LED陶瓷基板
阐述LED封装用到的陶瓷基板现状与发展

阐述LED封装用到的陶瓷基板现状与发展作者:秩名2013年03月08日 16:47[导读]陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模组等领域。
本文简要介绍了目前陶瓷基板的现状与以后的发展。
关键词:陶瓷基板LED封装LED陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模组等领域。
本文简要介绍了目前陶瓷基板的现状与以后的发展。
1、塑胶和陶瓷材料的比较塑胶尤其是环氧树脂由于比较好的经济性,至目前为止依然占据整个电子市场的统治地位,但是许多特殊领域比如高温、线膨胀系数不匹配、气密性、稳定性、机械性能等方面显然不适合,即使在环氧树脂中添加大量的有机溴化物也无济于事。
相对于塑胶材料,陶瓷材料也在电子工业扮演者重要的角色,其电阻高,高频特性突出,且具有热导率高、化学稳定性佳、热稳定性和熔点高等优点。
在电子线路的设计和制造非常需要这些的性能,因此陶瓷被广泛用于不同厚膜、薄膜或和电路的基板材料,还可以用作绝缘体,在热性能要求苛刻的电路中做导热通路以及用来制造各种电子元件。
2、各种陶瓷材料的比较2.1Al2O3到目前为止,氧化铝基板是电子工业中最常用的基板材料,因为在机械、热、电性能上相对于大多数其他氧化物陶瓷,强度及化学稳定性高,且原料来源丰富,适用于各种各样的技术制造以及不同的形状。
2.2BeO具有比金属铝还高的热导率,应用于需要高热导的场合,但温度超过300℃后迅速降低,最重要的是由于其毒性限制了自身的发展。
AlN有两个非常重要的性能值得注意:一个是高的热导率,一个是与Si相匹配的膨胀系数。
缺点是即使在表面有非常薄的氧化层也会对热导率产生影响,只有对材料和工艺进行严格控制才能制造出一致性较好的AlN基板。
目前大规模的AlN生产技术国内还是不成熟,相对于Al2O3,AlN价格相对偏高许多,这个也是制约其发展的瓶颈。
综合以上原因,可以知道,氧化铝陶瓷由于比较优越的综合性能,在目前微电子、功率电子、混合微电子、功率模组等领域还是处于主导地位而被大量运用。
七大方面解析氮化铝陶瓷基板的分类和特性

七大方面解析氮化铝陶瓷基板的分类和特性氮化铝陶瓷基板在大功率器件模组,航天航空等领域备受欢迎,那么氮化铝陶瓷基板都有哪些种分类以及氮化铝陶瓷基板特性都体现在哪些方面?一,什么是氮化铝陶瓷基板以及氮化铝陶瓷基板的材料氮化铝陶瓷基板是以氮化铝(AIN)为主晶相的陶瓷基板,也叫氮化铝陶瓷基片。
热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是大功率集成电路和散热功能的重要器件。
二,氮化铝陶瓷基板分类1,按电镀要求来分氮化铝陶瓷覆铜基板(氮化铝覆铜陶瓷基板),旨在氮化铝陶瓷基板上面做电镀铜,有做双面覆铜和单面覆铜的。
2,按应用领域分LED氮化铝陶瓷基板(氮化铝led陶瓷基板),主要用于LED大功率灯珠模块,极大的提高了散热性能。
igbt氮化铝陶瓷基板,一般用于通信高频领域。
3,按工艺来分氮化铝陶瓷基板cob(氮化铝陶瓷cob基板),主要用于Led倒装方面。
dpc氮化铝陶瓷基板,采用DPC薄膜制作工艺,一般精密较高。
dpc氮化铝陶瓷基板(AlN氮化铝dbc陶瓷覆铜基板),是一种厚膜工艺,一般可以实现大批量生产。
氮化铝陶瓷基板承烧板3,按地域分有的客户对特定的氮化铝陶瓷基板希望是特定地域的陶瓷基板生产厂家,因此有了:日本氮化铝陶瓷基板氮化铝陶瓷基板台湾氮化铝陶瓷基板成都福建氮化铝陶瓷基板东莞氮化铝陶瓷基板台湾氮化铝陶瓷散热基板氮化铝陶瓷基板珠海氮化铝陶瓷基板上海4,导热能力来分高导热氮化铝陶瓷基板,导热系数一般较高,一般厚度较薄,一般导热大于等于170W的。
氮化铝陶瓷散热基板,比氧化铝陶瓷基板散热好,大于等于50W~170W.三,氮化铝陶瓷基板特性都有哪一些?1,氮化铝陶瓷基板pcb优缺点材料而言:陶瓷基板pcb是陶瓷材料因其热导率高、化学稳定性好、热稳定性和熔点高等优点,很适合做成电路板应用于电子领域。
许多特殊领域如高温、腐蚀性环境、震动频率高等上面都能适应。
氮化铝陶瓷基板,热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是理想的大规模集成电路散热基板和封装材料。
陶瓷基板金属化的应用

陶瓷基板金属化的应用
陶瓷基板金属化在许多领域都有应用,以下是一些具体的例子:
1. 电力电子领域:金属化陶瓷基板具有优良的导热性和绝缘性,可以用于制造高效率、高可靠性的电力电子器件,如开关电源、变频器等。
2. 汽车领域:金属化陶瓷基板具有较好的耐高温和耐腐蚀性能,可以用于制造汽车的发动机和排气系统部件,以及燃料系统和控制系统部件。
3. 航空航天领域:金属化陶瓷基板具有优良的耐高温和耐腐蚀性能,可以用于制造航空航天器的高温部件和结构部件。
4. 微电子领域:金属化陶瓷基板可以作为电子器件的散热基板,如集成电路、微处理器等。
5. 照明领域:金属化陶瓷基板可以作为高亮度LED灯具的散热基板,具有
优良的导热性和耐候性。
总之,陶瓷基板金属化的应用非常广泛,可以在各种恶劣环境下工作,具有优良的性能和可靠性。
led陶瓷基板导热系数

led陶瓷基板导热系数(实用版)目录一、LED 陶瓷基板的特点二、LED 陶瓷基板的导热系数三、导热系数对 LED 陶瓷基板的影响四、提高 LED 陶瓷基板导热系数的方法五、总结正文一、LED 陶瓷基板的特点LED 陶瓷基板是 LED 照明领域中常用的一种材料,它具有许多优点,如良好的导热性能、较高的机械强度、良好的抗热性能和耐腐蚀性能等。
由于其优异的性能,LED 陶瓷基板被广泛应用于 LED 灯珠、LED 灯带、LED 面板灯等产品中。
二、LED 陶瓷基板的导热系数LED 陶瓷基板的导热系数是指其在单位时间内,单位面积上导热的能力。
导热系数越高,表示材料的导热性能越好。
对于 LED 陶瓷基板而言,其导热系数一般在 30-100W/m·K 之间。
一般来说,导热系数越高,LED 陶瓷基板的散热性能越好,从而能够提高 LED 的寿命和稳定性。
三、导热系数对 LED 陶瓷基板的影响导热系数对 LED 陶瓷基板的性能影响很大。
较高的导热系数可以有效地传递和分散 LED 产生的热量,降低 LED 的温度,从而延长 LED 的使用寿命和提高其稳定性。
此外,高导热系数的 LED 陶瓷基板还有助于提高整个照明系统的光效和节能效果。
四、提高 LED 陶瓷基板导热系数的方法为了提高 LED 陶瓷基板的导热系数,可以采用以下几种方法:1.选择高导热性能的材料:常见的高导热材料有氧化铝、氮化铝、碳纳米管等。
2.优化材料结构:通过调整材料的晶粒尺寸、孔隙结构和组织形态等,以提高其导热性能。
3.采用复合材料技术:将不同类型的高导热材料进行复合,以实现更高的导热系数。
4.表面处理技术:通过表面处理技术,如金属化、氧化等,来提高陶瓷基板的导热系数。
五、总结总之,LED 陶瓷基板的导热系数是评价其性能的重要指标之一。
高导热系数有助于提高 LED 的寿命、稳定性和整个照明系统的光效和节能效果。
陶瓷基板的用途

陶瓷基板的用途陶瓷基板可以广泛应用于许多领域,包括电子、照明、能源、医疗、马达、新材料等。
下面将分别从分类和应用领域两个方面进行具体介绍。
一、分类1.氧化铝陶瓷基板氧化铝陶瓷基板具有高温稳定性、高硬度、高机械强度、耐腐蚀等优点,主要应用于高功率LED、电源、变频器、电子产品等领域。
氟化铝陶瓷基板是一种新型材料,具有优良的高温、高压、高抗化学腐蚀性能,主要应用于电子、化学、航空航天等领域。
锆氧化物陶瓷基板具有高温稳定性、热膨胀系数低、介电常数小等优点,主要应用于陶瓷电容器、热敏电阻、高速通讯等领域。
二、应用领域1.电子领域陶瓷基板广泛应用于电子产品中,如手机、平板电脑、电视机等。
它可以作为印制电路板的基板,提供电子元器件的位置和电子信号的传输。
2.照明领域陶瓷基板在LED照明领域应用广泛,它可以作为LED芯片的支撑平台,提供良好的电性能和热性能,能够有效地解决LED照明产品的散热问题。
3.能源领域陶瓷基板在太阳能电池、燃料电池、电动车电池等能源领域有着重要的应用,它可以作为太阳能电池板和电池的组件,提供良好的机械强度和耐热性能。
4.医疗领域陶瓷基板在医疗器械领域应用广泛,例如骨科手术器械、牙科器械、听诊器等,它具有耐高温、抗酸碱、抗腐蚀等特性,可以耐受高温、高压的消毒处理。
5.马达领域6.新材料领域陶瓷基板在新材料领域的应用也日益增多,例如功能陶瓷、复合材料、纳米材料等。
它可以作为新材料的载体,提供良好的机械强度和热性能,有效地提高新材料的性能和使用寿命。
总之,陶瓷基板具有广泛的应用前景和重要的应用价值,在不同的领域都发挥着重要的作用。
随着科技的不断进步和发展,陶瓷基板的应用范围和应用价值还将不断扩大和提高。
led陶瓷荧光片制作工艺

LED陶瓷荧光片制作工艺1. 简介LED陶瓷荧光片是一种新型的发光材料,具有高亮度、高效能、长寿命等优点,被广泛应用于照明、显示、电子产品等领域。
本文将介绍LED陶瓷荧光片的制作工艺,包括原材料准备、工艺流程和关键步骤等内容。
2. 原材料准备LED陶瓷荧光片的制作过程需要准备以下原材料:2.1 陶瓷基板陶瓷基板是LED陶瓷荧光片的载体,通常采用氧化铝陶瓷或氮化铝陶瓷材料制成。
陶瓷基板应具有良好的导热性能和机械强度,以保证LED元件的工作稳定性和可靠性。
2.2 发光材料发光材料是LED陶瓷荧光片的关键组成部分,常用的发光材料有硒化锌、硫化锌等。
发光材料的选择应考虑其发光效率、发光波长以及对电子元件的兼容性等因素。
2.3 封装材料封装材料用于将LED芯片和发光材料固定在陶瓷基板上,并提供保护和导热功能。
常用的封装材料有环氧树脂、硅胶等。
3. 工艺流程LED陶瓷荧光片的制作工艺主要包括以下步骤:3.1 陶瓷基板制备首先,将陶瓷粉末与有机粘结剂混合,并通过成型工艺将其成型为所需形状的陶瓷基板。
然后,将成型后的陶瓷基板进行烧结,以提高其致密度和机械强度。
3.2 发光材料制备将发光材料与粘结剂混合,并通过涂覆或印刷等工艺将其均匀地涂覆在陶瓷基板的特定位置上。
然后,将涂覆后的陶瓷基板进行烘烤,使发光材料与基板充分结合。
3.3 封装将LED芯片和封装材料固定在陶瓷基板上。
首先,在陶瓷基板上涂覆封装材料,并将LED芯片放置在封装材料上。
然后,通过热压或固化等工艺将LED芯片和封装材料牢固地固定在陶瓷基板上。
3.4 测试和修整对制作好的LED陶瓷荧光片进行测试,检查其发光效果和电气性能。
如果发现问题,需要进行修整,如重新涂覆发光材料或更换LED芯片等。
3.5 包装和质检对合格的LED陶瓷荧光片进行包装,并进行质量检验。
包装通常采用防静电袋和泡沫箱等方式,以保护LED陶瓷荧光片的完整性和安全性。
质检包括外观检查、光电参数测试等环节,以确保LED陶瓷荧光片符合相关标准和要求。
led陶瓷基板导热系数

led陶瓷基板导热系数
LED陶瓷基板的导热系数是指在稳定传热条件下,1m厚的陶瓷基板,在上下两侧表面的温差为1度(K,C)时,通过1m2面积传递的热量。
导热系数(热导率)反映了介质或介质间的传热能力的大小,单位为W/m·K(瓦特每米·开尔文)。
至于具体的导热系数数值,会根据不同的陶瓷材料、制备工艺等因素而有所不同。
例如,常见的氧化铝(Al2O3)陶瓷基板的导热系数一般在10-20W/m·K左右,而氮化铝(AlN)陶瓷基板的导热系数可以达到30W/m·K以上。
需要注意,LED陶瓷基板的导热系数不仅与材料本身有关,还受到加工精度、表面处理等因素的影响。
在实际应用中,为了提高LED陶瓷基板的导热性能,通常需要选择高导热材料、优化制备工艺,并采取适当的散热设计来增加热传导效率。
至于测试方法,一般采用热阻测试分析仪来测量LED陶瓷基板的导热系数。
热阻测试分析仪通过在不同温度下测量热流经过基板时的电阻变化,从而计算出导热系数。
常见的
测试方法有稳态法、非稳态法、热线法等。
测试时需要将陶瓷基板置于恒温环境中,通过加热器和温度传感器测量基板两侧的温度差,并根据热阻公式计算导热系数。
总之,LED陶瓷基板的导热系数是一个重要的性能指标,影响着LED器件的散热性能和可靠性。
在实际应用中,需要根据具体需求选择合适的陶瓷基板材料和制备工艺,并进行相应的测试和分析,以保证LED器件的性能和寿命。
以上是关于LED陶瓷基板导热系数的一些基本知识和概述,希望对您有所帮助。
如果您有其他具体的问题或需要进一步的信息,请随时提问。
电子封装用陶瓷基板材料及其制备工艺

泛。
陶瓷基片主要包括氧化铍(BeO)、氧化铝(Al2O3)和氮化铝(AlN)、氮化硅(Si3N4)。
与其他陶瓷材料相比,Si3N4陶瓷基片具有很高的电绝缘性能和化学稳定性,热稳定性好,机械强度大,可用于制造高集成度大规模集成电路板。
几种陶瓷基片材料性能比较从结构与制造工艺而言,陶瓷基板又可分为HTCC、LTCC、TFC、DBC、DPC等。
高温共烧多层陶瓷基板(HTCC)HTCC,又称高温共烧多层陶瓷基板。
制备过程中先将陶瓷粉(Al2O3或AlN)加入有机黏结剂,混合均匀后成为膏状浆料,接着利用刮刀将浆料刮成片状,再通过干燥工艺使片状浆料形成生坯;然后依据各层的设计钻导通孔,采用丝网印刷金属浆料进行布线和填孔,最后将各生坯层叠加,置于高温炉(1600℃)中烧结而成。
此制备过程因为烧结温度较高,导致金属导体材料的选择受限(主要为熔点较高但导电性较差的钨、钼、锰等金属),制作成本高,热导率一般在20~200W/(m·℃)。
低温共烧陶瓷基板(LTCC)LTCC,又称低温共烧陶瓷基板,其制备工艺与HTCC类似,只是在Al2O3粉中混入质量分数30%~50%的低熔点玻璃料,使烧结温度降低至850~900℃,因此可以采用导电率较好的金、银作为电极材料和布线材料。
因为LTCC采用丝网印刷技术制作金属线路,有可能因张网问题造成对位误差;而且多层陶瓷叠压烧结时还存在收缩比例差异问题,影响成品率。
为了提高LTCC导热性能,可在贴片区增加导热孔或导电孔,但成本增加。
厚膜陶瓷基板(TFC)相对于LTCC和HTCC,TFC为一种后烧陶瓷基板。
采用丝网印刷技术将金属浆料涂覆在陶瓷基片表面,经过干燥、高温烧结(700~800℃)后制备。
金属浆料一般由金属粉末、有机树脂和玻璃等组分。
经高温烧结,树脂粘合剂被燃烧掉,剩下的几乎都是纯金属,由于玻璃质粘合作用在陶瓷基板表面。
烧结后的金属层厚度为10~20μm,最小线宽为0.3mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED陶瓷基板的技术分析与现状——本资料由·东莞市中实创半导体照明有限公司/ 工程部·整理与撰写——摘要:陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、LED封装、多芯片模块等领域。
本文简要介绍了目前LED封装陶瓷基板的技术现状与以后的发展。
关键字:LED陶瓷基板 LED产业(一)前言:陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、LED封装、多芯片模块等领域。
LED散热基板的选择亦随着LED之线路设计、尺寸、发光效率…等条件的不同有设计上的差异,以目前市面上最常见的可区分为:①系统电路板,其主要是作为LED最后将热能传导到大气中、散热鳍片或外壳的散热系统,而列为系统电路板的种类包括:铝基板(MCPCB)、印刷电路板(PCB)以及软式印刷电路板(FPC);②LED芯片基板,是属于LED芯片与系统电路板两者之间热能导出的媒介,并藉由共晶或覆晶与LED芯片结合。
为确保LED的散热稳定与LED芯片的发光效率,近期许多以陶瓷材料作为高功率LED散热基板之应用,其种类主要包含有:低温共烧多层陶瓷(LTCC)、高温共烧多层陶瓷(HTCC)、直接接合铜基板 (DBC)、直接镀铜基板(DPC)四种,以下本文将针对陶瓷LED芯片基板的种类做深入的探讨。
(二)陶瓷基板的定义和性能:1.定义:陶瓷基板是以电子陶瓷为基的,对膜电路元件及外贴切元件形成一个支撑底座的片状材料。
按照陶瓷基片应用领域的不同,又分为HIC(混合集成电路)陶瓷基片、聚焦电位器陶瓷基片、激光加热定影陶瓷基片、片式电阻基片、网络电阻基片等;按加工方式的不同,陶瓷基片分为模压片、激光划线片两大类。
2.陶瓷基板的性能:(1)机械性质Ø有足够高的机械强度,除搭载元件外,也能作为支持构件使用;Ø加工性好,尺寸精度高;容易实现多层化;Ø表面光滑,无翘曲、弯曲、微裂纹等。
(2)电学性质Ø绝缘电阻及绝缘破坏电压高;Ø介电常数低;Ø介电损耗小;Ø在温度高、湿度大的条件下性能稳定,确保可靠性。
(3)热学性质Ø热导率高;Ø热膨胀系数与相关材料匹配(特别是与Si的热膨胀系数要匹配);Ø耐热性优良。
(4)其它性质Ø化学稳定性好;容易金属化,电路图形与其附着力强;Ø无吸湿性;耐油、耐化学药品;α射线放出量小;Ø所采用的物质五公害、无毒性;在使用温度范围内晶体结构不变化;Ø原材料丰富;技术成熟;制造容易;价格低。
(三)陶瓷基板与金属基板的比较:LED散热基板主要分为金属基板与陶瓷基板。
金属基板以铝或铜为材料,由于技术成熟,且具低成本优势,目前为一般LED产品所采用。
而陶瓷基板线路对位精确度高,为业界公认导热与散热性能极佳材料,是目前高功率LED散热最适方案,虽然成本比金属基板来得高,但照明要求的散热性及稳定性高于笔记本电脑、电视等电子产品,因此,包括Cree、欧司朗、飞利浦及日亚等国际大厂,都使用陶瓷基板作为LED晶粒散热材质。
如今生产上通用的大功率LED散热基板结构如图1所示,其一般为铝质基板:最下层为铝金属层,其厚度约为1.3mm;铝层之上为高分子绝缘层,厚约0.1mm;最上层为铜线路以及焊接电路。
虽然铝的导热系数比较高,但是绝缘层导热系数极低,因此绝缘层成为该中结构基板的散热瓶颈,影响整个基板的散热效果;同时由于绝缘层的存在,使得其无法承受高温焊接,从而影响了封装工艺的实施,限制了封装结构的优化,因此不利于LED散热。
由于高分子绝缘材料的导热系数较低,同时耐热性能较差,如果要提高铝金属基板的整体导热性能及耐热性能,需要替换掉绝缘材料,但是绝缘材料的启用,使得同线路无法自傲铝金属基板之上布置,所以目前直接提高铝金属基板的导热系数还无法实现。
而陶瓷散热基板,其具有新的导热材料和新的内部结构,以消除铝金属基板所具有的缺陷,从而改善基板的整体散热效果。
表1 为陶瓷散热基板与金属散热基板比较项目陶瓷基板(氧化铝、氮化铝)金属基板(铝、铜及其合金)热导率W/M·K 20~41 / 150~170 0.15~4.0绝缘性好差,需表面处理出一层绝缘膜热稳定性好一般自身热辐射能力强一般价格较高不高应用领域大功率小尺寸LED应用较多小功率大尺寸LED(四)各种陶瓷材料的比较:陶瓷材料的种类:Al2O3 ;3Al2O3·2SiO2莫来石;2Al2O3·2MgO·5SiO2堇青石;MgO·SiO2块滑石;2MgO·SiO2镁橄榄石;AlN;SiC;BeO①Al2O3:到目前为止,氧化铝基板是LED领域中最常用的基板材料,因为在机械、热、电性能上相对于大多数其他氧化物陶瓷,强度及化学稳定性高,且原料来源丰富,适用于各种各样的技术制造以及不同的形状。
②BeO:具有比金属铝还高的热导率,应用于需要高热导的场合,但温度超过300℃后迅速降低,最重要的是由于其毒性限制了自身的发展。
③AlN:AlN有两个非常重要的性能值:一是高的热导率,二是与Si相匹配的膨胀系数。
缺点是即使在表面有非常薄的氧化层也会对热导率产生影响,只有对材料和工艺进行严格控制才能制造出一致性较好的AlN基板。
目前大规模的AlN生产技术国内还是不成熟,相对于Al2O3比较,AlN价格相对偏高许多,这个也是制约其发展的瓶颈。
④实际生产和开发应用的陶瓷基片材料还有SiC、BN复相陶瓷、AZ氧化锆陶瓷和玻璃陶瓷等。
其中,BeO和SiC热导率很高(250W/m.K),SiC因体积电阻较小(<1013W·cm)、介电常数较大(40)、介电损耗较高(50),不利于信号的传输,且成型工艺复杂、设备昂贵,故应用范围也很小;AlN陶瓷基片是新一代高性能陶瓷基片,具有很高的热导率(理论值为319W/m.K,商品化的AlN基片热导率大于160W/m.k)、较低的介电常数(8.8)和介电损耗(<5×10-4)、以及和硅相配比的热膨胀系数(4.4×10-4/℃)等优点,但由于成本居高,一直没能大规模应用;Al2O3陶瓷基片虽然热导率不高(20W/m.K),但因其生产工艺相对简单,成本较低,价格便宜,成为目前最广泛应用的陶瓷基片。
综合以上原因,可以知道,氧化铝陶瓷由于比较优越的综合性能,在目前微电子、功率电子、LED电子、功率模块等领域还是处于主导地位而被大量运用。
表2 各种基板特性比较表下表对Al2O3和AlN的特性分析比较:表3 Al2O3的特性分析表4 AlN的特性分析(五)陶瓷基板的制造:制造高纯度的陶瓷基板是很困难的,大部分陶瓷熔点和硬度都很高,这一点限制了陶瓷机械加工的可能性,因此陶瓷基板中常常掺杂熔点较低的玻璃用于助熔或者粘接,使最终产品易于机械加工。
Al2O3、BeO、AlN基板制备过程很相似,将基体材料研磨成粉直径在几微米左右,与不同的玻璃助熔剂和粘接剂(包括粉体的MgO、CaO)混合,此外还向混合物中加入一些有机粘接剂和不同的增塑剂再球磨防止团聚使成分均匀,成型生瓷片,最后高温烧结。
目前陶瓷成型主要有如下几种方法:●辊轴轧制:将浆料喷涂到一个平坦的表面,部分干燥以形成黏度像油灰状的薄片,再将薄片送入一对大的平行辊轴中轧碾得到厚度均匀的生瓷片。
●流延成型:浆料通过锋利的刀刃涂复在一个移动的带上形成薄片。
与其他工艺相比这是一种低压的工艺。
●粉末压制:粉末在硬模具腔内并施加很大的压力(约138MPa)下烧结,尽管压力不均匀可能产生过度翘曲但这一工艺生产的烧结件非常致密,容差较小。
●等静压粉末压制这种工艺使用周围为水或者为甘油的模及使用高达69MPa的压力这种压力更为均匀所制成的部件翘曲更小。
●挤压成型:浆料通过模具挤出这种工艺使用的浆料黏度较低,难以获得较小容差,但是这种工艺非常经济,并且可以得到比其他方法更薄的部件。
(六)陶瓷散热基板种类及其生产工艺概述:现阶段较普遍的陶瓷散热基板种类共有LTCC、HTCC、DBC、DPC四种,其中HTCC属于较早期发展之技术,但由于其较高的工艺温度(1300~1600℃),使其电极材料的选择受限,且制作成本相当昂贵,这些因素促使LTCC的发展,LTCC虽然将共烧温度降至约850℃,但其尺寸精确度、产品强度等技术上的问题尚待突破。
而DBC与DPC则为近几年才开发成熟,且能够量产化的专业技术,但对于许多人来说,此两项专业的工艺技术仍然很陌生,甚至可能将两者误解为同样的工艺。
DBC乃利用高温加热将Al2O3与Cu板结合,其技术瓶颈在于不易解决Al2O3与Cu 板间微气孔产生之问题,这使得该产品的量产能量与良率受到较大的挑战,而DPC技术则是利用直接披覆技术,将Cu沉积于Al2O3基板之上,其工艺结合材料与薄膜工艺技术,其产品为近年最普遍使用的陶瓷散热基板。
然而其材料控制与工艺技术整合能力要求较高,这使得跨入DPC产业并能稳定生产的技术门槛相对较高,下文将针对四种陶瓷散热基板的生产流程做进一步的说明,进而更加瞭解四种陶瓷散热基板制造过程的差异。
1、LTCC (Low-Temperature Co-fired Ceramic):LTCC 又称为低温共烧多层陶瓷基板,此技术须先将无机的氧化铝粉与约30%~50%的玻璃材料加上有机黏结剂,使其混合均匀成为泥状的浆料,接着利用刮刀把浆料刮成片状,再经由一道干燥过程将片状浆料形成一片片薄薄的生胚,然后依各层的设计钻导通孔,作为各层讯号的传递,LTCC内部线路则运用网版印刷技术,分别于生胚上做填孔及印制线路,内外电极则可分别使用银、铜、金等金属,最后将各层做叠层动作,放置于850~900℃的烧结炉中烧结成型,即可完成。
主要工艺为:配料、制浆、流延、切割、冲孔、丝印填孔、丝印、叠压、脱脂烧结、划片(金刚石和CBN切刀,激光等设备)。
详细制造过程如下图LTCC生产流程图2:2、HTCC (High-Temperature Co-fired Ceramic)HTCC又称为高温共烧多层陶瓷,生产制造过程与LTCC极为相似,主要的差异点在于HTCC 的陶瓷粉末并无须加入玻璃材质,因此,HTCC的必须再高温1300~1600℃环境下干燥硬化成生胚,接着同样钻上导通孔,以网版印刷技术填孔与印制线路,因其共烧温度较高,使得金属导体材料的选择受限,其主要的材料为熔点较高但导电性却较差的钨、钼、锰…等金属,最后再叠层烧结成型。
详细制造过程如上图LTCC生产流程图。
3、DBC (Direct Bonded Copper):DBC直接接合铜基板,将高绝缘性的Al2O3或AlN陶瓷基板的单面或双面覆上铜金属后,经由高温1065~1085℃的环境加热,使铜金属因高温氧化、扩散与Al2O3或AlN材质产生(Eutectic) 共晶熔体,使铜金与陶瓷基板黏合,形成陶瓷复合金属基板,最后依据线路设计,以蚀刻方式备制线路,详细制造过程如下图DBC生产流程图2:直接敷铜技术是利用铜的含氧共晶液直接将铜敷接在陶瓷上,其基本原理就是敷接过程前或过程中在铜与陶瓷之间引入适量的氧元素,在1065℃~1083℃范围内,铜与氧形成Cu-O共晶液,DBC技术利用该共晶液一方面与陶瓷基板发生化学反应生成CuAlO2或CuAl2O4金相,另一方面浸润铜箔实现陶瓷基板与铜板的结合。