力学实验,研究结晶行为;Raman光谱数据库。
应用范围
(1)几乎每一种分子都有其特征的拉曼光谱,拉曼光谱存在于几乎一切分子中:固体,液体,气体;
(2)每一种分子的拉曼光谱与入射激光频率无关;
(3)拉曼谱线一般比较分立,相对于红外窄很多;
(4)拉曼频率位移可从几个波数至3500cm-1;
(5)拉曼散射很微弱;
(6)对样品无接触,无损伤;
(7)样品无需制备;
(8)能适合黑色和含水样品;微区分析,所需样品量少;高、低温及高压条件下测量;图片。
激光共聚焦显微拉曼光谱仪PPT课件

分析测试中心
光学平台
不是凸起,是专用的光学平台,哪些看起 来颗粒一样的是螺丝孔,M6的内螺纹,可以将 光学元件固定在上面。平台一般很重,不锈钢 质地,总体质量500公斤左右。因为光学需要 稳定,所以一般都得用这个才能保证光路稳定
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
激光共聚焦显微拉曼光谱仪
仪器组成
激光器 共焦显微镜
样品室 单色器 检测记录系统
计算机
激光器
1、配置532nm半导体高功率激光器,激光输出功率要求不小于 50mW。
2、使用两片长寿命Edge瑞利滤光片和一片用于去除等 离子线的干涉滤光片,仪器阻挡激光瑞利散射水平高。
3、相应波长的激光等离子滤光片(干涉滤光片),在 全扫描范围(100-4000波数)内,无等离子线。
3、显微镜厂家原装透射、反射照明。附送备用照明灯2个。
4、自动XYZ平台,最小步长不大于0.1 um,可进行分散的多点、 线、面扫描和共焦深度的扫描
5、采用真共焦光路设计,空间分辨率方面,100X物镜下,xy 分辨率 <= 1 um ,z轴方向分辨率<= 2微米,共焦深度连续可 调。
4、为适应不同样品测量要求以及防止激光功率过高烧坏样品, 要求激光输出功率可调。同时,激光光斑尺寸可调。
激光共焦显微拉曼光谱分析

激光共焦显微拉曼光谱分析拉曼散射是印度科学家拉曼(Raman),在1928年发觉的,拉曼光谱因而得名。
光和介质分子互相作用时会引起介质分子做受迫振动从而产生散射光,其中大部簇拥射光的频率和入射光的频率相同,这种散射被称为瑞利散射,英国物理学家瑞利曾于1899年对其举行了具体的讨论。
在散射光中,还有一部簇拥射光的频率和入射光的频率不同。
拉曼在他的试验室里用一个大透镜将太阳光聚焦到一瓶的溶液中,经过滤光的太阳光展现蓝色,但是当光束再次进入溶液后,除了入射的蓝光之外,拉曼还观看到了很微弱的绿光,拉曼认为这是光与溶剂分子互相作用产生的一种新频率的光谱线。
由于这一重大发觉,拉曼于1930年荣获诺贝尔物理学奖。
拉曼光谱得到的是物质的分子振动和转动光谱,是物质的指纹性信息,因此拉曼光谱可以作为认证物质和分析物质成分的一种有力工具。
而且拉曼峰的频率对物质结构的极小变幻十分敏感,所以也常通过对拉曼峰的极小变幻的观看,来讨论在某些特定条件下,如转变温度、压力和掺杂特性等,所引起的物质结构的变幻,从而间接推出材料不同部分微观上的环境因素的信息,如应力分布等。
拉曼光谱技术具有无数优点:光谱的信息量大,谱图易辨认,特征峰显然;对样品无接触,无损伤;样品无须制备;能够迅速分析、鉴别各种材料的特性与结构;激光拉曼光谱仪的显微共焦功能可做微区微量以及分层材料的分析(lum左右光斑);能适合黑色和含水样品以及凹凸温柔高压条件下测量;此外,拉曼光谱仪用法容易,稳固而且体积适中,维护成本也相对较低。
激光拉曼光谱是激光光谱学中的一个重要分支,应用非常广泛。
在化学方面可应用于有机化学、无机化学、生物化学、石油化工、高分子化学、催化和环境科学、分子鉴定、分子结构等讨论;在物理学方面可以应用于进展新型激光器、产生超短脉冲、分子瞬态寿命讨论等,此外在相干时光、固体能谱方面也有极其广泛的应用。
一.基本原理入射光与物质互相作用时除了发生反射、汲取、透射以及放射等光学现象外,还会发生物质对光的散射作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共焦显微拉曼光谱仪介绍
随着仪器技术的发展,仪器的灵敏度和分辨率不断提高,体积减小,操作简便,同时仪器的价格降低,用户越来越多。
现在拉曼光谱仪的应用领域也由原来的材料领域,拓展到了化学、催化、刑侦、地质领域、艺术、生命科学等各个领域,有一些QC领域也已经开始使用拉曼光谱仪了。
共焦显微拉曼光谱仪
1.共焦拉曼指的是空间滤波的能力和控制被分析样品的体积的能力。
通常主要是利用显微镜系统来实现的。
仅仅是增加一个显微镜到拉曼光谱仪上不会起到控制被测样品体积的作用的—为达到这个目的需要一个空间滤波器。
2.(1)、显微是利用了显微镜,可以观测并测量微量样品,小1微米左右
(2)、共焦是样品在显微镜的焦平面上,而样品的光谱信息被聚焦到CCD上,都是焦点,所以叫共聚焦
3.拉曼仪器的共焦有2种呢,一种是针孔共焦,一种是赝共焦.我觉得好像不应该称为赝共焦,共聚焦有真正的定义说一定要针孔才是共聚焦吗?好像没有,顶多称为传统共聚焦或者针孔共聚焦、简单共聚焦之类的。
1。