高考模拟题复习试卷习题资料高考数学试卷理科附详细答案12238

合集下载

2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)

2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)

2024年高考第三次模拟考试数学(理科)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,6【答案】A【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由260x x -≥,即()60x x -≥,解得6x ≥或0x ≤,所以{}(][)260,06,B x x x ∞∞=-≥=-⋃+,又{}24A x x =-≤≤,所以[]2,0A B ⋂=-.故选:A 2.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .14【答案】C【分析】运用复数代数运算及两复数相等的性质求解即可.【详解】由题意知,22231(i)i=i2422z a a=+=-+,所以23142a⎧-=⎪⎪=,解得12a=.故选:C.3.如图,已知AM是ABC的边BC上的中线,若AB a=,AC b=,则AM等于()A.()12a b-B.()12a b--C.()12a b+D.()12a b-+【答案】C【分析】根据平面向量线性运算法则计算可得.【详解】因为AM是ABC的边BC上的中线,所以12CM CB=,所以12AM AC CM AC CB=+=+()()()111222AC A CB A AC aBA b=+-=+=+.故选:C4.已知函数()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期为2π,直线π3x=是()f x图象的一条对称轴,则()f x的单调递减区间为()A.()π5π2π,2πZ66k k k⎛⎤-+∈⎥⎝⎦B.()5π2π2π,2πZ33k k k⎛⎤--∈⎥⎝⎦C.()4ππ2π,2πZ33k k k⎛⎤--∈⎥⎝⎦D.()π2π2π,2πZ33k k k⎛⎤-+∈⎥⎝⎦【答案】B【分析】根据()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期确定ω的值,根据函数的对称轴求出ϕ,结合正切函数的单调性,列出不等式,即可求得答案.【详解】由于()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象是将()tan y x ωϕ=+的图象在x 轴下方部分翻折到x 轴上方,且()tan y x ωϕ=+π0,02ωϕ⎛⎫><<⎪⎝⎭仅有单调递增区间,故()()tan f x x ωϕ=+和()tan y x ωϕ=+的最小正周期相同,均为2π,则π12π,2ωω=∴=,即()1tan 2f x x ϕ⎛⎫=+ ⎪⎝⎭,又直线π3x =是()f x 图象的一条对称轴,则1π1π,Z 232k k ϕ⋅+=∈,即1ππ,Z 26k k ϕ=-∈,结合π02ϕ<<,得π3ϕ=,故()1πtan 23f x x ⎛⎫=+ ⎪⎝⎭,令π1πππ,Z 223k x k k -<+≤∈,则5π2π2π2π,Z 33k x k k -<≤-∈,即()f x 的单调递减区间为()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦,故选:B5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件【答案】A【分析】根据充分性、必要性的定义,结合直线的斜率是否存在进行判断即可.【详解】当直线的斜率等于0时,直线的方程为1y =,代入方程224x y +=中,得x =,显然CD =;当直线的不存在斜率时,直线的方程为1x =,代入方程224x y +=中,得y =CD =因此是必要而不充分条件,故选:A6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种【答案】B【分析】根据题意,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,剩下的三人安排在其他三个名次,②丙不是最后一名,丙丁需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案.【详解】根据题意,丙丁都没有得到冠军,而丁不是最后一名,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,即丁有3种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有1863=⨯种名次排列情况;②丙不是最后一名,丙丁需要排在第二、三、四名,有23A 6=种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:B .7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.【答案】C【分析】先求出函数的定义域和奇偶性,排除BD ,再求出特殊点的函数值,得到答案.【详解】()πln sin ln cos 2x x x x f x x x⎛⎫⋅- ⎪⋅⎝⎭==定义域为()(),00,∞-+∞U ,且()()()ln cos ln cos x x x x f x f x x x-⋅-⋅-==-=--,所以函数()f x 是奇函数,图象关于原点中心对称,排除B 、D .又()ln 2cos 2202f ⋅=<,故A 错误.故选:C .8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α,则平面α与半球底面之间的几何体的体积是()A .3π24R B .3π24R C .3π12R D .3π12R 【答案】C 【分析】分别求得面α截圆锥时所得小圆锥的体积和平面α与圆柱下底面之间的部分的体积,结合祖暅原理可求得结果.【详解】 平面α截圆柱所得截面圆半径2r =,∴平面α截圆锥时所得小圆锥的体积2311ππ3212V r R R =⋅=,又平面α与圆柱下底面之间的部分的体积为232πV R R R =根据祖暅原理可知:平面α与半球底面之间的几何体体积33321πππ21212V V V R R R =-=-=.故选:C.9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<【答案】B【分析】用定义证明函数()f x 的奇偶性及在()0,1上的单调性,利用函数()f x 的奇偶性及单调性,对数函数ln y x =的性质及对数运算可得结果.【详解】因为函数()f x 的定义域为{}0x x ≠,又()()ln ln f x x x f x -=-==,所以()f x 为偶函数,当01x <<时,任取12x x >,()()12121221ln ln ln ln ln ln 0f x f x x x x x x x -=-=-=-<,即()()12f x f x <,所以()f x 在()0,1上为减函数,因为31ln2ln02>>>,所以()()()113ln ln2ln2ln2ln 22a f f f f f c-⎛⎫⎛⎫===-=<= ⎪ ⎪⎝⎭⎝⎭,即a c <,设3401,1x x <<<,则()4444ln ln ln f x x x x ===,()3333ln ln ln f x x x x ===-,若()()34f x f x =,则34ln ln x x -=,所以341x x =,因为2e ln 2ln212=->,所以22e 11ln e 22ln2ln 2b f f f ⎛⎫ ⎪⎛⎫⎛⎫=== ⎪ ⎪⎪-⎝⎭⎝⎭ ⎪ ⎪⎝⎭,又()21ln21ln202ln22ln2--=>--,即11ln202ln2>>>-,所以()1ln22ln2f f ⎛⎫< ⎪-⎝⎭,即b a <,故选:B.10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a=,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个【答案】B 【分析】由81a=,利用递推关系,分类讨论逆推出1a 的不同取值,进而可得答案.【详解】若81a =,又1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,根据上述运算法进行逆推,可得72a =,64a =,所以58a =或51a =;若58a =,则4316,32a a ==或35a =;当332a =时,2164,128a a ==或121a =;若35a =时,2110,20a a ==或13a =;当51a =,则4322,4,8a a a ===或21a =;当28a =时,116a =;当21a =时,12a =,故81a=时,1a 的所有可能的取值集合{}2,3,16,20,21,128M =即集合M 中含有6个元素.故选:B11.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为C 的离心率是()AB .32CD .3【答案】B【分析】根据斜率及双曲线的对称性得12BF F △为等边三角形,再根据同角间关系求解三角函数值,进而用正弦定理求出121410,33AF c AF c ==,由双曲线定义可得423c a =,从而得到离心率.【详解】由题意,直线1BF12π3BF F ∴∠=,又12BF BF =,所以12BF F △为等边三角形,故12122BF BF F F c ===,2112π2π,33BF F F F A ∠=∠=,在12AF F △中,21tan 0F F A ∠>,则21F F A ∠为锐角,则212111sin 14F F A F F A ∠=∠=,212πsin sin 3A F F A ⎛⎫=+∠= ⎪⎝⎭由正弦定理,12121221sin sin sin F F AF AF AF F AF F A==∠∠,=∴121410,33AF c AF c ==,由122AF AF a -=,得423c a =,32c e a ∴==.故答案选:B .12.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取()()2π2πsin,cos 33f x xg x x ==可判断B ,对于D ,通过观察选项可以推断()f x 很可能是周期函数,结合()()()(),f x g y g x f y 的特殊性及一些已经证明的结论,想到令1y =-和1y =时可构建出两个式子,两式相加即可得出()()()11f x f x f x ++-=-,进一步得出()f x 是周期函数,从而可求()20231n f n =∑的值.【详解】解:对于A ,令0x y ==,代入已知等式得()()()()()000000f f g g f =-=,得()00f =,故A错误;对于B ,取()()2π2πsin,cos 33f x xg x x ==,满足()()()()()f x y f x g y g x f y -=-及()()210f f -=≠,因为()3cos 2π10g ==≠,所以()g x 的图象不关于点()3,0对称,所以函数()21g x +的图象不关于点()1,0对称,故B 错误;对于C ,令0y =,1x =,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()100g -=,()01g =,再令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()00f =,()01g =代入上式,得()()f y f y -=-,所以函数()f x 为奇函数.令1x =,1y =-,代入已知等式,得()()()()()21111f f g g f =---,因为()()11f f -=-,所以()()()()2111f f g g =-+⎡⎤⎣⎦,又因为()()()221f f f =--=-,所以()()()()1111f f g g -=-+⎡⎤⎣⎦,因为()10f ≠,所以()()111g g +-=-,故C 错误;对于D ,分别令1y =-和1y =,代入已知等式,得以下两个等式:()()()()()111f x f x g g x f +=---,()()()()()111f x f x g g x f -=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,即:()()()12f x f x f x =-+-+,有:()()()()()()11120f x f x f x f x f x f x -+=++--+-+=,即:()()12f x f x -=+,所以()f x 为周期函数,且周期为3,因为()11f =,所以()21f -=,所以()()221f f =--=-,()()300f f ==,所以()()()1230f f f ++=,所以()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑ ,故D 正确.故选:D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.【答案】3【分析】根据n S 求得n a ,再结合对勾函数的单调性,即可求得结果.【详解】因为2n S n n =+,则当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=,又当1n =时,112a S ==,满足2n a n =,故2n a n =;则9n n S a +29191222n n n n n ++⎛⎫==++ ⎪⎝⎭,又9y x x=+在()1,3单调递减,在()3,+∞单调递增;故当3n =时,9n n+取得最小值,也即3n =时,9n n S a +取得最小值.故答案为:3.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.【答案】9542ω≤≤【分析】根据给定条件,利用辅助角公式化简函数()f x ,再利用正弦函数的性质求解即得.【详解】依题意,函数π()2sin(13f x x ω=+-,由()0f x =,得π1sin()32x ω+=,则ππ2π36x k ω+=+或π5π2π,Z 36x k k ω+=+∈,由[0,2π]x ∈,得πππ[,2π333x ωω+∈+,由()f x 在[0,2π]上恰有5个零点,得29ππ37π2π636ω≤+<,解得935412ω≤<,由3ππ22πx ω+≤-≤,得5ππ66x ωω-≤≤,即函数()f x 在5ππ[,66ωω-上单调递增,因此5ππ[,]ππ[,]41566ωω-⊆-,即45π6πω≤--,且π6π15ω≥,解得502ω<≤,所以正实数ω的取值范围为9542ω≤≤.故答案为:9542ω≤≤15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)【答案】15【分析】根据条件,两边求导得到12342345415(23)2345x a a x a x a x a x +=++++,再取=1x -,即可求出结果.【详解】因为52345012345(23)x a a x a x a x a x a x +=+++++,两边求导可得12342345415(23)2345x a a x a x a x a x +=++++,令=1x -,得到23454115(23)2345a a a a a -=-+-+,即12345234515a a a a a -+-+=,故答案为:15.16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数②(0,),()0x f x ∃∈+∞>③41(1)e f >④0x ∀>时,41()e xf x <【答案】②③【分析】根据构造函数的规律由令()()4e xg x f x =,再结合奇函数的性质可得①,求导分析单调性和极值可得②③④.【详解】令()()4e x g x f x =,则()()()()()4444e e e 4x x x g x f x f x f x f x '''=+=+⎡⎤⎣⎦,若()f x 是奇函数,则()()f x f x -=-,取0x =时,即()00f =,但(01f =),故①错误;因为4e 0,(0,)x x >∈+∞恒成立,且()4()0f x f x '+>,所以()0g x '>恒成立,()g x 在(0,)+∞上为单调递增函数,所以()()()()()44110e 101e g g f f f >⇒>⇒>,故②正确;由②可知,③正确;因为()g x 在(0,)+∞上为单调递增函数,所以当0x >时有()()()()0,001g x g g f >==,所以()()441e 1e x xf x f x >⇒>,故④错误;故答案为:②③三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC 的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.【答案】(1)35;(2)4.【详解】(1)由()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =-- 垂直,得0m n ⋅=,...............1分即sin (5sin 6sin )(5sin 5sin )(sin sin )0B B C A C C A -++-=,整理得2226sin sin sin sin sin 5B C A B C +-=,...............2分在ABC 中,由正弦定理得22265b c a bc +-=,...............3分由余弦定理得2223cos 25b c a A bc +-==,所以cos A 的大小为35................5分(2)由(1)知,在ABC 中,3cos 5A =,则4sin 5A ==,...............6分由22265b c a bc +-=,得22266482555a b c bc bc bc bc ==+-≥-=,即10bc ≤,...................................................................................................8分当且仅当b c =时取等号,...................................................................................................9分因此ABC 的面积12sin 425ABC S bc A bc ==≤ ,..........................................................11分所以ABC 的面积的最大值是4.....................................................12分18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828【答案】(1)列联表见解析,有99%的把握认为在此社区内“关注流行语与性别有关”;(2)35【详解】(1)依题意,关注流行语居民人数为81410638+++=,不关注流行语居民人数为81422+=,...................................................................................................2分所以22⨯列联表如下:男女合计关注流行语30838不关注流行语101222合计4020602K 的观测值2260(3012108)7.03 6.63540203822K ⨯-⨯=≈>⨯⨯⨯,................................................................4分所以有99%的把握认为在此社区内“关注流行语与性别有关”...................5分(2)依题意,男居民选出406660⨯=(人),.......................................6分记为a b c d ,,,,女居民选出2人,记为,E F ,从6人中任选3人的样本空间{,,,,,,,,,,abc abd abE abF acd acE acF adE adF aEF Ω=,,,,,,,,,}bcd bcE bcF bdE bdF bEF cdE cdF cEF dEF ,共20个,.................................9分选出的3人为2男1女的事件{,,,,,,,,,,,}A abE abF acE acF adE adF bcE bcF bdE bdF cdE cdF =,共12个,...........11分所以选出的3人为2男1女的概率123()205P A ==......................................12分19.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.【答案】(1)证明见解析(2)存在;4AP =-【详解】(1)证明:如图,设,M N 分别为,EF AB 边的中点,连接,,MN DM CN ,..1分因为⊥AE 平面,,5,4,3ABC AE CD BF AE CD BF ===∥∥,所以42AE BFMN CD +===,//MN BF ,进而MN CD ∥,即四边形CNMD 为平行四边形,可得MD CN ∥,......................................3分在底面正三角形ABC 中,N 为AB 边的中点,则CN AB ⊥,......................................4分又⊥AE 平面ABC ,且CN ⊂平面ABC ,所以AE CN ⊥.由于⋂=AE AB A ,且AE AB ⊂、平面ABFE ,所以CN ⊥平面ABFE ......................5分因为,MD CN CN ⊥∥平面ABFE ,则MD ⊥平面ABFE ,又MD ⊂平面DEF ,则平面DEF ⊥平面AEFB .......................................6分(2)如图,以点A为坐标原点,建立空间直角坐标系,则()())0,0,5,0,2,4,E D F .设点()0,0,P t,则)()()1,1,0,2,1,0,2,4DF DE DP t =--=-=--..................8分设平面PDF 的法向量为()1111,,n x y z = ,平面EDF 的法向量为()2222,,n x y z =.由题意知110,0,n DF n DP ⎧⋅=⎪⎨⋅=⎪⎩即()111110,240,y z y t z --=-+-=⎪⎩令12z =,则114,y t x =-=14,2n t ⎫=-⎪⎭ ,......................................9分220,0,n DF n DE ⎧⋅=⎪⎨⋅=⎪⎩即222220,20,y z y z --=-+=⎪⎩取22z =,则)22n = ,...............................10分由121212π1cos ,cos 32n n n n n n ⋅===,28290t t +-=,解得:4t =±-,由于点P 为线段AE 上一点,故05t ≤≤,所以4t =-,......................................11分当4t =-时,二面角P DF E --所成角为锐角,即存在点P 满足,此时4AP =.......................................12分20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)4【详解】(1)点31,2P ⎛⎫⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴,则有()1,0F 设椭圆C 的焦距为()20c c >,则1c =,.......................................................................1分点31,2P ⎛⎫ ⎪⎝⎭代入椭圆方程,有()222219191441a b a a +=+=-,解得2a =,则222413b a c =-=-=,所以椭圆C 的方程为22143x y +=...................................................................................3分(2)(ⅰ)设直线l 的方程为y kx m =+,由22143y y k x x m =+⎧⎪⎨⎪+⎩=,消去y ,整理得()2223484120kxkmx m +++-=,因为l 交椭圆C 于,A B 两点,所以()22Δ48430k m =-+>,设()()1122,,,A x y B x y ,所以21212228412,3434km m x x x x k k -+=-=++, (5)分因为直线AF 和直线BF 关于PF 对称,所以()()()()12121212121212220111111AF BF kx x m k x x my y kx m kx m k k x x x x x x +-+-+++=+=+==------所以()()()21212224128222203434m kmkx x m k x x m k m k m k k --+-+-=⨯+-⨯-=++所以222282488860km k km k m mk m --+--=解得4m k =-................................................................................................................7分所以直线l 的方程为()44y kx k k x =-=-,所以直线l 过定点()4,0................................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.......8分(ⅱ)设直线l 的方程为4x ny =+,由224143x ny x y =+⎧⎪⎨+=⎪⎩,消去x ,整理得()223424360n y ny +++=,因为l 交椭圆C 于,A B 两点,所以()()()222Δ241443414440n n n =-+=->,解得24n >,........................................................................................................9分1212222436,3434n y y y y n n +=-=++,所以12y y -=所以121331822ABFS y y =⨯-=⨯⨯ .............................10分令()24,0n t t -=>则18184ABC S ==≤,当且仅当163t =时取等号,所以ABF △面积的最大值为4......................................................................12分21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.【答案】(1)单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;极大值21(1)f e =,极小值(0)0f =;(2)(]0,2e 【详解】(1)当2a =时,()22=exx f x ()()2222222e e 22(1)=e e x x xxx x x x f x ⋅-⋅⋅--'=......................................2分令()=0f x ',解得0x =或1x =,......................................3分所以()()x f x f x '、、的关系如下表:x(,0)-∞0(0,1)1(1,)+∞()f x '-+-()f x 单调递减0单调递增21e 单调递减所以函数()f x 的单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;......................................4分极大值21(1)f e=,极小值(0)0f =;......................................5分(2)[]222()cos ln ()ln 4cos ln 2ln 4e eaa x xx x f x f x a x x a x x ⎛⎫-≥-⇔-≥- ⎪⎝⎭ln 2e 2(ln 2)cos(ln 2)0a x x a x x a x x -⇔----≥......................................6分令()e 2cos t g t t t =--,其中ln 2a x x t -=,设l (2)n a x x F x =-,0a >2()2a a x x xF x --='=令()0F x '>,解得:02ax <<,......................................8分所以函数()F x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,max ()ln 22a a F x F a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()F x →-∞,所以函数()F x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦;......................................9分又()e 2sin t g t t '=-+,设()e 2sin t h t t =-+,,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦,则()e cos t h t t '=+,当0t ≤时,e 1,sin 1t t ≤≤,且等号不同时成立,即()0g t '<恒成立;当0t >时,e 1,cos 1t t >≥-,即()0h t '>恒成立,所以()h t 在(0,)+∞上单调递增,又(0)1g '=-,(1)e 2sin10g '=-+>,所以存在0(0,1)t ∈,使得0()0g t '=,当00t t <<时,()0g t '<,当0t t >时,()0g t '>,所以函数()g t 在0(,)t -∞上单调递减,在0(,)t +∞上单调递增,且(0)0g =......................................11分当ln 02aa a -≤即02e a <≤时,()0g t ≥恒成立,符合题意;当ln02a a a ->即2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,必有1()0g t <,不符合题意.综上所述:a 的取值范围为(]0,2e ......................................12分(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C 与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.【答案】(1)C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=.(2)存在,坐标为33,,4444⎛⎛--- ⎪ ⎪⎝⎭⎝⎭【详解】(1)由题设曲线C 的参数方程,消参得()2214x y -+=,............................2分由cos ,sin x y ρθρθ==,且)πsin sin cos 4ρθρθρθ⎛⎫-=-=⎪⎝⎭y =30x y -+=,......................................4分∴C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=...............................5分(2)当0y =时,()33,0x A =-⇒-,易知()12cos ,2sin B a a +,设(),M x y ,可得()()3,,2cos 1,2sin AM x y MB a x a y =+=-+-,......................................6分32cos 1cos 1,2sin sin x a x x a AM MB y a y y a +=-+=-⎧⎧=⇒⎨⎨=-=⎩⎩(a 是参数),消参得方程为()2211,x y ++=......................................8分且1,2,1,3E C C E C E r r r r r r ==-=+=,则圆心距离2,d ==得C E C E r r d r r -<<+,则两圆相交,故两圆存在公共点,联立方程组()()22221114x y x y ⎧++=⎪⎨-+=⎪⎩,解得34x y ⎧=-⎪⎪⎨⎪=⎪⎩或34x y ⎧=-⎪⎪⎨⎪=⎪⎩,故坐标为33,,44⎛⎛--- ⎝⎭⎝⎭......................10分选修4-5:不等式选讲23.(10分)已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.【答案】(1)113x x x ⎧⎫≤≥⎨⎬⎩⎭或(2)证明见解析【详解】(1)()2122f x x x x =-+-+,当0x <时,532x -+≥,解得0x <,......................................1分当102x ≤<时,332x -+≥,解得103x ≤≤,......................................2分当112x ≤<时,12x +≥,解得x ∈∅,......................................3分当1x ≥时,532x -≥,解得1x ≥,......................................4分综上所述,()2f x ≥的解集为13x x ⎧≤⎨⎩或}1≥x .......................................5分(3)由已知可得()5301330211<12531x x x x f x x x x x -+<⎧⎪⎪-+≤≤⎪=⎨⎪+≤⎪⎪->⎩,所以当12x =时,()f x 的最小值为32...............................................................................................6分1a b ∴+=,211,24a b a b ab +⎛⎫+=∴≤= ⎪⎝⎭,当且仅当12a b ==取等,......................................8分令t ab =,则104t <≤,211()212225224a b ab a b ab ab t a b ab ab ab t +-⎛⎫⎛⎫++=++=+-=+-≥ ⎪⎪⎝⎭⎝⎭,当且仅当14t =取等,此时12a b ==.......................................10分。

高考数学模拟试卷(理科)【附答案】

高考数学模拟试卷(理科)【附答案】

高考数学模拟试卷(理科)【附答案】本试卷分第Ⅰ卷和第Ⅱ卷两部分.考试时间120分钟. 试卷总分为150分.请考生将所有试题的答案涂、写在答题纸上.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.在复平面内,复数ii4332-+-(是虚数单位)所对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2. 设集合}032|{2<--=x x x M ,{}22<=xx N ,则N C M R ⋂等于A .[]1,1-B .)0,1(-C .[)3,1D .)1,0(3.61(2)x x-的展开式中2x 的系数为A.240-B. 240C. 60-D. 60 4.“2πϕ=”是“函数()x x f cos =与函数()()ϕ+=x x g sin 的图像重合”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5. 设m 、n 为空间的两条不同的直线,α、β为空间的两个不同的平面,给出下列命题:①若m ∥α,m ∥β,则α∥β;②若m ⊥α,m ⊥β,则α∥β; ③若m ∥α,n ∥α,则m ∥n ;④若m ⊥α,n ⊥α,则m ∥n . 上述命题中,所有真命题的序号是A. ①②B. ③④C. ①③D. ②④6.数列{}n a 满足11=a , 11++=+n a a n n (*N n ∈),则201321111a a a +++ 等于 A. 20132012 B. 20134024 C. 10072013 D. 100710067. 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是A . 403k ≤≤B . <0k 或4>3kC . 3443k ≤≤D . 0k ≤或4>3k8.对数函数x y a log =(10≠>a a 且)与二次函数()x x a y --=21在同一坐标系内的图象可能是9. 已知函数31,0()9,0x x f x xx x ⎧+>⎪=⎨⎪+≤⎩,若关于x 的方程()a x x f =+22有六个不同的实根,则实数a 的取值范围是A .(]2,8B .(]2,9C .()9,8D .(]8,910. 记集合{}8,6,4,2,0=P ,{}P a a a a a a m m Q ∈++==321321,,,10100,将集合Q 中的所有元素排成一个递增数列,则此数列第68项是 A .68 B .464 C .468 D .666第Ⅱ卷二、填空题:本大题有7小题,每小题4分,共28分.把答案填在答题卷的相应位置. 11. 若某程序框图如图所示,则该程序运行后输出的值是 ▲ 12. 如图是一个几何体的三视图,则该几何体的体积是 ▲13.等比数列{n a }的前n 项和为n S ,已知123,2,3S S S 成等差数列,则等比数列{n a }的公比为___▲ __14.若实数x 、y 满足⎪⎩⎪⎨⎧+-≥≥≥-b x y x y y x 02,且2z x y =+的最小值为3,则实数b 的值为__▲15.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“黄金搭档”.已知1F 、2F 是一对“黄金搭档”的焦点,P 是它们在第一象限的交点,当 6021=∠PF F 时,这一对“黄金搭档”中双曲线的离心率是 ▲16.已知实数0,0<<b a ,且1=ab ,那么ba b a ++22的最大值为▲17. 如图,边长为1的正方形ABCD 的顶点A ,D 分别在x 轴、y轴正半轴上移动,则OB OC ⋅的最大值是 ▲ (第17题图)三.解答题:本大题共5小题,满分72分.解答应写出文字说明,证明过程或演算步骤. 18. (本题满分14分)已知函数()21)cos sin 3(cos +-=x x x x f ωωω(0>ω)的周期为π2.(Ⅰ)求ω的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,且满足a c A b 32cos 2-=,求)(B f 的值.19. 某竞猜活动有4人参加,设计者给每位参与者1道填空题和3道选择题,答对一道填空题得2分,答对一道选择题得1分,答错得0分,若得分总数大于或等于4分可获得纪念品,假定参与者答对每道填空题的概率为21,答对每道选择题的概率为31,且每位参与者答题互不影响.(Ⅰ)求某位参与竞猜活动者得3分的概率;(Ⅱ)设参与者获得纪念品的人数为ξ,求随机变量ξ的分布列及数学期望.20.如图,在四边形ABCD 中,4==AD AB ,7==CD BC ,点E 为线段AD 上的一点.现将DCE ∆沿线段EC 翻折到PAC (点D 与点P 重合),使得平面PAC ⊥平面ABCE ,连接PA ,PB . (Ⅰ)证明:⊥BD 平面PAC ;(Ⅱ)若︒=∠60BAD ,且点E 为线段AD 的中点,求二面角C AB P --的大小.21.(本题满分15分) 已知点M 到定点()0,1F 的距离和它到定直线4:=x l 的距离的比是常数21,设点M 的轨迹为曲线C . (Ⅰ)求曲线C 的轨迹方程;(Ⅱ)已知曲线C 与x 轴的两交点为A 、B ,P 是曲线C 上异于A ,B 的动点,直线AP 与曲线C 在点B 处的切线交于点D ,当点P 运动时,试判断以BD 为直径的圆与直线PF 的位置关系,并加以证明.22. 已知函数xa x x f ln )()(2-=(其中a 为常数).(Ⅰ)当0=a 时,求函数的单调区间;(Ⅱ) 当10<<a 时,设函数)(x f 的3个极值点为321x x x ,,,且321x x x <<.证明:ex x 231>+.数学试卷(理科)参考答案二、填空题(4×7=28分) 11.16 12.3 13.31 14. 4915. 3 16. 1- 17. 2 三、解答题(共72分) 18.解:(Ⅰ)()2122cos 12sin 2321cos cos sin 32++-=+-=x x x x x x f ωωωωω x x ωω2cos 212sin 23-=⎪⎭⎫ ⎝⎛-=62s i n πωx 21=∴ω ——7分(Ⅱ)解法(一)a c A b 32cos 2-=a c bca cb b 3222222-=-+⋅⇒ 整理得ac b c a 3222=-+,故232cos 222=-+=ac b c a B 6,0ππ=∴<<B B00sin )6sin()(==-=∴πB B f ——14分解法(二)a c A b 32cos 2-=A C A B sin 3sin 2cos sin 2-=⇒A B A A B sin 3)sin(2cos sin 2-+=⇒0sin 3cos sin 2=-⇒A B A 0)3cos 2(sin =-⇒B A0sin ,0≠∴<<A A π 23c o s =∴B 又6,0ππ=∴<<B B00sin )6sin()(==-=∴πB B f ——14分19解:(Ⅰ)答对一道填空题且只答对一道选择题的概率为9231)32(21223=⨯⨯⨯C , 答错填空题且答对三道选择题的概率为541)31(213=⨯(对一个4分)∴某位参与竞猜活动者得3分的概率为541354192=+; ………………… 7分 (Ⅱ)由题意知随机变量ξ的取值有0,1,2,3,4.又某位参与竞猜活动者得4分的概率为9132)31(21223=⨯⨯⨯C 某位参与竞猜活动者得5分的概率为541)31(213=⨯ ∴参与者获得纪念品的概率为547……………………… 11分 ∴)547,4(~B ξ,分布列为kk k C k P -==44)5447()547()(ξ,4,3,2,1,0=k∴随机变量ξ的数学期望ξE =27145474=⨯. ……………………… 14分 20解:(Ⅰ)连接AC ,BD 交于点O ,在四边形ABCD 中,∵4==AD AB ,7==CD BC∴ADC ABC ∆≅∆,∴BAC DAC ∠=∠, ∴BD AC ⊥又∵平面PAC ⊥平面ABCE ,且平面PAC 平面ABCE =AC ∴⊥BD 平面PAC ……… 6分(Ⅱ)如图,以O 为原点,直线OA ,OB 分别为x 轴,y 轴,平面PAC 内过O 且垂直于直线AC 的直线为z 轴建立空间直角坐标系,可设点),0,(z x P 又)0,0,32(A ,)0,2,0(B ,)0,0,3(-C ,)0,1,3(-E ,且由2=PE ,7=PC 有⎩⎨⎧=++=++-7)3(41)3(2222z x z x ,解得332==z x ,∴)332,0,332(P ………… 9分 则有)332,0,334(-=AP ,设平面PAB 的法向量为),,(c b a n =, 由⎪⎩⎪⎨⎧=⋅=⋅0,即⎩⎨⎧==x y x z 32,故可取)2,3,1(= ……… 12分又易取得平面ABC 的法向量为)1,0,0(,并设二面角C AB P --的大小为θ,∴2281)2,3,1()1,0,0(cos =⋅⋅=θ,∴4πθ=∴二面角C AB P --的大小为4π. …………………14分 21.解:(Ⅰ)设点M ()y x ,,则据题意有()214122=-+-x y x ∴化简得22143x y += 故曲线C 的方程为22143x y +=,…………5分 (Ⅱ)如图由曲线C 方程知()()0,2,0,2B A -,在点B 处的切线方程为2=x .以BD 为直径的圆与直线PF 相切.证明如下:由题意可设直线AP 的方程为(2)y k x =+(0)k ≠.则点D 坐标为(2, 4)k ,BD 中点E 的坐标为(2, 2)k .由22(2),143y k x x y =+⎧⎪⎨+=⎪⎩得2222(34)1616120k x k x k +++-=.设点P 的坐标为00(,)x y ,则2021612234k x k--=+. 所以2026834k x k -=+,00212(2)34k y k x k =+=+. ……………………………7分 因为点F 坐标为(1, 0), 当12k =±时,点P 的坐标为3(1, )2±,点D 的坐标为(2, 2)±. 直线PF x ⊥轴,此时以BD 为直径的圆22(2)(1)1x y -+= 与直线PF 相切.当12k ≠±时,则直线PF 的斜率0204114PF y kk x k==--. 所以直线PF 的方程为24(1)14ky x k =--.点E 到直线PF 的距离d =322228142||14|14|k k k k k k +-==+-. 又因为k R BD 42== ,故以BD 为直径的圆与直线PF 相切.综上得,当直线AP 绕点A 转动时,以BD 为直径的圆与直线PF 相切.………15分 22解:(Ⅰ) xx x x f 2ln )1ln 2()('-= 令0)('=x f 可得e x =.列表如下:单调减区间为()1,0,e ,1;增区间为(+∞,e .------------5分(Ⅱ)由题,xx a x a x x f 2ln )1ln 2)(()('-+-=对于函数1ln 2)(-+=x a x x h ,有22)('x ax x h -= ∴函数)(x h 在)2,0(a 上单调递减,在),2(+∞a上单调递增∵函数)(x f 有3个极值点321x x x <<, 从而012ln2)2()(min <+==a a h x h ,所以ea 2<, 当10<<a 时,0ln 2)(<=a a h ,01)1(<-=a h ,∴ 函数)(x f 的递增区间有),(1a x 和),(3+∞x ,递减区间有),0(1x ,)1,(a ,),1(3x , 此时,函数)(x f 有3个极值点,且a x =2; ∴当10<<a 时,31,x x 是函数1ln 2)(-+=xax x h 的两个零点,————9分即有⎪⎪⎩⎪⎪⎨⎧=-+=-+01ln 201ln 23311x ax x ax ,消去a 有333111ln 2ln 2x x x x x x -=-令x x x x g -=ln 2)(,1ln 2)('+=x x g 有零点ex 1=,且311x ex <<∴函数x x x x g -=ln 2)(在)1,0(e上递减,在),1(+∞e上递增要证明 ex x 231>+⇔132x e x ->⇔)2()(13x e g x g ->()()31x g x g = ∴即证0)2()()2()(1111>--⇔->x eg x g x eg x g构造函数())2()(x e g x g x F --=,⎪⎪⎭⎫⎝⎛e F 1 =0 只需要证明]1,0(ex ∈单调递减即可.而()2)2ln(2ln 2+-+='x ex x F ,()0)2()22(2''>--=x ex x ex F ()x F '∴在]1,0(e 上单调递增, ()01=⎪⎪⎭⎫⎝⎛<'∴e F x F ∴当10<<a 时,ex x 231>+.————————15分。

2023年高中数学理科高考模拟试题4(附答案)

2023年高中数学理科高考模拟试题4(附答案)

2023年高中数学理科高考模拟试题(附答案)姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间90分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)1.如图,已知全集,集合,则图中阴影部分表示的集合的子集个数为()A、5;B、6;C、7;D、82.已知x,y为正数,且xy=1,则的最小值为()A.4;B.6;C.2;D.3.已知为执行如图所示的程序框图输出的结果,则二项式的展开式中含项的系数是()A.48;B.72;C.-120;D.-1924.已知椭圆的离心率为,直线与椭圆交于两点且线段的中点为,则直线的斜率为()A.;B.; C.;D.5.函数的定义域为开区间,导函数在内的图象如下图所示,则函数在开区间内有极小值点()A.1个B.0个C.2个D.3个6.三名同学到五个社区参加社会实践活动,要求每个社区有且只有一名同学,每名同学至多去两个社区,则不同的派法共有()A.90种B.60种C.45种D.30种7.在正三棱柱中,,点E是的中点,点F是上靠近点B的三等分点,则异面直线与所成角的余弦值是()A.B.C.D.8.已知复数,在复平面内对应点分别为,,则()A.1B.C.2D.39.已知是椭圆的两个焦点,P为椭圆上一点,且,则点P到y轴的距离为()A.2B.C.D.110.已知为锐角,若,则()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二、填空题(每题5分,共25题)11.已知向量满足,且对于任意x,不等式恒成立,设的夹角为,则___________12.已知圆C1:与C2:,若C1与圆C2有且仅有一个公共点,则实数a的值为___________.13.已知函数,其中,若在区间(,)上恰有2个零点,则的取值范围是____________.14.设,使不等式取等号的的取值范围__________.15.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.且D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.评卷人得分三、综合题(每题15分,共75分)16.中内角的对边分别为,向量且(Ⅰ)求锐角的大小,(Ⅱ)如果,求的面积的最大值17.如图,在四棱柱中,底面是正方形,侧棱与底面垂直,点是正方形对角线的交点,,点,分别在和上,且.(Ⅰ)求证:∥平面;(Ⅱ)若,求的长;(Ⅲ)在(Ⅱ)的条件下,求二面角的余弦值.18.已知数列的前项和,是等差数列,且(1)求数列的通项公式;(2)令求数列的前项和.19.已知椭圆的离心率,短轴长为.(1)求椭圆方程;(2)若椭圆与轴正半轴、轴正半轴的交点分别为、,经过点且斜率k的直线与椭圆交于不同的两点、.是否存在常数,使得向量20.已知函数(1)讨论当a>0时,函数的单调性;(2)若曲线上两点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,求实数a的取值范围.参考答案一、选择题第1题第2题第3题第4题第5题D A D AA二、填空题第11题:第12题:6,或-6;第13题:或,第14题:第15题:三、解答题第16题:(1)即:第6题第7题第8题第9题第10题ABBCA为锐角(2)代入上式,得到,(当且仅当a=c=2时成立)(当且仅当a=c=2时成立)第17题:(I)证明:取,连结和,因为,EE1‖BC,BC=AD,BC‖AD,所以EE1=AD,EE1‖AD,所以四边形为平行四边形;所以AE1‖DE,在矩形中,A1F=BE1,所以四边形为平行四边形,所以B1F‖AE1,B1F‖DE,因为DE⊂平面BDE,B1F⊄BDE所以B1F‖平面BDE(2)连接,在四棱柱中,平面,因为,,所以平面,所以,已知得,平面,所以,,在△与△中,,,所以△∽△,所以,即。

2023年高考数学模拟考试卷及答案解析(理科)

2023年高考数学模拟考试卷及答案解析(理科)

2023年高考数学模拟考试卷及答案解析(理科)第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为()A .1B .1-C .15D .15-【答案】D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-,故实部与虚部的和为431555-+=-,故选:D.2.已知()f x =A ,集合{12}B x ax =∈<<R ∣,若B A ⊆,则实数a 的取值范围是()A .[2,1]-B .[1,1]-C .(,2][1,)-∞-+∞ D .(,1][1,)∞∞--⋃+【答案】B【分析】先根据二次不等式求出集合A ,再分类讨论集合B ,根据集合间包含关系即可求解.【详解】()f x =A ,所以210x -≥,所以1x ≥或1x ≤-,①当0a =时,{102}B x x =∈<<=∅R∣,满足B A ⊆,所以0a =符合题意;②当0a >时,12{}B x x a a=∈<<R∣,所以若B A ⊆,则有11a≥或21a≤-,所以01a <≤或2a ≤-(舍)③当0<a 时,21{}B x x aa=∈<<R ∣,所以若B A ⊆,则有11a≤-或21a≥(舍),10a -≤<,综上所述,[1,1]a ∈-,故选:B.3.在研究急刹车的停车距离问题时,通常假定停车距离等于反应距离(1d ,单位:m )与制动距离(2d ,单位:m )之和.如图为某实验所测得的数据,其中“KPH”表示刹车时汽车的初速度v (单位:km/h ).根据实验数据可以推测,下面四组函数中最适合描述1d ,2d 与v 的函数关系的是()A .1d v α=,2d =B .1d v α=,22d v β=C .1d =,2d v β=D .1d =,22d vβ=【答案】B【分析】设()()1d v f v =,()()2d v g v =,根据图象得到函数图象上的点,作出散点图,即可得到答案.【详解】设()()1d v f v =,()()2d v g v =.由图象知,()()1d v f v =过点()40,8.5,()50,10.3,()60,12.5,()70,14.6,()80,16.7,()90,18.7,()100,20.8,()110,22.9,()120,25,()130,27.1,()140,29.2,()150,31.3,()160,33.3,()170,35.4,()180,37.5.作出散点图,如图1.由图1可得,1d 与v 呈现线性关系,可选择用1d v α=.()()2d v g v =过点()40,8.5,()50,16.2,()60,23.2,()70,31.4,()80,36,()90,52,()100,64.6,()110,78.1,()120,93,()()140,123,()150,144.1,()160,164.3,()170,183.6,()180,208.作出散点图,如图2.由图2可得,2d 与v 呈现非线性关系,比较之下,可选择用22d v β=.故选:B.4.已知函数()ln ,0,e ,0,x xx f x x x x ⎧>⎪=⎨⎪≤⎩则函数()1y f x =-的图象大致是()A .B.C .D .【答案】B【分析】分段求出函数()1y f x =-的解析式,利用导数判断其单调性,根据单调性可得答案.【详解】当10x ->,即1x <时,ln(1)(1)1x y f x x-=-=-,221(1)ln(1)1ln(1)1(1)(1)x x x x y x x -⋅-+--+--'==--,令0'>y ,得1e x <-,令0'<y ,得1e 1x -<<,所以函数()1y f x =-在(,1e)-∞-上为增函数,在(1e,1)-上为减函数,由此得A 和C 和D 不正确;当10x -≤,即1x ≥时,1(1)(1)e x y f x x -=-=-,()11(1)e (1)e x x y x x --'''=-+-11e (1)e x x x --=---=1e (2)xx ---,令0'>y ,得2x >,令0'<y ,得12x ≤<,所以函数()1y f x =-在(2,)+∞上为增函数,在[1,2)上为减函数,由此得B 正确;故选:B5.若函数()f x 存在一个极大值()1f x 与一个极小值()2f x 满足()()21f x f x >,则()f x 至少有()个单调区间.A .3B .4C .5D .6【答案】B【分析】根据单调性与极值之间的关系分析判断.【详解】若函数()f x 存在一个极大值()1f x 与一个极小值()2f x ,则()f x 至少有3个单调区间,若()f x 有3个单调区间,不妨设()f x 的定义域为(),a b ,若12a x x b <<<,其中a 可以为-∞,b 可以为+∞,则()f x 在()()12,,,a x x b 上单调递增,在()12,x x 上单调递减,(若()f x 定义域为(),a b 内不连续不影响总体单调性),故()()21f x f x <,不合题意,若21a x x b <<<,则()f x 在()()21,,,a x x b 上单调递减,在()21,x x 上单调递增,有()()21f x f x <,不合题意;若()f x 有4个单调区间,例如()1f x x x =+的定义域为{}|0x x ≠,则()221x f x x-'=,令()0f x ¢>,解得1x >或1x <-,则()f x 在()(),1,1,-∞-+∞上单调递增,在()()1,0,0,1-上单调递减,故函数()f x 存在一个极大值()12f -=-与一个极小值()12f =,且()()11f f -<,满足题意,此时()f x 有4个单调区间,综上所述:()f x 至少有4个单调区间.故选:B.6.已知实数x 、y 满足10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,则918222y x z x y --=+--的最小值为()A .132B .372C .12D .2【答案】A【分析】由约束条件作出可行域,求出22y t x -=-的范围,再由91821922y x z t x y t --=+=+--结合函数的单调性求得答案.【详解】解:令22y t x -=-,则91821922y x z t x y t --=+=+--,由10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩作出可行域如图,则()()()2,12,1,0,1A B C ---,设点()(),2,2P x y D ,,其中P 在可行域内,2=2PD y t k x -∴-=,由图可知当P 在C 点时,直线PD 斜率最小,min 121=022CD t k -==-∴当P 在B 点时,直线PD 斜率不存在,∴1,2t ⎡⎫∈+∞⎪⎢⎣⎭∵19z t t =+在1,2t ⎡⎫∈+∞⎪⎢⎣⎭上为增函数,∴当12t =时min 132z =.故选:A .7.在正方体1111ABCD A B C D -中,点P 在正方形11BCC B 内,且不在棱上,则()A .在正方形11DCC D 内一定存在一点Q ,使得PQ AC ∥B .在正方形11DCCD 内一定存在一点Q ,使得PQ AC⊥C .在正方形11DCC D 内一定存在一点Q ,使得平面1PQC ∥平面ABC D .在正方形11DCC D 内一定存在一点Q ,使得AC ⊥平面1PQC 【答案】B【分析】对于A ,通过作辅助线,利用平行的性质,推出矛盾,可判断A;对于B ,找到特殊点,说明在正方形11DCC D 内一定存在一点Q ,使得PQ AC ⊥,判断B;利用面面平行的性质推出矛盾,判断C;利用线面垂直的性质定理推出矛盾,判断D.【详解】A 、假设在正方形11DCC D 内一定存在一点Q ,使得PQ AC ∥,作,PE BC QF CD ⊥⊥,垂足分别为,E F ,连接,E F ,则PEFQ 为矩形,且EF 与AC 相交,故PQ EF ∥,由于PQ AC ∥,则AC EF ∥,这与,AC EF 相交矛盾,故A 错误;B 、假设P 为正方形11BCC B 的中心,Q 为正方形11DCC D 的中心,作,PH BC QG CD ⊥⊥,垂足分别为,H G ,连接,H G ,则PHGQ 为矩形,则PQ HG ∥,且,H G 为,BC CD 的中点,连接,GH BD ,则GH BD ∥,因为AC BD ⊥,所以GH AC ⊥,即PQ AC ⊥,故B 正确;C 、在正方形11DCC D 内一定存在一点Q ,使得平面1PQC ∥平面ABC ,由于平面ABC ⋂平面11DCC D CD =,平面1PQC 平面111DCC D C Q =,故1CD C Q ∥,而11C D CD ∥,则Q 在11C D 上,这与题意矛盾,C 错误;D 、假设在正方形11DCC D 内一定存在一点Q ,使得AC ⊥平面1PQC ,1C Q ⊂平面1PQC ,则1AC C Q ⊥,又1CC ⊥平面,ABCD AC Ì平面ABCD ,故1C C AC ⊥,而11111,C C C Q C C C C Q =⊂ ,平面11DCC D ,故AC ⊥平面11DCC D ,由于AD ⊥平面11DCC D ,故,C D 重合,与题意不符,故D 错误,故选∶B8.对于平面上点P 和曲线C ,任取C 上一点Q ,若线段PQ 的长度存在最小值,则称该值为点P 到曲线C 的距离,记作(,)d P C .若曲线C 是边长为6的等边三角形,则点集{(,)1}D Pd P C =≤∣所表示的图形的面积为()A .36B .36-C .362π-D .36π-【答案】D【分析】根据题意画出到曲线C 的距离为1的边界,即可得到点集的区域,即可求解.【详解】根据题意作出点集(){}|1D P d P C =≤,的区域如图阴影所示,其中四边形ADEC ,ABKM ,BCFG 为矩形且边长分别为1,6,圆都是以1为半径的,过点I 作IN AC ⊥于N ,连接A I ,则1NI =,30NAI ∠= ,所以AN =则HIJ 是以6-为边长的等边三角形,矩形ABKM 的面积1166S =⨯=,2π3DAM ∠=,扇形ADM 的面积为212ππ1233S =⨯⨯=,21sin 602ABC S AB =⨯⋅ 21622=⨯⨯,21sin 602HIJ S HI =⨯⋅ (21622=⨯-18=-,所以()1233ABC HIJ S S S S S =++- ()π363183=⨯+⨯+--36π=-.故选:D.9.一个宿舍的6名同学被邀请参加一个节目,要求必须有人去,但去几个人自行决定.其中甲和乙两名同学要么都去,要么都不去,则该宿舍同学的去法共有()A .15种B .28种C .31种D .63种【答案】C【分析】满足条件的去法可分为两类,第一类甲乙都去,第二类甲乙都不去,再进一步通过分类加法原理求出各类的方法数,将两类方法数相加即可.【详解】若甲和乙两名同学都去,则去的人数可能是2人,3人,4人,5人,6人,所以满足条件的去法数为0123444444C +C C +C C 16++=种;若甲和乙两名同学都不去,则去的人数可能是1人,2人,3人,4人,则满足条件去法有12344444C C +C C 15++=种;故该宿舍同学的去法共有16+15=31种.故选:C.10.已知椭圆C 的焦点为12(0,1),(0,1)F F -,过2F 的直线与C 交于P ,Q 两点,若22143,||5PF F Q PQ QF ==,则椭圆C 的标准方程为()A .2255123x y +=B .2212y x +=C .22123x y +=D .22145x y +=【答案】B【分析】由已知可设22,3F Q m PF m ==可求出所有线段用m 表示,在12PF F △中由余弦定理得1290F PF ︒∠=从而可求.【详解】如图,由已知可设22,3F Q m PF m ==,又因为114||55PQ QF QF m =∴=根据椭圆的定义212,62,3QF QF a m a a m +=∴=∴=,12223PF a PF a a a m=-=-==在12PF F △中由余弦定理得222222111116925cos 02243PQ PF QF m m m F PQ PQ PF m m+-+-∠===⋅⋅⋅⋅,所以190F PQ ︒∠=22222211229943213PF PF F F m m m a m b ∴+=⇒+=∴===⇒=故椭圆方程为:2212y x +=故选:B11.已知函数()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,对于任意的)3,1a ⎡∈-⎣,方程()()0f x a x m =<≤恰有一个实数根,则m 的取值范围为()A .7π3π,124⎛⎤⎥⎝⎦B .π5π,26⎡⎫⎪⎢⎣⎭C .π5π,26⎛⎤⎥⎝⎦D .7π3π,124⎡⎫⎪⎢⎣⎭【答案】D【分析】将方程的根的问题转化为函数()y f x =的图象与直线y a =有且仅有1个交点,画出图象,数形结合得到不等式组,求出m 的取值范围.【详解】方程()()0f x a x m =<≤恰有一个实数根,等价于函数()y f x =的图象与直线y a =有且仅有1个交点.当0x m <≤得:πππ22666x m ⎛⎤+∈+ ⎥⎝⎦,结合函数()y f x =的图象可知,π4π5π2633m ⎡⎫+∈⎪⎢⎣⎭,解得:7π3π,124m ⎡⎫∈⎪⎢⎣⎭.故选:D12.已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是()A .a c b >>B .b a c >>C .b c a >>D .c a b>>【答案】A【分析】构造函数()1=ln ef x x x -,0x >,利用导函数得到其单调性,从而得到ln 1ex x ≤,当且仅当e x =时等号成立,变形后得到22ln2ex x ≤,当x =0.7x =后得到b c <;再构造()1=e x g x x --,利用导函数得到其单调性,得到1e x x -≥,当且仅当1x =时,等号成立,变形后得到21e 2x x ->,当0.5x =时,等号成立,令0.7x =得到a c >,从而得到a cb >>.【详解】构造()1=ln ef x x x -,0x >,则()11=ef x x '-,当0e x <<时,()0f x ¢>,当e x >时,()0f x '<,所以()1=ln ef x x x -在0e x <<上单调递增,在e x >上单调递减,所以()()e =lne 10f x f ≤-=,故ln 1ex x ≤,当且仅当e x =时等号成立,因为20x >,所以222222(2)2ln 2ln ln ln2e e 2e 2e ex x x x x x x x x ≤⇒≤⇒≤⇒≤=,当x =当0.7x =时,220.98ln1.4(0.7)eln1.40.98ee<⨯=⇒<,所以b c <构造()1=e x g x x --,则()1e 1=x g x -'-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1=ex g x x --在1x >单调递增,在1x <上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时,等号成立,故121e e 2x x x x --≥⇒≥,当且仅当0.5x =时,等号成立,令0.7x =,则0.40.4e 1.40.7e 0.98>⇒>,所以a c >,综上:a c b >>,故选:A【点睛】构造函数比较函数值的大小,关键在于观察所给的式子特点,选择合适的函数进行求解.第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.设i ,j 是x ,y 轴正方向上的单位向量,23a b i j -=- ,3119a b i j +=+,则向量a,b的夹角为______.【答案】π4【分析】分别求出a ,b 的表达式,利用定义求出a ,b 的夹角即可.【详解】23a b i j -=-①,3119a b i j +=+②,3⨯+①②得714,2a i a i =∴=,2-⨯+②①得72121,33b i j b i j -=--∴=+ ,()22·33666a b i i j i i j ⋅=+=+⋅=2,a b ==cos ,2a b a b a b ⋅∴==⋅π,4a b ∴=14.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦距为2c ,过C 的右焦点F 的直线l 与C 的两条渐近线分别交于,A B 两点,O 为坐标原点,若cos b c AFO =∠且3FB FA =,则C 的渐近线方程为__________.【答案】y =【分析】根据题设条件确定AB OA ⊥,进而可确定OA a FA b ==,,从而在直角△AOB 中,()2tan tan π2bAOB aα∠=-=,结合正切的二倍角公式求解.【详解】因为3FB FA =,画出示意图如图,设AOF α∠=,因为cos b c AFO =∠,则cos b AFO c∠=,所以222sin a AFO c∠=,则sin a AFO c ∠=,所以tan aAFO b ∠=.又tan b a α=,所以π2AFO α∠+=,所以AB OA ⊥,根据sin ,cos OA FA a bAFO AFO c c c c ∠==∠==,所以OA a FA b ==,.又因为3FB FA,所以2AB b =.在直角△AOB 中,()2tan tan π2bAOB aα∠=-=,所以222222tan tan21tan 1bb a b a aααα=-==--,化简得:222b a =,所以b a =则渐近线方程为:y =,故答案为:y =.15.已知数列{}n a 满足首项11a =,123n n na n a a n ++⎧=⎨⎩,为奇数,为偶数,则数列{}n a 的前2n 项的和为_____________.【答案】4344n n ⨯--【分析】当n 为奇数时,由递推关系得()21332n n n a a a ++==+,构造{}3n a +为等比数列,可求出通项,结合12n n a a +=+即可分组求和.【详解】当n 为奇数时,()21332n n n a a a ++==+,即()2333n n a a ++=+,此时{}3n a +为以134a +=为首项,公比为3的等比数列,故()123212413333343333n nn n n n a a a a a a a a ----++++=创创+=+++,即12433n n a -=´-.()()()2123421211332121222n n n n n S a a a a a a a a a a a a ---=++++++=+++++++++ ()()01113212224334334332n n a a a n n--=++++=´-+´-++´-+ ()03132432434413nnn n n 骣-琪=´-+=´--琪琪-桫.故答案为:4344n n ⨯--【点睛】本题解题关键是根据题意找到相邻奇数项或偶数项之间的递推关系,从而求出当n 为奇数或n 为偶数时的通项公式,再通过相邻两项的关系求出前2n 项的和.16.在三角形ABC 中,2BC =,2AB AC =,D 为BC 的中点,则tan ADC ∠的最大值为___________.【答案】43##113【分析】设出AC x =,则2AB x =,由πADB ADC ∠+∠=得到cos cos 0ADB ADC ∠+∠=,结合余弦定理得到22512AD x =-,从而得到cos ADC ∠关系得到223x <<,换元后得到cos ADC ∠,由基本不等式求出最小值,结合()cos f x x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,()tan g x x =在π0,2⎛⎫ ⎪⎝⎭单调递增,可求出tan ADC ∠的最大值.【详解】设AC x =,则2AB x =,因为D 为BC 的中点,2BC =,所以1BD DC ==,由三角形三边关系可知:22x x +>且22x x -<,解得:223x <<,在三角形ABD 中,由余弦定理得:()2212cos 2AD x ADB AD+-∠=,在三角形ACD 中,由余弦定理得:221cos 2AD x ADC AD+-∠=,因为πADB ADC ∠+∠=,所以()2222121cos cos 022AD x AD x ADB ADC ADAD+-+-∠+∠=+=,解得:22512AD x =-,由余弦定理得:225112cos x x ADC -+-∠=223x <<,令2511,929x t ⎛⎫-=∈ ⎪⎝⎭,则3cos 5ADC ∠=,当且仅当1t t=,即1t =时,等号成立,此时25112x -=,解得:x =因为3cos 05ADC ∠≥>,故π0,2ADC ⎛⎫∠∈ ⎪⎝⎭,由于()cos f x x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,()tan g x x =在π0,2⎛⎫ ⎪⎝⎭单调递增,故当cos ADC ∠取得最小值时,tan ADC ∠取得最大值,此时4sin 5ADC ∠=,4tan 3ADC ∠=.故答案为:43.【点睛】三角形中常用结论,()sin sin A B C +=,()cos cos A B C +=-,()tan tan A B C +=-,本题中突破口为由πADB ADC ∠+∠=得到cos cos 0ADB ADC ∠+∠=,结合余弦定理得到22512AD x =-,进而利用基本不等式求最值.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)数列{}n a 满足35a =,点()1,n n P a a +在直线20x y -+=上,设数列{}n b 的前n 项和为n S ,且满足233n n S b =-,*n ∈N .(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在*k ∈N ,使得对任意的*n ∈N ,都有n kn ka ab b ≤.【答案】(1)21n a n =-;3nn b =(2)存在1k =,2,使得对任意的*n ∈N ,都有n k n ka ab b ≤【分析】(1)根据等差数列的定义可得{}n a 为等差数列,由,n n S b 的关系可得{}n b 为等比数列,进而可求其通项,(2)根据数列的单调性求解最值即可求解.【详解】(1)点()1,n n P a a +在直线20x y -+=上,所以12n n a a +-=又35a =,∴11a =,则数列{}n a 是首项为1,公差为2的等差数列.∴21n a n =-又当1n =时,11233S b =-得13b =,当2n ≥,由233n n S b =-①,得11233n n S b --=-②由①-②整理得:13n n b b -=,∵130b =≠,∴10n b -≠∴13nn b b -=,∴数列{}n b 是首项为3,公比为3的等比数列,故3nn b =(2)设213nn n na n cb -==,由111121212163443333+++++-+-+--=-==n n n n n n n n n n nc c当1n =时,12c c =,当2n ≥时,1n n c c +<,所以当1n =或2时,n c 取得最大值,即nna b 取得最大所以存在1k =,2,使得对任意的*n ∈N ,都有n kn ka ab b≤18.(12分)如图,将等边ABC 绕BC 边旋转90︒到等边DBC △的位置,连接AD.(1)求证:AD BC ⊥;(2)若M 是棱DA 上一点,且两三角形的面积满足2BMD BMA S S = ,求直线BM 与平面ACD 所成角的正弦值.【答案】(1)证明见解析(2)10【分析】(1)取BC 中点为O ,证明BC ⊥平面AOD 即可;(2)建立空间直角坐标系,利用向量法求得直线BM 与平面ACD 所成角的正弦值.【详解】(1)设O 是BC 的中点,连接AO ,DO ,由题知:AB AC =,DB DC =,则BC AO ⊥,BC DO ⊥,又AO DO O ⋂=,,AO DO ⊂平面AOD ,所以BC ⊥平面AOD ,又AD ⊂平面AOD ,所以AD BC ⊥.(2)由题知,OA 、BC 、OD 两两垂直,以O 为原点,,,OA OB OD方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,如图所示,因为2BMD BMA S S = ,所以13AM AD =,设2AB a =,则OA OD ==,则),0,0A,()0,,0B a ,()0,,0C a -,()D,33M ⎛⎫⎪ ⎪⎝⎭.所以),,0CA a =,),0,DA =,,BM a ⎫=-⎪⎪⎝⎭,设平面ACD 的法向量为(),,n x y z =r,则00n CA ay n DA ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,取1x =,可得()1,n = ,设直线BM 与平面ACD 所成的角为θ,则sin cos ,BM n θ=BM n BM n⋅==⋅所以直线BM 与平面ACD.19.(12分)甲、乙两位选手参加一项射击比赛,每位选手各有n 个射击目标,他们击中每一个目标的概率均为12,且相互独立.甲选手依次对所有n 个目标进行射击,且每击中一个目标可获得1颗星;乙选手按规定的顺序依次对目标进行射击,击中一个目标后可继续对下一个目标进行射击直至有目标未被击中时为止,且每击中一个目标可获得2颗星.(1)当5n =时,分别求甲、乙两位选手各击中3个目标的概率;(2)若累计获得星数多的选手获胜,讨论甲、乙两位选手谁更可能获胜.【答案】(1)516,116;(2)当1,2,3n =时,乙更可能获胜;当4n ≥时,甲更可能获胜.【分析】(1)根据独立重复试验可计算甲击中3个目标的概率,由相互独立事件的概率计算公式可得乙击中3个目标的概率;(2)设X 为甲累计获得的星数,Y 为乙累计获得的星数,分别计算期望,分别讨论1,2,3n =及4n ≥的(),()E X E Y ,得出结论.【详解】(1)当5n =时,甲击中3个目标的概率为33215115C ()()2216P =⨯⨯=,乙击中3个目标,则前3个目标被击中,第4个目标未被击中,其概率为32111()2216P =⨯=.(2)设X 为甲累计获得的星数,则0,1,2,,X n = ,设Y 为乙累计获得的星数,则0,2,4,,2Y n = ,设击中了m 个目标,其中0m n ≤≤,则甲获得星数为m 的概率为C 11()C ()()222m m m n m nnn P X m -===,所以甲累计获得星数为0120C 1C 2C C ()2nn n n nnn E X ⋅+⋅+⋅++⋅= ;记01010C 1C C C (1)C 0C n n n n n n n n n S n n n =⋅+⋅++⋅=⋅+-⋅++⋅ ,所以0112(C C C )2,2n n n n n n n n S n n S n -=+++=⋅=⋅ ,所以12()22n n n nE X -⋅==,乙获得星数为2(01)m m n ≤≤-的概率为1111(2)()222m m P Y m +==⋅=,当m n =时,1(2)2nP Y m ==,所以乙累计获得星数为230242(1)2()22222n n n n E Y -=+++++ ,记230242(1)2222n n n T -=++++ ,则121242(1)20222n n n T --=++++ ,所以12111112(1)122()222222n n n n n n n n T T T ---+=-=+++-=- ,11()22n E Y -=-,当1n =时,1()()12E X E Y =<=,当2n =时,3()1()2E X E Y =<=,当3n =时,37()()24E X E Y =<=,当4n ≥时,()2()E X E Y ≥>所以当1,2,3n =时,乙更可能获胜;当4n ≥时,甲更可能获胜.20.(12分)已知抛物线2y =的焦点与椭圆()2222:10x y a b a bΩ+=>>的右焦点重合,直线1:1x y l a b+=与圆222x y +=相切.(1)求椭圆Ω的方程;(2)设不过原点的直线2l 与椭圆Ω相交于不同的两点A ,B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆Ω相交于点P ,且O 点在以AB 为直径的圆上,记AOM ,BOP △的面积分别为1S ,2S ,求12S S 的取值范围.【答案】(1)22163x y +=(2)⎣⎦【分析】(1)根据条件建立关于,a b 的方程组,即可求解椭圆方程;(2)根据数形结合可知12AOM BOP OMS S S S OP==△△,分直线斜率不存在,或斜率为0,以及斜率不为0,三种情况讨论12S S 的值或范围.【详解】(1)∵抛物线2y =的焦点为),∴c =从而223a b =+①,∵直线1:1x yl a b+=与圆222x y +==②,由①②得:ab ,∴椭圆Ω的方程为:22163x y +=(2)∵M 为线段AB 的中点,∴12AOM BOP OMS S S S OP==△△,(1)当直线2l 的斜率不存在时,2l x ⊥轴,由题意知OA OB ⊥,结合椭圆的对称性,不妨设OA 所在直线的方程为y x =,得22Ax =,从而22Mx =,26P x =,123M P OM x S S OP x ∴===(2)当直线2l 的斜率存在时,设直线()2:0l y kx m m =+≠,()11,A x y ,()22,B x y 由22163y kx mx y =+⎧⎪⎨+=⎪⎩可得:()222214260k x kmx m +++-=,由()()222216421260k m k m ∆=-+->可得:22630k m -+>(*)∴122421km x x k +=-+,21222621m x x k -=+,∵O 点在以AB 为直径的圆上,∴0OA OB ⋅=,即12120x x y y +=,∴()()221212121210x x y y k x x km x x m +=++++=,即()22222264102121m km k km m k k -⎛⎫+⨯+-+= ⎪++⎝⎭,2222,m k ⇒=+(**)满足(*)式.∴线段AB 的中点222,2121kmm M k k ⎛⎫- ⎪++⎝⎭,若0k =时,由(**)可得:22m =,此时123OM S S OP ∴===,若0k ≠时,射线OM 所在的直线方程为12y x k=-,由2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩可得:2221221P k x k =+,12M POM x S S OP x ∴===随着2k 的增大而减小,∵0k ≠,∴20k >,∴1233S S ⎛∈ ⎝⎭综上,1233S S ∈⎣⎦【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.(12分)已知函数()e xf x ax a=--(1)当1a =时,证明:()0f x ≥.(2)若()f x 有两个零点()1212,x x x x <且22112,e 1x x +⎡⎤∈⎣⎦+,求12x x +的取值范围.【答案】(1)见解析;(2)243ln 22,e 1⎡⎤-⎢⎥-⎣⎦【分析】(1)()e 1x f x x =--,求导得min ()(0)0f x f ==,则()0f x ;(2)由题得11e x ax a =+,22e xax a =+,则21211e1x x x x -+=+,()1212e e 2x x a x x +=++,()2121e e x x a x x -=-,则()()212121121e 2e1x x x x x x x x ---+++=-,从而设21[ln 2,2]t x x =-∈,得到()121e 2e 1t tt x x +++=-,利用导数研究函数()1e ()e 1ttt g t +=-的值域,则得到12x x+的范围.【详解】(1)证明:当1a =时,()e 1x f x x =--,则()e 1x f x '=-.当(,0)x ∈-∞时,()0f x '<,当,()0x ∈+∞时,()0f x '>,所以()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增,则min ()(0)0f x f ==,故()0f x .(2)由题意得1212e e 0x xax a ax a --=--=,则11e x ax a =+,22e xax a =+,从而21211e 1x xx x -+=+,()1212e e 2x x a x x +=++,()2121e e x x a x x -=-,故()()()()12212121212112e e 1e 2e ee1xx x x x x x x x x x x x x ---+-+++==--,因为22112,e 1x x +⎡⎤∈⎣⎦+,所以212e 2,e x x -⎡⎤∈⎣⎦,即[]21ln 2,2x x -∈,设21[ln 2,2]t x x =-∈,则()121e 2e 1t t t x x +++=-.设()1e ()e 1t tt g t +=-,则()22e 2e 1()e1t t tt g t --'=-.设2()e 2e 1t t h t t =--,则()()2e e 1t th t t '=--,由(1)可知()()2e e 10t th t t '=--在R 上恒成立,从而2()e 2e 1t t h t t =--在[ln 2,2]上单调递增,故min ()(ln 2)44ln 210h t h ==-->,即()0g t '>在[]ln 2,2上恒成立,所以()g t 在[ln 2,2]上单调递增,所以()212221e 23ln 2,e 1x x ⎡⎤+⎢⎥++∈-⎢⎥⎣⎦,即12243ln 22e 1,x x ⎡⎤+∈-⎢⎣-⎥⎦,即12x x +的取值范围为243ln 22,e 1⎡⎤-⎢⎥-⎣⎦.【点睛】关键点睛:本题的关键是通过变形用含21x x -的式子表示出122x x ++,即()()212121121e 2e1x x x x x x x x ---+++=-,然后整体换元设21[ln 2,2]t x x =-∈,则得到()121e 2e 1t t t x x +++=-,最后只需求出函数()1e ()e 1tt t g t +=-在[ln 2,2]t ∈上值域即可.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l的参数方程为cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B两点,)M.(1)求曲线C 的直角坐标方程;(2)若2AM MB =,求直线l 的斜率.【答案】(1)2214x y +=(2)2±【分析】(1)根据极坐标与直角坐标直角的转化222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,运算求解;(2)联立直线l 的参数方程和曲线C 的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.【详解】(1)∵()()222222288453cos 2cos 4sin 5cos sin 3cos sin ρθθθθθθθ===-++--,则2222cos 4sin 4ρθρθ+=,∴2244x y +=,即2214x y +=,故曲线C 的直角坐标方程为2214x y +=.(2)将直线l的参数方程为cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数)代入曲线C 的直角坐标方程为2214x y +=,得)()22cos sin 14t t αα+=,整理得()()222cos 4sin 10t t ααα++-=,设A ,B 两点所对应的参数为12,t t ,则1212221cos 4sin t t t t αα+==-+,∵2AM MB =,则122t t =-,联立1212222cos 4sin t t t t ααα=-⎧⎪⎨+=-⎪+⎩,解得122222cos 4sin cos 4sin t t αααααα⎧=-⎪⎪+⎨⎪=⎪+⎩,将12,t t 代入12221cos 4sin t t αα=-+得2222221cos 4sin cos 4sin cos 4sin αααααααα⎛⎫⎛⎫-=- ⎪⎪ ⎪⎪+++⎝⎭⎝⎭,解得2223tan 4k α==,故直线l的斜率为2±.23.[选修4-5:不等式选讲](10分)设a 、b 、c 为正数,且b c c a a ba b c+++≤≤.证明:(1)a b c ≥≥;(2)()()()2324a b b c c a abc +++≥.【答案】(1)证明见解析(2)证明见解析【分析】(1)由不等式的基本性质可得出111abc≤≤,利用反比例函数在()0,∞+上的单调性可证得结论成立;(2)利用基本不等式可得出a b +≥,2b c +≥3c a +≥等式的基本性质可证得结论成立.【详解】(1)证明:因为a 、b 、c 为正数,由b c c a a ba b c +++≤≤可得a b c a b c a b ca b c++++++≤≤,所以,111a b c≤≤,因为函数1y x =在()0,∞+上为增函数,故a b c ≥≥.(2)证明:由基本不等式可得a b +≥,2b c b b c +=++≥()322c a c a a a +=++≥+≥=由不等式的基本性质可得()()()2171131573362244412232424a b b c c a a b b c a c a b c+++≥=11764122424ab a b c abc ⎛⎫=≥ ⎪⎝⎭,当且仅当a b c ==时,等号成立,故()()()2324a b b c c a abc +++≥.。

高考数学(理科)模拟考试卷(附参考答案与解析)

高考数学(理科)模拟考试卷(附参考答案与解析)

高考数学(理科)模拟考试卷(附参考答案与解析)一、单选题(本大题共12小题,共60.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若复数z满足iz=4+3i,则复数z在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 已知集合A={(x,y)|x2+y2=1}和B={(x,y)|y=x},则A∩B中元素的个数为( )A. 3B. 2C. 1D. 03. 已知向量a⃗,b⃗⃗满足|a⃗|=1,|b⃗⃗|=√ 3和|a⃗⃗−2b⃗⃗|=3,则a⃗⃗⋅(a⃗⃗+b⃗⃗)=( )A. −2B. −1C. 1D. 24. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如16=3+13.在不超过16的素数中,随机选取两个不同的数,其和等于16的概率是( )A. 15B. 215C. 115D. 255. 的展开式中x3y3的系数为40,则实数a的值为( )A. 4B. 2C. 1D. 126. 设椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1和F2,离心率为√ 22,P是C上一点,且F1P⊥F2P.若△PF1F2的面积为2,则a=( )A. 1B. 2C. √ 2D. 47. 在△ABC中cosC=23,AC=4和BC=3则cos A2=( )A. √ 306B. √ 33C. 13D. 568. 如图,四边形ABCD为正方形,ED⊥平面ABCD,FB//ED和AB=ED=2FB=2,则三棱锥F−ACE 的体积为( )A. 23B. 43C. 2D. √ 39. 在正方体AC1中,点M为平面ABB1A1内的一动点,d1是点M到平面ADD1A1的距离,d2是点M到直线BC的距离,且d1=λd2(λ>0)(λ为常数),则点M的轨迹不可能是( )A. 圆B. 椭圆C. 双曲线D. 抛物线10. 已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于x=1对称.若f(1)=3,则f(2)+f(3)+⋯+f(50)=( )A. 3B. 2C. 0D. 5011. 设A,B,C,D是同一个半径为4的球的球面上四点,AB=AC=2√ 3和BC=6,则三棱锥D−ABC 体积的最大值为( )A. 3√ 3B. 6√ 3C. 12√ 3D. 18√ 312. 已知a∈R,设函数若关于x的不等式f(x)≥0在R上恒成立则a 的取值范围为( )A. [0,e2] B. [0,2] C. [0,1] D. [0,e]二、填空题(本大题共4小题,共20.0分)13. 已知等差数列{a n}前9项的和为27,且a10=8,则a15=______ .14.15. 在直线l:y=−2上取一点D作抛物线C:x2=4y的切线,切点分别为A,B,直线AB与圆E:x2+ y2−4x−2018=0交于M,N两点,当|MN|最小时,则D的横坐标是______ .16. 已知函数f(x)=sin(ωx+φ)(ω>0),下述四个结论:①若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,2π)有且仅有3个极大值点;②若φ=π4,且f(x)在[0,2π]有且仅有4个零点,则f(x)在[0,2π]有且仅有2个极大值点; ③若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,π10)上单调递增; ④若φ=π3,且f(x)在(0,π)有且仅有2个零点和3个极值点,则ω的范围是(136,83). 其中所有正确结论的编号是______ .三、解答题(本大题共7小题,共82.0分。

高考模拟题复习试卷习题资料高考数学试卷理科附详细答案101283

高考模拟题复习试卷习题资料高考数学试卷理科附详细答案101283

高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得【解答】解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:D.【点评】本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为A.0B.1C.2D.3【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【分析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.【解答】解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.2【分析】由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.【解答】解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D.【点评】本题考查的知识点是数量积表示两个向量的夹角,难度中档.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]【分析】由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.【解答】解:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA1cos∠AOA1=,=1.∴sinα的取值范围是.故选:B.【点评】本题考查了正方体的性质和直角三角形的边角关系、线面角的求法,考查了推理能力,属于中档题.9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②【分析】根据已知中函数的解析式,结合对数的运算性质,分别判断三个结论的真假,最后综合判断结果,可得答案.【解答】解:∵f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1),∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣f(x),即①正确;f()=ln(1+)﹣ln(1﹣)=ln()﹣ln()=ln ()=ln[()2]=2ln()=2[ln(1+x)﹣ln(1﹣x)]=2f(x),故②正确;当x∈[0,1)时,|f(x)|≥2|x|⇔f(x)﹣2x≥0,令g(x)=f(x)﹣2x=ln(1+x)﹣ln(1﹣x)﹣2x(x∈[0,1))∵g′(x)=+﹣2=≥0,∴g(x)在[0,1)单调递增,g(x)=f(x)﹣2x≥g (0)=0,又f(x)≥2x,又f(x)与y=2x为奇函数,所以|f(x)|≥2|x|成立,故③正确;故正确的命题有①②③,故选:A.【点评】本题以命题的真假判断为载体,考查了对数的运算性质,代入法求函数的解析式等知识点,难度中档.10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,结合及,得,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO═×2×(y1﹣y2)+×y1,=.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.【点评】求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数= ﹣2i .【分析】利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.【解答】解:复数===﹣2i,故答案为:﹣2i.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()= 1 .【分析】由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.【解答】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于 60 m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)【分析】过A点作AD垂直于CB的延长线,垂足为D,分别在Rt△ACD、Rt△ABD中利用三角函数的定义,算出CD、BD的长,从而可得BC,即为河流在B、C两地的宽度.【解答】解:过A点作AD垂直于CB的延长线,垂足为D,则Rt△ACD中,∠C=30°,AD=46m,AB=,根据正弦定理,,得BC===60m.故答案为:60m.【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是 5 .【分析】先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.【解答】解:由题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5【点评】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)【分析】根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.【解答】解:(1)对于命题①,若对任意的b∈R,都∃a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都∃a∈D使得f(a)=b,故①是真命题;(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f (x)无最大值,无最小值,故②是假命题;(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.故f (x)+g(x)∈(﹣∞,+∞).则f(x)+g(x)∉B,故③是真命题;(4)对于命题④,∵﹣≤≤,当a>0或a<0时,aln(x+2)∈(﹣∞,+∞),f(x)均无最大值,若要使f(x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.故答案为①③④.【点评】本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.【分析】(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间. (2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.【解答】解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k∈Z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈Z. (2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(c os2α﹣sin2α),∴sinαcos+cosαsin=(cosαcos﹣sinαsin)(cosα﹣sinα)(cosα+sinα)即(sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,tanα=﹣1,sinα=,cosα=﹣,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.【点评】本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【分析】(1)设每盘游戏获得的分数为X,求出对应的概率,即可求X的分布列;(2)求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论.(3)计算出随机变量的期望,根据统计与概率的知识进行分析即可.【解答】解:(1)X可能取值有﹣200,10,20,100.则P(X=﹣200)=,P(X=10)==P(X=20)==,P(X=100)==,故分布列为:X ﹣200 10 20 100P由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣.由(1)知,每盘游戏获得的分数为X的数学期望是E(X)=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.【点评】本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB 的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.【分析】(1)用线面垂直的性质和反证法推出结论,(2)先建空间直角坐标系,再求平面的法向量,即可求出二面角A﹣NP﹣M的余弦值. 【解答】解:(1)由三棱锥A﹣BCD及其侧视图、俯视图可知,在三棱锥A﹣BCD中:平面ABD⊥平面CBD,AB=AD=BD=CD=CB=2设O为BD的中点,连接OA,OC于是OA⊥BD,OC⊥BD 所以BD⊥平面OAC⇒BD⊥AC因为M,N分别为线段AD,AB的中点,所以MN∥BD,MN⊥NP,故BD⊥NP假设P不是线段BC的中点,则直线NP与直线AC是平面ABC内相交直线从而BD⊥平面ABC,这与∠DBC=60°矛盾,所以P为线段BC的中点(2)以O为坐标原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系,则A(0,0,),M(,O,),N(,0,),P(,,0)于是,,设平面ANP和平面NPM的法向量分别为和由,则,设z1=1,则由,则,设z2=1,则cos===所以二面角A﹣NP﹣M的余弦值【点评】本题考查线线的位置关系,考查二面角知识的应用,解题的关键是掌握用向量的方法求二面角大小的步骤,属于中档题.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.【分析】(1)由于点(an,bn)在函数f(x)=2x的图象上,可得,又等差数列{an}的公差为d,利用等差数列的通项公式可得=2d.由于点(a8,4b7)在函数f(x)的图象上,可得=b8,进而得到=4=2d,解得 d.再利用等差数列的前n项和公式即可得出.(2)利用导数的几何意义可得函数f(x)的图象在点(a2,b2)处的切线方程,即可解得a2.进而得到an,bn.再利用“错位相减法”即可得出.【解答】解:(1)∵点(an,bn)在函数f(x)=2x的图象上,∴,又等差数列{an}的公差为d,∴==2d,∵点(a8,4b7)在函数f(x)的图象上,∴=b8,∴=4=2d,解得d=2.又a1=﹣2,∴Sn==﹣2n+=n2﹣3n.(2)由f(x)=2x,∴f′(x)=2xln2,∴函数f(x)的图象在点(a2,b2)处的切线方程为,又,令y=0可得x=,∴,解得a2=2.∴d=a2﹣a1=2﹣1=1.∴an=a1+(n﹣1)d=1+(n﹣1)×1=n,∴bn=2n.∴.∴Tn=+…++,∴2Tn=1+++…+,两式相减得Tn=1++…+﹣=﹣==.【点评】本题综合考查了指数函数的运算性质、导数的几何意义、等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“错位相减法”,属于难题.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.【分析】(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.【解答】解:∵f(x)=ex﹣ax2﹣bx﹣1,∴g(x)=f′(x)=ex﹣2ax﹣b,又g′(x)=ex﹣2a,x∈[0,1],∴1≤ex≤e,∴①当时,则2a≤1,g′(x)=ex﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=ex﹣2a<0,当ln(2a)<x<1时,g′(x)=ex﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=ex﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则gmin(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x<∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即gmin(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.【点评】本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.【分析】第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a2,b2;第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将表示出来,由取最小值时的条件获得等量关系,从而确定点T的坐标.【解答】解:(1)依题意有解得所以椭圆C的标准方程为+=1.(2)设T(﹣3,t),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,则PQ的斜率.由⇒(m2+3)y2﹣4my﹣2=0,所以,于是,从而,即,则直线ON的斜率,又由PQ⊥TF知,直线TF的斜率,得t=m.从而,即kOT=kON,所以O,N,T三点共线,从而OT平分线段PQ,故得证.②由两点间距离公式得,由弦长公式得==,所以,令,则(当且仅当x2=2时,取“=”号),所以当最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,1)或(﹣3,﹣1).【点评】本题属相交弦问题,应注意考虑这几个方面:1、设交点坐标,设直线方程;2、联立直线与椭圆方程,消去y或x,得到一个关于x或y一元二次方程,利用韦达定理;3、利用基本不等式或函数的单调性探求最值问题.高考数学高三模拟试卷试题压轴押题一.填空题,本大题共14个小题,每小题5分,共70分.1.已知集合{}3|<=x x A ,{}4,3,2,1=B ,则()=B A C R . 【答案】{}4,3 【解析】试题分析:由题意,得{}3|≥=x x A C R ,(){}4,3=B A C R ;故填{}4,3. 考点:集合的运算.2.命题“02016,10200>-+->∃x x x ”的否定是.【答案】02016,12≤-+->∀x x x 【解析】试题分析:命题“02016,10200>-+->∃x x x ”的否定是“02016,12≤-+->∀x x x ”.考点:特称命题的否定.3.已知向量(3,1)a =,(1,3)b =,(),7c k =,若()//a c b -,则=k . 【答案】5考点:1.平面向量的的坐标运算;2.平面向量共线的判定.4.函数x x x f 22sin cos )(-=的最小正周期为.【答案】π 【解析】试题分析:因为x x x x f 2cos sin cos )(22=-=,所以该函数的最小正周期为ππ==22T ;故填π.考点:1.二倍角公式;3.三角函数的周期.5.函数121582---+-=x x x y 的定义域为.【答案】(]5,3考点:函数的定义域.【方法点睛】本题主要考查函数定义域的求法,属于基础题.求函数的定义域主要涉及:①分式中的分母不为0;②偶次方根的被开方数非负;③0x 中的底数0≠x ;④对数式中,底数为大于0,且不为1 的实数,真数为大于0的实数;⑤正切函数x y tan =中Z k k x ∈+≠,2ππ;⑥若函数中含有多个式子,可列出不等式组进行求解.6.设函数)()(2R a e ax x f x∈+=有且仅有两个极值点)(,2121x x x x <,则实数a 的求值范围是. 【答案】⎪⎭⎫ ⎝⎛-∞-2,e 【解析】试题分析:由题意,得02)('=+=xe ax xf 有两个不等实根)(,2121x x x x <,显然,0=x 不是方程02)('=+=xe ax xf 的根,则x e a x 2-=,即图象a y =与xe x h x2)(-=有两个不同交点,因为2'2)1()(xx e x h x --=,所以当1<x 时,0)('>x h ,)(x h 为增函数,当1>x 时,0)('<x h ,)(x h 为减函数,即2)1()(e h x h -=≤,所以2e a -<;故填⎪⎭⎫ ⎝⎛-∞-2,e .考点:1.函数的极值与导数;2.函数的零点.【思路点睛】本题主要考查函数的极值与导数的关系,属于中档题.求导后,通过验证“0=x 不是方程02)('=+=xe ax xf 的根”进行分离参数化为xe a x2-=,体现数学的严密性;二者将求参数问题转化为求函数图象交点个数问题,是解决本题的关键.7.已知函数⎪⎩⎪⎨⎧≤>=0,20,log )(31x x x x f x,若21)(>a f ,则实数a 的取值范围是.【答案】⎪⎪⎭⎫ ⎝⎛-33,1 考点:分段函数.8.已知4a =,2b =,且a 与b 夹角为0120,若()()23a b a b λ+⊥-,则=λ.【答案】511 【解析】试题分析:因为()b a b a 32)(-⊥+λ,所以()032)(=-⋅+b a b a λ,即0)32(3222=⋅-+-b a b a λλ,即0)32(41232=---λλ,解得511=λ;故选511.考点:平面向量垂直的判定.9.已知扇形的面积为4,圆心角为2弧度,则该扇形的弧长为. 【答案】4 【解析】试题分析:设该扇形的弧长为l ,半径为R ,则⎪⎩⎪⎨⎧==Rl lR 2421,解得4=l ;故填4.考点:1.扇形的弧长公式;2.扇形的面积公式. 10.已知命题1211:≤+-x p ,命题)0(012:22><-+-m m x x q ,若p 是q 的充分不必要条件,则实数m 的范围是. 【答案】2>m考点:1.绝对值不等式的解法;2.一元二次不等式;3.充分条件与必要条件.【思路点睛】本题以不等式的解法为载体考查充分条件与必要条件,属于中档题;解决此类问题,往往先通过解不等式、方程等知识,利用数集表示命题,再利用“若A x p ∈:,B x q ∈:,则A 是B 的真子集p ⇔是q 的充分不必要条件”进行求解.11.函数)(x f y =是R 上的奇函数,满足)3()3(x f x f -=+,当()3,0∈x 时,xx f 2)(=,则当()3,6--∈x 时,=)(x f .【答案】62+-x【解析】试题分析:因为)3()3(x f x f -=+,所以函数)(x f 的图象关于直线3=x 对称,即)6()(x f x f -=成立,设()6,3∈x ,则()3,06∈-x ,且xx f x f -=-=62)6()(;设()3,6--∈x ,则()6,3∈-x ,则62)(+=-x x f ,又因为)(x f y =为奇函数,所以62)()(+-=--=x x f x f ,即当()3,6--∈x 时,62)(+-=x x f ;故填62+-x .考点:1.函数的奇偶性;2.函数的对称性;3.函数的解析式.【易错点睛】本题考查利用函数的奇偶性与对称性求函数的解析式,属于中档题.本题易错之处有:一是对)3()3(x f x f -=+的理解,要注意与)3()3(-=+x f x f 的区分,前者表示函数的图象关于直线3=x 对称,后者表示函数的周期为6;二是要在所求区间上设值,以免发生错误.12.已知α为锐角,向量(cos ,sin )a αα=、(1,1)b =-满足223a b ⋅=,则=+)125sin(πα.【答案】6215+ 考点:1.平面向量的数量积;2.两角和差的正余弦公式. 13.已知函数xx x x x f 11)(--+=,关于x 的方程),(0)()(2R b a b x f a x f ∈=++恰有6个不同实数解,则a 的取值范围是. 【答案】)2,4(-- 【解析】试题分析:因为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<<≤---<-=--+=1,210,201,21,211)(x xx x x x x x x x x x x f ,所以函数x x x x x f 11)(--+=的图象如图所示,且0)(>x f ,所以),(0)()(2R b a b x f a x f ∈=++可化为),(0)()(2R b a b x af x f ∈=++;因为),(0)()(2R b a b x af x f ∈=++恰有6个不同实数解,所以关于)(x f 的方程),(0)()(2R b a b x af x f ∈=++有两根:2)(1=x f ,2)(02<<x f ,则⎪⎪⎩⎪⎪⎨⎧><-<=++0220042b a b a ,即⎩⎨⎧<<->--04042a a ,解得24-<<-a ;故填)2,4(--.考点:1.分段函数;2.复合函数的零点;3.数形结合思想.【方法点睛】本题考查函数的图象、复合函数的零点个数问题,属于难题;本题先根据绝对值的代数意义将函数)(x f 转化为分段函数,通过图象研究函数)(x f 的值域;再利用换元思想和一元二次方程的根与系数的关系的关系进行求解.14.已知函数ax x x x f +-=ln )(在()e ,0上是增函数,函数2)(2a a e x g x+-=,当[]3ln ,0∈x 时,函数)(x g 的最大值M 与最小值m 的差为23,则=a . 【答案】25考点:1.函数的单调性与导数;2.函数的最值与导数.【方法点睛】本题考查导数与函数的单调性、最值,属于难题.先利用“若函数)(x f 可导,则)(x f 在某区间上递增0)('≥⇔x f 在该区间恒成立”求得a 的取值范围;再利用绝对值的代数意义将)(x f 化为分段函数,再讨论a 与3的大小关系利用函数的单调性求最值,作差求解即可.二.解答题:本大题共6小题,解答应写出文字说明、证明过程或验算步骤.15.(本小题满分14分)已知函数),0,0()sin()(πϕωϕω<>>++=A B x A x f 的部分图象如图所示. (1)求函数)(x f 的解析式; (2)若)3()3()(ππ-++=x f x f x g ,求函数)(x g 在区间[]π,0上的单调减区间.【答案】(1)1)32sin(2)(+-=πx x f ;(2)⎥⎦⎤⎢⎣⎡125,0π,⎥⎦⎤⎢⎣⎡ππ,1211.得3πϕ-=,所以1)32sin(2)(+-=πx x f ;…………6分。

高考模拟题复习试卷习题资料高考数学试卷理科附详细答案13

高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9}.【分析】由条件利用补集的定义求得∁UA,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁UA)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值. 【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,].【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X 1 2 3P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题. 19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an﹣1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1﹣1)2=(an﹣1)2+1,∴{(an﹣1)2}是首项为0,公差为1的等差数列;∴(an﹣1)2=n﹣1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.高考理科数学试题及答案 (考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。

注意事项:1.答题前,请务必填写自己的姓名和考籍号。

2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。

3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,请只将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。

高考数学(理科)模拟试题(含答案)

高考数学(理科)模拟试题(含答案)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 复数z 满足()11i z i +=-,则z =( )A .1i -B .1i +C .22- D .22+ 2. 已知集合12x X x e ⎧⎫=>⎨⎬⎩⎭,2}6{|0Y x x x =+-≤,则()R C X Y ⋂=( ) A .[)3,2ln -- B .[]2,2ln -- C .[]3,2ln -- D .[]2,2ln - 3. 已知等差数列{}n a 的前项n 和为n S ,且314,,3S a a 成公比为q 的等比数列,则q 等于( ) A.1或2 B .2 C .1 D .2或4 4. 若365sin πθ⎛⎫-= ⎪⎝⎭,则26sin πθ+⎛⎫⎪⎝⎭=( ) A .2425-B .2425 C.725- D .7255. 已知0,0x y >>,且191x y+=,则x y +的最小值为( ) A .12 B .16 C.20 D .246. 若函数()x sinx f =在区间[],a b 上是减函数,且()()22a f f b ==-,则函数()g x cosx =在区间[],a b 上( )A .是增函数B .是减函数 C. 可以取得最大值2 D .可以取得最小值-2 7. 已知0.320.20.3,3,0.2a log b log c ===,则,,a b c 的大小关系为( ) A .c b a >> B.b a c >> C.c a b >> D .a c b >>8. 已知曲线()3:3C f x x x =-,直线:l y ax =-,则6a =是直线l 与曲线C 相切的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件 9. 鲁班锁是中国古代传统土木建筑中常用的固定结合器,也是广泛流传于中国民间的智力玩具,它起源于古代中国建筑首创的機卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看上去是严丝合缝的十字几何体,其上下、左右、前后完全对称,十分巧妙.鲁班锁的种类各式各样,其中以最常见的六根和九根的鲁班锁最为著名九根的鲁班锁由如图所示的九根木榫拼成,每根木榫都是由一.根正四棱柱状的木条挖-些凹槽而成若九根正四棱柱底面边长均为1,其中六根短条的高均为3,三根长条的高均为5,现将拼好的鲁班锁放进一个圆柱形容器内,使鲁班锁最高的一个正四棱柱形木榫的上、下底面分别在圆柱的两个底面内,则该圆柱形容器的体积(容器壁的厚度忽略不计)的最小值为( )A .1354π B .652π C.135π D .1254π 10. 已知()f x 是定义在R 上的函数()'f x 是函数()f x 的导函数,且(),'1x R f x ∀∈>,且()10f =,则( ) A .()1f e e <- B .()01f >- C.() 01f <- D .()()0f e f e <+11. 如图, ,M N 分别为边长为1的正方形ABCD 的边BC CD 、的中点,将正方形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,以下结论错误的是( )A .//MN 平面ABDB .异面直线AC 与BD 所成的角为定值C. 存在某个位置,使得直线AD 与直线BC 垂直D .三棱锥M ACN -体积的最大值为24812. 已知函数()x sinx n f si x =⋅,给出下列结论: ①()f x 是周期函数;②()f x 是奇函数:③,22ππ⎡⎤-⎢⎥⎣⎦是函数()f x 的一个单调递增区间;④若()()12f x f x =-,则()12x x k k Z π+=∈;⑤不等式22cos2cos2sin x sin x x x ππππ⋅>⋅的解集为15,88k x k k Z x ⎧⎫⎨+<+∈⎩<⎬⎭,则正确结论的序号是( )A .①②④B .①②③④ C.②③ D .①②③⑤ 二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若向量,a b r r 满足()2,a b a a b =⊥+r r r r r ,则向量,a b r r的夹角为.14. 已知实数,x y 满足2302501x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则z x y =-的取值范围为 .15. 已知函数()1,0,0x x mx x xex e mx x xf ⎧-<⎪⎪=⎨⎪->⎪⎩,若函数()f x 有且只有4个不同的零点,则实数m 的取值范围是 .16. 已知数列{}n a 的各项均为正数,且*n N ∀∈,33332123...2n n n a a a S S ++++=+a ,其中n S 为数列{}n a 的前n 项和,设32nn n S b n ⎛⎫= ⎪ ⎪⎝⎭g ,则2n b 的最大值为_ . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC V 中,角A B C 、、所对边的长分别为a b c 、、,且cos cos sin A B Ca b c+=(1)求sinCsinA sinBg 的值;(2)若ABC V 的面积14S =,ABC V 的外接圆的直径为1,求ABC V 的周长L .18. 已知数列{}n a 和2n a n ⎧⎫⎨⎬⎩⎭均为等差数列112a =, (1)求数列{}n a 的通项公式; (2)设数列{}n b 满足()()4111n nn a b n n =+-+g,求数列{}n b 的前n 项和n S .19. 如图,已知四棱锥P ABCD -的底面是边长为2的正方形,M N 、分别是棱AB PD 、的中点,,PA PB AD PB =⊥,直线MN 与平面PAB 所成的角的正弦值为23(1) 证明://MN 平面PBC ;(2) 求二面角C MN D --的余弦值.20. “双十一”期,某电商店铺A 的活动为:全场商品每满60元返5元的优惠券(例如:买130元的商品,可用两张优惠券,只需付13013051305212060⎡⎤⎢-⨯=⨯⎥=⎣⎦-(元).其中[]x 表示不大于x 的最大整数).此外,在店铺优惠后,电商平台全场还提供每满400元减40元的优惠(例如:店铺A 原价880元的一单,最终价格是880514402730-⨯-⨯=(元),店铺优惠后不满400元则不能享受全场每满400元减40元的优惠活动(1)小明打算在店铺A 买一款250元的耳机和一款650元的音箱,是下两单(即耳机、音箱分两次购买) 划算?还是下一单(即耳机、音箱一起购买)划算?(2)小明打算趁“双十一”囤积某生活日用品若干,预算不超过700元,该生活日用品在店铺A 的售价为30元/件试计算购买多少件该生活日用品平均价格最低?最低平均价格是多少? 21. 已知函数()()20()f x ln ax ax x a =-+≠.(1)讨论函数()f x 的极值点个数;(2)若函数()f x 有且只有一个极值点o x ,且()00f x ≤,求实数a 的取值集合. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系中,直线l 的参数方程为,415315x t y t⎧=--⎪⎪⎨⎪=+⎪⎩(t 为参数),以直角坐标系的原点为极点,以x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为(24)sin πρθ=-.(1)求直线l 的极坐标方程和曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于,A B 两点,试求,A B 两点间的距离. 23.选修4-5:不等式选讲设函数()()20f x x a x a a =-++>. (1)当2a =时,求函数()f x 的最小值; (2)若关于x 的不等式()1f x a x <+在区间1,32⎡⎤⎢⎥⎣⎦上有解,求实数a 的取值范围.参考答案一、选择题1. C解析:)()())1111111222i i izi i i i---=====-+++-2. C解析:集合{}2,X x x ln=>-,2,3{}{|2}RC X x x ln Y x x=≤-=-≤≤所以()3{}2RC X Y x x ln⋂=-≤≤-3. A解析:314,,3Sa aQ,成公比为q的等比数列,23143Sa a⎛⎫∴=⋅⎪⎝⎭,又{}n aQ为等差数列,()()1112.3a d a a d∴+=+即()1d d a-=,即0d=或1d a=.公比2111a aqa a∴==或1121aa=或24. D解析: 2226266sin sin cosππππθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝+=--=⎭⎣⎦-=2187122162525sinπθ⎛⎫=-⎪⎭=⎝--【命题意图】基本量的简单运算.5. B解法一:由题得()199191916y xx y x yx y x y⎛⎫+=++=+++≥+=⎪⎝⎭,取等条件为1919xyx yy xx y>⎧⎪>⎪⎪+=⎨⎪⎪=⎪⎩,即412xy=⎧⎨=⎩,故选B解法二:由191x y+=得90x y xy+-=即()()199x y--=,又1,9x y>>Q.()()1190x y x y∴+=-++-1016≥=,取等条件为191193xyx yx y>⎧⎪>⎪⎪⎨+=⎪⎪-=-=⎪⎩,即412xy=⎧⎨=⎩,故选B6. D 解析:()23f x sin x π=+⎛⎫⎪⎝⎭,()22323g x cos x sin x πππ=+=⎛⎫⎛⎫ ⎪⎝⎭+ ⎝+⎪⎭,()g x 的图像由()f x 的图像向左平移2π所得.()f x 在区间[],a b 上是减函数,且()()2, 2f a f b ==-.令3x t π+=,则可取3,22t ππ⎡⎤∈⎢⎥⎣⎦,向左平移2π,即14个周期,可得在3,22t ππ⎡⎤∈⎢⎥⎣⎦时()g x 可以取得最小值2-. 7. A 解析:220.30.51a log log =<=-,0.20.2351b log log =>=-且00b c <>,,所以, , a b c 的大小关系为c b a >>.【命题意图】利用对数函数的单调性进行估算.8. A 解析:()2 '33f x x =-,直线:3l y ax a =-过定点()3,0,且曲线C 也过点()3,0.若直线l 与曲线C 相切,设切点横坐标为o x ,则切线为()2300332y x x x =--,则20303323x a x a⎧-=⎪⎨=⎪⎩,解之036x a ⎧=⎪⎨=⎪⎩或03234x a ⎧=-⎪⎪⎨⎪=-⎪⎩,所以6a =是直线l 与曲线C 相切的充分不必要条件.9. B c 解析:设圆柱的底面半径为r ,用平行于圆柱的底面的平面截圆柱和中间横向最长,木条的截面图如图所示,则2221513222r ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,∴圆柱体积为2652V r h ππ==g10. C 解析:令()() g x f x x =-,则()()''10g x f x =->,所以()g x 在R 上单调递增.由()()1g e g >可得()()111f e e f ->-=-,得()1f e e >-,故选项A 不正确.由()()0 1g g <可得()()0111f f <-=-,故选项B不正确选项C 正确,同理可判断选项D 不正确.11. C 解析:选项A ,因为// MN BD ,所以//MN 平面ABD ,故选项A 正确;选项B ,取AC 中点O ,连接,OB OD ,则AC OB ⊥,且AC OD ⊥,所以AC ⊥平面OBD ,所以AC BD ⊥,异面直线AC 与BD 所成的角为90︒,为定值,故选项B 正确;选项,C 若直线AD 与直线BC 垂直,因为直线AB 与直线BC 也垂直,则直线BC ⊥平面ABD ,所以直线BC ⊥直线BD ,又因为BD AC ⊥,所以BD ⊥平面ABC ,所以BD OB ⊥而OBD V 为等腰三角形,这显然不可能,故选项C 不正确;选项D ,M ACN N ACM V V --=,当平面DAC ⊥平面ABC 时取最大值,()max 1134448N ACM V -=⋅⋅=,故选项D 正确. 12. D 解析:因为()()2f x f x π+=,所以2π是()f x 的一个周期,选项①正确:因为()()f x f x -=-,所以()f x 是奇函数,选项②正确;当0,2x π⎡⎤∈⎢⎥⎣⎦时,()21cos 22x f x sin x -==单调递增,又因为()f x 是奇函数且过原点,所以,22ππ⎡⎤-⎢⎥⎣⎦是函数()f x 的一个单调递增区间,选项③正确;由②③可画出函数()f x 在上的图像,又因为 22f x f x ππ+=-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图像关于2x π=对称,可画出函数()f x 在3,22ππ⎡⎤⎢⎥⎣⎦上的图像,即得到函数()f x 在3,22ππ⎡⎤-⎢⎥⎣⎦上的图像,即一个周期的图像,在3,22ππ⎡⎤-⎢⎥⎣⎦上的对称中心为()0,0和(),0π,所以在整个定义域上对称中心为()(,0)k k Z π∈,即若()()12f x f x =-,则12()2x x k k Z π+=∈,选项④不正确;先求不等式||2222sin x sin x cos x cos x ππππ>g g 在一个周期内的解集,取区间[]0,2π,因为2222sin x sin x cos x cos x ππππ>g g ()222f x f x πππ⎛⎫⇔>+ ⎪⎝⎭,则247224x x πππππ⎧>⎪⎪⎨⎪+<⎪⎩,在整个定义域上则22472224x k x k πππππππ⎧>+⎪⎪⎨⎪+<+⎪⎩,解得15,88k x k k Z +<<+∈,故选项⑤正确,综上,①②③⑤正确.. 【命题意图】三角函数是高中阶段周期函数的代表,与其他函数研究的方法也不太一样.本题旨在考查学生的思想方法,如何运用研究正弦函数、余弦函数的哪种方法,去研究新的、没见过的周期函数,考查学生是否真的理解、能否学以致用,只靠刷题或者死记硬背不行.为了降低难度,①②③引导学生先画出一个周期的函数图像,进而得到整个函数图像,为④⑤服务.选项的设置实际上告诉了学生②的正确性,同时引导学生重点需要判断④⑤,④⑤只需要准确判断其中一个,就能选出正确答案,降低了难度. 二、填空题 13.o120解析:由()a a b ⊥+r r r 得()20a a b a a b ⋅+=+=r r r r r r g,所以2,a b a ⋅=r r r 1,22a b a cos a b a b a a-<>===-r r rr r g r r r r g g ,向量,a b r r 的夹角为o 120 14.70,2⎡⎤⎢⎥⎣⎦解析:画出可行域,z =(),x y 到直线0x y -=的距离的最值,观察可最小值为0,最大值为230x y -+≥与250x y +-≤的交点(1,42)到直线的距离,为72,故取值范围为70,2⎡⎤⎢⎥⎣⎦【命题意图】目标函数加了一个绝对值,不同的学生就会有不同的做法,好学生转化成点到直线的距离,直接可以观察最小值是0,只用求最大值,算一个交点就可以了;一般的学生可以先求z x y =-的范围,再求绝对值的范围,那就要多算一个交点的坐标;当然,也可以分两类确定z x y =-的符号后再求具体范围, 工作量就要大一些了.15.24e m >解析:() f x 有且只有4个不同的零点等价于偶函数()1,0,0xx x g x e e x ⎧<⎪=⎨⎪>⎩与偶函数2y mx =的图象有且只有4个不同的交点,即2xe mx =有两个不等正根,即2xe m x=有两个不等正根.令()2xe h x x=,则()()32x e x h x x -'=,它在()0,2内为负,在(2,)+∞内为正,()h x ∴在()0,2上单调递减,在(2,)+∞上单调递增,又Q 当0x →时,()h x →+∞,当x →+∞时,()h x →+∞24e m ∴>16.6332解析:由333321232n n n a a a a S S ++++=+g g g 得()3333212311122n n n a a a a S S n ---++++=+≥g g g两式相减得()()3221112222n n n n n n n n n a S S S a S S a n S ---=+--=+≥+,()1222n n n S S a n -∴++=≥()211223n n n a S S n ---∴=++≥,两式相减有()12213n n n n a a a n a --+-=≥Q 数列{}n a 各项均为正数,13(1)n n a a n --=≥∴,而21321a a -=-=,∴数列{}n a 是公差为1的等差数列,()2111n a n n ∴=+-=+⨯,()32n n n S +∴=2222232323n n n n S n b n ⎛⎛⎫+∴== ⎪ ⎪⎝⎭⎝⎭g g,令2222251232n n b n b n +⎛⎫+=⋅> ⎪ ⎪+⎝⎭,解得32n < 24468,b b b b b ∴<>>>⋅⋅⋅,2n b ∴的最大值46332b ==【命题意图】本题常规题,考查知识点有:递推数列、等差数列通项、求和公式、数列单调性和最值,虽然都是常规知识点,但融合到一起要想顺利解决,需要对这些知识点深刻理解、熟练掌握. 三、解答题17.解:()1cos cos sin A B C a b c +=Q,由正弦定理可得cos cos sin sin sin sin A B CA B C+=即cos sin cos sin 1sin sin A B B A A B +=,即sin 1sin sin C A B=⋅(2)ABC QV 外接圆直径为1,,,a sinA b sinB c sinC ∴===,又由(1)得sinC sinA sinB c ab =∴=g ,∴ABC V 的面积211112224S absinC csinC c ====,sin 2c C ∴== 由余弦定理得2222222222a b abcosC c ccosC c sinCcosC c sin C c +=+=+=+=+2312c =±+=或12-(12-舍) ()()222212121a b c ab c c c +=++=++=+∴ABC V 的周长.211L a b c c =++=+=18.解:()1Q 数列2n a n ⎧⎫⎨⎬⎩⎭为等差数列,2223212213a a a ∴⋅=+ 又Q 数列{}n a 为等差数列,()()12121223a d a d a ++=+∴即()210a d -=即1a d =又112a =Q ,()111222n n a n ∴=+-⋅= ()2由(1)及题设得()()()()211111111111nn nn n n b n n n n +⎛⎫=+=-+=--+-⋅ ⎪++⎝⎭g g ()()11111111111112233411n n n S n n n ⎛⎫⎛⎫⎛⎫⎛⎫∴=-+++-++⋅⋅⋅+-+=-+-⋅ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭注:第(2)问如果学生n 分为奇数还是偶数进行讨论,只要结果正确也给满分,如果学生归纳猜想,结果正确,但没有证明,只得3分.【命题意图】本题重点考查裂项相消求和,但又不是学生通常几乎都会背的那种裂项相消,考查学生对裂项相消求和方法的理解.19. 解法一(非向量法): (1)方法一:在平面ABCD 内延长DM 交CB 的延长线于FM Q 是正方形ABCD 中AB 边的中点,M ∴是DF 的中点又N Q 是PD 的中点,// MN PF ∴又MN ⊄Q 平面, PBC PF ⊂平面PBC ,//MN ∴平面PBC . 方法二:取PC 的中点G,N G Q 分别是PD PC 、的中点,//12NG CD ∴=又M Q 是正方形ABCD 中边AB 的中点,//12BM CD ∴=,//12GN BM ∴=BMNG ∴是平行四边形,// MN BG ∴又MN ⊄Q 平面PBC ,BG ⊂平面PBC ,//MN ∴平面PBC .方法三:取PA 中点,E E N Q ,分别是PA PD 、的中点,// EN AD ∴ 同理// EM PB底面是正方形,//AD BC ∴,又// EN AD Q ,// EN BC ∴ 又EN ⊄Q 平面PBC ,BC ⊂平面PBC ,//EN ∴平面PBC .同理//EM 平面PBC ,又,EN EM E EN ⋂=⊂Q 平面,EMN EM ⊂平面EMN∴平面//EMN 平面PBC .又MN ⊂Q 平面EMN .∴//MN 平面PBC(2),,AD PB AD AB PB AB B ⊥⊥⋂=Q ,PB ⊂平面PAB ,AB ⊂平面PAB ,AD ∴⊥平面PAB又//EN AD Q ,EN ∴⊥平面PAB ,EMN ∴∠为直线MN 与平面PAB 所成的角.23EN sin EMN MN ∴∠==,又E M N Q 、、分别为PA AB PD 、、的中点,底面边长为2,PA PB =3,2MN ME PM AB ∴==⊥.且2PM === AD ⊥Q 平面PAB ,AD ⊂平面ABCD ,∴平面PAB ⊥平面ABCD ,且交线为AB又PM AB ⊥Q ,且PM ⊂平面PAB ,PM ∴⊥平面ABCD在平面ABCD 内作CH MD ⊥于点H ,则CH PM ⊥又MD PM M ⋂=Q ,MD ⊂平面MND ,PM ⊂平面MND ,CH ∴⊥平面MND再作HI MN ⊥于点I ,则CIH ∠是二面角D MN C --的一个平面角在正方形ABCD中可求得CH MH ==,23HI MHsin DMN MHsin MDN =∠=∠== ∴二面角的余弦值5IH IC ===. 解法三(向量法):AD PB ⊥Q , AD AB ⊥,PB AB B ⋂=,PB ⊂平面PAB ,AB ⊂平面PAB .AD ∴⊥平面PAB ,又PM ⊂Q 平面PAB ,AD PM ∴⊥ ①,PA PB M =Q 是AB 的中点,PM AB ∴⊥,设J 为BD 的中点,则同①得PM MJ ⊥则MJ MA MP 、、两两垂直,∴可分别以MJ MA MP 、、为轴,,x y z 建立空间直角坐标系设()0,0,P p()1()()112,1,00,0,1,,222p MN p ⎛⎫=+=⎡⎤ ⎪⎣⎦⎝⎭u u u u r Q ()()()0,0,0,1,00,1,BP p p =--=u u u r()()()2,1,00,1,02,0,0BC =---=u u u r1122MN BP BC ∴=+u u u u r u u u r u u u r 在平面PBC 内作1122BK BP BC =+u u u r u u u r u u u r ,则BK MN =u u u r u u u u r // , BK MN MN ∴⊄平面PBC ,BK ⊂平面PBC ,//MN ∴平面PBC()211,,22p MN ⎛⎫= ⎪⎝⎭u u u u r Q ,()2,0,0MJ =u u u r 是平面PAB 的一个法向量 22221120022,)51122(2p MN MJ cos MN MJ MN MJ p p ⨯+⨯+⨯⋅∴===⋅+⎛⎫⎛⎫++⋅ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r u u u u r u u u r u u u u r u u u r 又Q 直线MN 与平面PAB 所成的角的正弦值为23,2235p =+2p =±即(负舍) 11,,12MN ⎛⎫∴= ⎪⎝⎭u u u u r ,()2,1,0MD =u u u u r ,()2,1,0MC =-u u u u r 设(), , a x y z =⊥r 平面DMN ,则10220a MN x y z a MD x y ⎧⋅=++=⎪⎨⎪⋅=+=⎩r u u u u r r u u u u r 即20y x z =-⎧⎨=⎩,令1x =得()1,2,0a =-r 设(), , b r s t =⊥r 平面CMN ,则10220b MN r s t b MC r s ⎧⋅=++=⎪⎨⎪⋅=-=⎩r u u u u r r u u u u r 即22s r t r =⎧⎨=-⎩,令1r =得()1,2,2b =-r ()()2222221122025,)5120122(a b cos a b a b ⨯+-⨯+⨯-⋅∴===-⋅+-+⋅++-r r r r r r又a r Q 指向二面角,b r 指向二面角,∴20. 解: (1)若下两单,耳机优惠后实际付款为25054230-⨯= (元)音响优惠后实际付款为650510401560-⨯-⨯=(元)耳机和音响优惠后一共实际付款230560790+=元若下一单,耳机和音响优惠后一共实际付款()250650515402745+-⨯-⨯= (元)∴下一单划算(2)方法一:假设购买*()x x N ∈件,平均价格为y 元/件由于不能超过700元预算,最多只能购买26件,且当114x ≤≤时不能享受满400元减40元的优惠,当1526x ≤≤时能享受一次每满400元减40元的优惠 1︒当114x ≤≤时不能享受每满400元减40元的优惠, 则130530530602x x y x x x ⎛⎫⎡⎤⎡⎤=-⨯=-⨯= ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭530,22,530,2121n x n n n N n x n n ⎧-⨯=⎪⎪∈⎨⎪-⨯=+⎪+⎩当2x n =时,1272y =. 当21x n =+时,()551302722212y k =-+>+ ∴当114x ≤≤时购买偶数件该生活日用品的平均价格最低,最低平均价格为27.5元/件.2°当1526x ≤≤时能享受一次每满400元减40元的优惠, 则1305403054030602x x y x x x x ⎛⎫⎡⎤⎡⎤=-⨯-=-⨯-= ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭54030,222,54030,212121n x n n n k N n x n n n ⎧-⨯-=⎪⎪∈⎨⎪-⨯-=+⎪++⎩当2x n =时,120272y n=-.当8,16n x ==时,25min y = 当21x n =+时,()()5405753030212221n y n n +=-=--++,当7,15n x ==时,25min y = 综上,购买15件或16件该生活日用品的平均价格最低,最低平均价格为25元/件.方法二:设购买*()x x N ∈件应付款为y 元,平均价格为z 元/件则30305,0400603030540,36070060x x y y x x y ⎧⎡⎤-<<⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎪-⨯-≤≤⎢⎥⎪⎣⎦⎩552,04005530,21,0400=5540,2,3607005510,21360700n x n y n x n y n x n y n x n y =<<⎧⎪+=+<<⎪⎨-=≤≤⎪⎪-=+≤≤⎩,,,552,1,2,,75530,21,1,2,,65540,2,8,9,,135510,217,8,,12n x n n n x n n n N n x n n n x n n ==⋅⋅⋅⎧⎪+=+=⋅⋅⋅⎪∈=⎨-==⋅⋅⋅⎪⎪-=+=⋅⋅⋅⎩,,()()27.5,2,1,2,,7527.5,21,1,2,,62212027.5,2,8,9,,137527.5,217,8,,12221x n n x n n n y z x x n n n x n n n ==⋅⋅⋅⎧⎪⎪+=+=⋅⋅⋅+⎪⎪∴=⎨-==⋅⋅⋅⎪⎪⎪-=+=⋅⋅⋅⎪+⎩, 第一段: 27.5;第二段:大于 27.5第三段:当8n =时,取最小值25=;第四段:当7n =时,取最小值25=综上,购买15件或16件该生活日用品的平均价格最低,最低平均价格为25元/件.说明:对用列举法的评分,若列举完整、计算正确,则不扣分.21. 解: (1)由题得()()2121210ax x f x a ax ax ax x-++'=⋅-+=> 1︒若0a <,则函数定义域为(0),-∞① 810a =+≤V 即18a ≤-时则在(0),-∞内()'0f x ≤且不连续取0,()f x 在(0),-∞单调递减此时()f x 在定义域(0),-∞内没有极值点..② 810a =+>V 即108a -<< 则2210ax x ++=-在(0),-∞内有两个根()1212,0x x x x <<当1),(x x ∈-∞时,()()'0,f x f x <∴单调递减,当()12,x x x ∈时,()'0f x >,() f x ∴单调递增当()2,0x x ∈时,()'0f x <,() f x ∴单调递减∴当108a -<<时()f x 在(0),-∞内有且只有2个极值点.2︒若0a >,则函数定义域为(0),-∞二次函数()221g x ax x =-++的开口向下,对称轴104x a=>,()010g =>,判别式810a =+>V ()0g x ∴=在(0),-∞只有一个根0x 当0(0),x x ∈时,()()'0,f x f x <∴单调递增,当()0,x x ∈+∞时,()'0f x >,() f x ∴单调递减 综上,当18a ≤-时()f x 在(0),-∞内没有极值点,当108a -<<时()f x 在(0),-∞内有且只有2个极值点. 当0a >时()f x 在(0,)+∞内有且只有1个极值点.(2)方法一:若函数()f x 有且只有一个极值点o x则由(1)知0a >,且00(),x ∈+∞且200210ax x -++=即02012x a x += 由()00f x ≤得()()200000002011ln 22x x f x ln ax ax x x x ++=-+=-+002011ln 022x x x +-=-≤① 令()()211ln 022x x h x x x +-=->,则()()()()12'21x x h x x x -+=+ ∴当()0,1x ∈时,()()'0,h x h x <∴单调递减,当,()1x ∈+∞时,()() '0,h x h x >∴单调递增∴()()010h x h ≥=.又由知()00,1h x x ≤∴=,020112x a x +∴== ∴实数a 的取值集合为{}1.方法二: 若函数()f x 有且只有一个极值点o x则由(1)知0a >,且00(),x ∈+∞且200210ax x -++=即()0104x a a=> 由()00f x ≤得()()20000f x ln ax ax x =-+0000011ln ln 22x x ax x ax +-=-+=-141048a a a=-≤ ①令t =, ()()22111132ln ln 141421(t)t t t t t i t t t ---++-=-=->--则()()()()()()()2211313411142111t t t t i t t t t ⋅---⋅-=⋅-=+-+-在(1)3,内为负,在(3)+∞,内为正 ()i t ∴在(1)3,内单调递减,在(3)+∞,内单调递增,()min [(3]0t)i i ==∴()00f x i ∴=≥又Q 由①得()00f x i =≤3=,即1a =,∴实数a 的取值集合为{}1.【命题意图】本题主要考查分类讨论、导数的应用,中偏难,与21题一起双压轴.第一问的亮点是0a >和0a <时定义城不一样,确定定义城是研究函数的第一步,这对不喜欢考虑定义城的学生是一个教训.第一问题讨论的侧重点放在了对二次函数正负的讨论,需要从开口、对称轴、判别式、端点函数值符号四个方面控制,是二次函数研究的重点,同时也是学生比较熟悉的函数类型,所有学生都能上手,但不一定都能做对.第二问也不难,解二元的不等式,先消元,利用单调性解不等式,再代回两个元之间的关系式求出a 的取值集合.22. 解: (1)直线11:4355x y l +-=-,即3410x y +-=即3410cos sin ρθρθ+-= 曲线:C sin cos ρθθ=-即2sin cos ρρθρθ=- (原式中ρ可以为θ,故两边乘以ρ不扩大范围)即22x y y x +=-即2211()2212y x ⎛⎫+-= +⎪⎝⎭ 直线l 的极坐标方程为3410cos sin ρθρθ+-=,曲线C 的普通方程为220x y x y ++-= 说明:后者写成22 0x y x y ++-=和2211()2212y x ⎛⎫+-= +⎪⎝⎭中的任何一个都给全分. (2)方法一:将直线l 的参数方程415315x t y t ⎧=--⎪⎪⎨⎪=+⎪⎩代入曲线C 的普通方程22 0x y x y ++-=得2705t t += 即0t =或75- A B ∴、两点间的距离1275AB t t =-=方法二:由(1) 知曲线C 是一个圆,其圆心到直线l的距离110d == A B ∴、两点间的距离75AB ===23. 解: (1)当2a =时,()3,1 2224,213,2x x f x x x x x x x ≥⎧⎪=-++=--≤<⎨⎪-<-⎩[]()min 1()3f x f =-∴(2)方法一:当1,32x ⎡⎤∈⎢⎥⎣⎦且0a >时,原不等式可化为12x a x a a x -++<+. 即12x a x x -<-即112x x a x x x ⎛⎫--<-<- ⎪⎝⎭即113x a x x x -<<+. ∴题设等价于1,32x ⎡⎤∃∈⎢⎥⎣⎦,113x a x x x -<<+且0a > 令132113x x x x x ⎧≤≤⎪⎪⎨⎪-<+⎪⎩得112x ≤<∴题设等价于1,12x ⎡⎤∃∈⎢⎥⎣⎦,113x a x x x -<<+且0a > 即min max 113x a x x x ⎛⎫⎛⎫-<<+ ⎪ ⎪⎝⎭⎝⎭且0a > 即a 的取值范围50,2⎛=⎫ ⎪⎝⎭. 方法二: 6分处同方法一如图,画出函数()13g x x x =-和()1h x x x =+在区间1,32⎡⎤⎢⎥⎣⎦的图象.可知a 的取值范围50,2⎛=⎫ ⎪⎝⎭方法三:当1,32x⎡⎤∈⎢⎥⎣⎦且0a>时,原不等式可化为12x a x a ax-++<+即12x a xx-<-令132113xx xx x⎧≤≤⎪⎪⎨⎪-<+⎪⎩得112x≤<∴题设等价于1,12x⎡⎤∃∈⎢⎥⎣⎦,113x a xx x-<<+且0a>即a的取值范围50,2⎛=⎫ ⎪⎝⎭.说明: (1)三种方法中的“6分”档处的“2分”做到了的一定要给到.(2)答案为15,22⎛⎫- ⎪⎝⎭扣1分;答案为(100,3)扣2分;答案为110,23⎛⎫- ⎪⎝⎭扣3分。

高考模拟题复习试卷习题资料高考数学试卷理科附详细答案88

高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(8)一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A. B.π C.2π D.4π2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)3.(5分)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣14.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣15.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.14.(5分)观察分析下表中的数据:多面体面数(F)顶点数棱数(E)(V)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.(几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m +n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.22.(13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为. (Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.23.(14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥a g(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (8)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A. B.π C.2π D.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选:B.【点评】本题考查交集的运算,理解好交集的定义是解答的关键.3.(5分)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣1【分析】根据微积分基本定理计算即可.【解答】解:(2x+ex)dx=(x2+ex)|=(1+e)﹣(0+e0)=e.故选:C.【点评】本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式. 【解答】解:由程序框图知:ai+1=2ai,a1=2,∴数列为公比为2的等比数列,∴an=2n.故选:C.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x【分析】对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.【解答】解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f (y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f (x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选:D.【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.【解答】解:根据共轭复数的定义,原命题“若z1,z2互为共轭复数,则|z1|=|z2|”是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,∴命题的否命题是假命题,逆否命题是真命题.故选:B.【点评】本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a【分析】方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.【解答】解:方法1:∵yi=xi+a,∴E(yi)=E(xi)+E(a)=1+a,方差D(yi)=D(xi)+E(a)=4.方法2:由题意知yi=xi+a,则=(x1+x2+…+x10+10×a)=(x1+x2+…+x10)=+a=1+a,方差s2=[(x1+a﹣(+a)2+(x2+a﹣(+a)2+…+(x10+a﹣(+a)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2=4.故选:A.【点评】本题主要考查样本数据的均值和方差之间的关系,若变量y=ax+b,则Ey=aEx+b,Dy=a2Dx,利用公式比较简单或者使用均值和方差的公式进行计算.10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x【分析】分别求出四个选项中的导数,验证在x=±5处的导数为0成立与否,即可得出函数的解析式.【解答】解:由题意可得出,此三次函数在x=±5处的导数为0,依次特征寻找正确选项:A选项,导数为,令其为0,解得x=±5,故A正确;B选项,导数为,令其为0,x=±5不成立,故B错误;C选项,导数为,令其为0,x=±5不成立,故C错误;D选项,导数为,令其为0,x=±5不成立,故D错误.故选:A.【点评】本题考查导数的几何意义,导数几何意义是导数的重要应用.二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.【解答】解:由4a=2,得,再由lgx=a=,得x=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为 x2+(y﹣1)2=1 .【分析】利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.【解答】解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.【点评】本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.【分析】利用向量共线定理、倍角公式、同角三角函数基本关系式即可得出.【解答】解:∵∥,向量=(sin2θ,cosθ),=(cosθ,1),∴sin2θ﹣cos2θ=0,∴2sinθcosθ=cos2θ,∵0<θ<,∴cosθ≠0.∴2tanθ=1,∴tanθ=.故答案为:.【点评】本题考查了向量共线定理、倍角公式、同角三角函数基本关系式,属于基础题.14.(5分)观察分析下表中的数据:多面体面数(F)顶点数棱数(E)(V)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是 F+V﹣E=2 .【分析】通过正方体、三棱柱、三棱锥的面数F、顶点数V和棱数E,得到规律:F+V﹣E=2,进而发现此公式对任意凸多面体都成立,由此得到本题的答案.【解答】解:凸多面体的面数为F、顶点数为V和棱数为E,①正方体:F=6,V=8,E=12,得F+V﹣E=8+6﹣12=2;②三棱柱:F=5,V=6,E=9,得F+V﹣E=5+6﹣9=2;③三棱锥:F=4,V=4,E=6,得F+V﹣E=4+4﹣6=2.根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:F+V﹣E=2再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.因此归纳出一般结论:F+V﹣E=2故答案为:F+V﹣E=2【点评】本题由几个特殊多面体,观察它们的顶点数、面数和棱数,归纳出一般结论,得到欧拉公式,着重考查了归纳推理和凸多面体的性质等知识,属于基础题.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.【分析】根据柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc取等号,问题即可解决.【解答】解:由柯西不等式得,(ma+nb)2≤(m2+n2)(a2+b2)∵a2+b2=5,ma+nb=5,∴(m2+n2)≥5∴的最小值为故答案为:【点评】本题主要考查了柯西不等式,解题关键在于清楚等号成立的条件,属于中档题.(几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF= 3 .【分析】证明△AEF∽△ACB,可得,即可得出结论.【解答】解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,∴∠AEF=∠C,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∵BC=6,AC=2AE,∴EF=3.故答案为:3.【点评】本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是 1 .【分析】把极坐标化为直角坐标,再利用点到直线的距离公式即可得出.【解答】解:点P(2,)化为=,y=2=1,∴P.直线展开化为:=1,化为直角坐标方程为:,即=0.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标的公式、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.【分析】(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.【点评】此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.【分析】(Ⅰ)由三视图得到四面体ABCD的具体形状,然后利用线面平行的性质得到四边形EFGH的两组对边平行,即可得四边形为平行四边形,再由线面垂直的判断和性质得到AD⊥BC,结合异面直线所成角的概念得到EF⊥EH,从而证得结论;(Ⅱ)分别以DB,DC,DA所在直线为x,y,z轴建立空间直角坐标系,求出所用点的坐标,求出及平面EFGH的一个法向量,用与所成角的余弦值的绝对值得直线AB与平面EFGH夹角θ的正弦值.【解答】(Ⅰ)证明:由三视图可知,四面体ABCD的底面BDC是以∠BDC为直角的等腰直角三角形,且侧棱AD⊥底面BDC.如图,∵AD∥平面EFGH,平面ADB∩平面EFGH=EF,AD⊂平面ABD,∴AD∥EF.∵AD∥平面EFGH,平面ADC∩平面EFGH=GH,AD⊂平面ADC,∴AD∥GH.由平行公理可得EF∥GH.∵BC∥平面EFGH,平面DBC∩平面EFGH=FG,BC⊂平面BDC,∴BC∥FG.∵BC∥平面EFGH,平面ABC∩平面EFGH=EH,BC⊂平面ABC,∴BC∥EH.由平行公理可得FG∥EH.∴四边形EFGH为平行四边形.又AD⊥平面BDC,BC⊂平面BDC,∴AD⊥BC,则EF⊥EH.∴四边形EFGH是矩形;(Ⅱ)解:解法一:取AD的中点M,连结,显然ME∥BD,MH∥CD,MF∥AB,且ME=MH=1,平面MEH⊥平面EFGH,取EH的中点N,连结MN,则MN⊥EH,∴MN⊥平面EFGH,则∠MFN就是MF(即AB)与平面EFGH所成的角θ,∵△MEH是等腰直角三角形,∴MN=,又MF=AB=,∴sin∠AFN==,即直线AB与平面EFGH夹角θ的正弦值是.解法二:分别以DB,DC,DA所在直线为x,y,z轴建立空间直角坐标系,由三视图可知DB=DC=2,DA=1.又E为AB中点,∴F,G分别为DB,DC中点.∴A(0,0,1),B(2,0,0),F(1,0,0),E(1,0,),G(0,1,0).则.设平面EFGH的一个法向量为.由,得,取y=1,得x=1.∴.则sinθ=|cos<>|===.【点评】本题考查了空间中的直线与直线的位置关系,考查了直线和平面所成的角,训练了利用空间直角坐标系求线面角,解答此题的关键在于建立正确的空间右手系,是中档题.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.【分析】(Ⅰ)先根据++=,以及各点的坐标,求出点p的坐标,再根据向量模的公式,问题得以解决;(Ⅱ)利用向量的坐标运算,先求出,,再根据=m+n,表示出m﹣n=y﹣x,最后结合图形,求出m﹣n的最小值.【解答】解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),++=,∴(1﹣x,1﹣y)+(2﹣x,3﹣y)+(3﹣x,2﹣y)=0∴3x﹣6=0,3y﹣6=0∴x=2,y=2,即=(2,2)∴(Ⅱ)∵A(1,1),B(2,3),C(3,2),∴,∵=m+n,∴(x,y)=(m+2n,2m+n)∴x=m+2n,y=2m+n∴m﹣n=y﹣x,令y﹣x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m﹣n的最大值为1.【点评】本题考查了向量的坐标运算,关键在于审清题意,属于中档题,21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.【分析】(Ⅰ)分别求出对应的概率,即可求X的分布列;(Ⅱ)分别求出3季中有2季的利润不少于2000元的概率和3季中利润不少于2000元的概率,利用概率相加即可得到结论.【解答】解:(Ⅰ)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,则P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格﹣成本,∴X的所有值为:500×10﹣1000=4000,500×6﹣1000=2000,300×10﹣1000=2000,300×6﹣1000=800,则P(X=4000)=P ()P ()=(1﹣0.5)×(1﹣0.4)=0.3,P(X=2000)=P ()P(B)+P(A)P ()=(1﹣0.5)×0.4+0.5(1﹣0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,则X的分布列为:X 4000 2000 800P 0.3 0.5 0.2(Ⅱ)设Ci表示事件“第i季利润不少于2000元”(i=1,2,3),则C1,C2,C3相互独立,由(Ⅰ)知,P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512,3季的利润有2季不少于2000的概率为P(C2C3)+P(C1C3)+P(C1C2)=3×0.82×0.2=0.384,综上:这3季中至少有2季的利润不少于2000元的概率为:0.512+0.384=0.896.【点评】本题主要考查随机变量的分布列及其概率的计算,考查学生的计算能力.23.(14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.【分析】(Ⅰ)由已知,,…可得用数学归纳法加以证明;(Ⅱ)由已知得到ln(1+x)≥恒成立构造函数φ(x)=ln(1+x)﹣(x≥0),利用导数求出函数的最小值即可;(Ⅲ)在(Ⅱ)中取a=1,可得,令则,n依次取1,2,3…,然后各式相加即得到不等式.【解答】解:由题设得,(Ⅰ)由已知,,…可得下面用数学归纳法证明.①当n=1时,,结论成立.②假设n=k时结论成立,即,那么n=k+1时,=即结论成立. 由①②可知,结论对n∈N+成立.(Ⅱ)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)﹣(x≥0),则φ′(x)=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时取等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立.∴当a≤1时,ln(1+x)≥恒成立,(仅当x=0时等号成立)当a>1时,对x∈(0,a﹣1]有φ′(x)<0,∴φ(x)在∈(0,a﹣1]上单调递减,∴φ(a﹣1)<φ(0)=0即当a>1时存在x>0使φ(x)<0,故知ln(1+x)≥不恒成立,综上可知,实数a的取值范围是(﹣∞,1].(Ⅲ)由题设知,g(1)+g(2)+…+g(n)=,n﹣f(n)=n﹣ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n﹣ln(n+1)证明如下:上述不等式等价于,在(Ⅱ)中取a=1,可得,令则故有,ln3﹣ln2,…,上述各式相加可得结论得证.【点评】本题考查数学归纳法;考查构造函数解决不等式问题;考查利用导数求函数的最值,证明不等式,属于一道综合题.22.(13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为. (Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.【分析】(Ⅰ)在C1、C2的方程中,令y=0,即得b=1,设C1:的半焦距为c,由=及a2﹣c2=b2=1得a=2;(Ⅱ)由(Ⅰ)知上半椭圆C1的方程为+x2=1(y≥0),设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(xp,yp),依题意,可求得点P的坐标为(,);同理可得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),利用•=0,可求得k的值,从而可得答案.【解答】解:(Ⅰ)在C1、C2的方程中,令y=0,可得b=1,且A(﹣1,0),B(1,0)是上半椭圆C1的左右顶点.设C1:的半焦距为c,由=及a2﹣c2=b2=1得a=2.∴a=2,b=1.(Ⅱ)由(Ⅰ)知上半椭圆C1的方程为+x2=1(y≥0).易知,直线l与x轴不重合也不垂直,设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得:(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(xp,yp),∵直线l过点B,∴x=1是方程(*)的一个根,由求根公式,得xp=,从而yp=,∴点P的坐标为(,).同理,由得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),∴=(k,﹣4),=﹣k(1,k+2),∵AP⊥AQ,∴•=0,即[k﹣4(k+2)]=0,∵k≠0,∴k﹣4(k+2)=0,解得k=﹣.经检验,k=﹣符合题意,故直线l的方程为y=﹣(x﹣1),即8x+3y﹣8=0.【点评】本题考查椭圆与抛物线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查设点法、数形结合思想、函数与方程思想,属于难题.普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2,3,4},N={1,3,5},P=M N ,则P 的子集共有 A .2个 B .4个 C .6个 D .8个 2.复数512ii =-A .2i -B .12i -C . 2i -+D .12i -+3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x =B .||1y x =+C .21y x =-+D .||2x y -=4.椭圆221168x y +=的离心率为A .13B .12C .33D .225.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 A .120 B . 720 C . 1440 D . 50406.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13B .12 C .23D .347.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A . 45-B .35-C .35D .458.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为 A .18 B .24 C . 36D . 4810.在下列区间中,函数()43xf x e x =+-的零点所在的区间为A .1(,0)4-B .1(0,)4C .11(,)42D .13(,)2411.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有A .10个B .9个C .8个D .1个第Ⅱ卷本卷包括必考题和选考题两部分.第13题第21题为必考题,每个试题考生都必须做答.第22题第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a+b 与向量kab 垂直,则k=_____________.14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12nn a S -=(II )设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD . (I )证明:PA BD ⊥; (II )设PD=AD=1,求棱锥DPBC 的高.19.(本小题满分12分) 某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110]频数8 20 42 22 8 指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110]频数 4 12 42 32 10(I )分别估计用A 配方,B 配方生产的产品的优质品率;(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.20.(本小题满分12分) 在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.21.(本小题满分12分) 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (I )求a ,b 的值;(II )证明:当x>0,且1x ≠时,ln ()1xf x x >-. 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修41:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根. (I )证明:C ,B ,D ,E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求C ,B ,D ,E 所在圆的半径.23.(本小题满分10分)选修44:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求|AB|.24.(本小题满分10分)选修45:不等式选讲 设函数()||3f x x a x =-+,其中0a >. (I )当a=1时,求不等式()32f x x ≥+的解集.(II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.普通高等学校招生全国统一考试 文科数学试卷参考答案一、选择题(1)B (2)C (3)B (4)D (5)B (6)A (7)B (8)D (9)C (10)C (11)D (12)A 二、填空题(13)1 (14)6 (15)4315 (16)31三、解答题 (17)解:(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-=2)1(+-=n n所以}{n b 的通项公式为.2)1(+-=n n b n (18)解:(Ⅰ)因为60,2DAB AB AD ∠=︒=,由余弦定理得BD = 从而BD2+AD2= AB2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁UA.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=xa(x≥0),g(x)=logax的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:此时答案D满足要求,当a>1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 6 .【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i 的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[].【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,].【分析】画出函数f(x)的图象,由 f(f(a))≤2,可得 f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由 f(f(a))≤2,可得 f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P (m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,A P′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…an=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{an}为等比数列,且a1=2,∴{an}的公比为q,则=4,由题意知an>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…an=(n∈N*)得:,,∴bn=n(n+1)(n∈N*).(Ⅱ)(i)∵cn===.∴Sn=c1+c2+c3+…+cn====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,cn<0,综上,对任意n∈N*恒有S4≥Sn,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.高考模拟复习试卷试题模拟卷第01节 集合的概念及其基本运算A 基础巩固训练1.【高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )22.【高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =()A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 3.【福州市三中模拟】已知集合,,若,则实数的取值范围是() A .B .C .D .4.【冀州中学高三上学期第一次月考,文1】若集合{}0P y y =≥,P Q Q =,则集合Q 不可能是( )A .∅B .{}2,R y y x x =∈C .{}2,R xy y x =∈D .{}2log ,0y y x x =>5.【重点中学高三上学期第三次月考,理1】已知全集{}1,2,3,4,5,6,7,8,9U = 集合{}1,2,3,4,5,6A = 集合{}3,4,5,6,7,8B =,则集合B C A C U U ⋂为( )A . {}3,4,5,6B . {}1,2,7,8,9C . {}1,2,3,4,5,6,7,8D . {}9 B 能力提升训练1.定义集合A 与B 的运算“*”为:{A B x x A *=∈或x B ∈,但}x A B ∉.设X 是偶数集,{1,2,3,4,5}Y =,则()X Y Y **=( ) A.X B.Y C.XY D.X Y2.下列四个集合中,是空集的是( )A .{}3|3x x +=B .22{|}x y y x x y R =∈(,)﹣,, C .21{|0}x x x x R +=∈﹣, D .2{|}0x x ≤3.设集合{}1,0,2A =-,集合{}2B x x A x A =-∈-∉且,则B =( ) (A ){}1 (B ){}2- (C ){}1,2-- (D ){}1,0-4.【·海安中学模拟】已知集合A ={(x ,y)|x2+y2=1},B ={(x ,y)||x|+|y|=λ},若A ∩B ≠∅,则实数λ的取值范围是________.5.已知集合A ={x|4≤x2≤16},B =[a ,b],若A ⊆B ,则实数a -b 的取值范围是( ) A. (-∞,-2]B.[)+∞-,2 C. (-∞,2]D.[)+∞,2 C 思维拓展训练1.【湖北八校联考文】已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅,则a =( )A .6或2B .6C .2或6D .22.【广东汕头市二模】设非空集合M 同时满足下列两个条件: ①{}1,2,3,,1M n ⊆⋅⋅⋅⋅⋅⋅-;②若a M ∈,则n a M -∈,(2,)n n N +≥∈.则下列结论正确的是( ) A .若n 为奇数,则集合M 的个数为122n - B .若n 为奇数,则集合M 的个数为122n +C .若n 为偶数,则集合M 的个数为22n D .若n 为偶数,则集合M 的个数为221n - 3.设数集M 同时满足条件①M 中不含元素1,0,1-,②若a M ∈,则11aM a+∈-. 则下列结论正确的是 ( )(A )集合M 中至多有2个元素; (B )集合M 中至多有3个元素; (C )集合M 中有且仅有4个元素; (D )集合M 中有无穷多个元素. 4.【其中总动员】设集合(){}(){},|||||1,,()()0A x y x y B x y y x y x =+≤=-+≤,M AB =,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .15[,]22B .25[,]22 C .110[,]22 D .210[,]225.已知集合()(){},M x y y f x ==,若对于任意()11,x y M∈,存在()22,x y M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①()1,M x y y x ⎧⎫==⎨⎬⎩⎭; ②(){},sin 1M x y y x ==+; 则以下选项正确的是()(A)①是“垂直对点集” ,②不是“垂直对点集” (B)①不是“垂直对点集”,②是“垂直对点集” (C)①②都是“垂直对点集” (D) ①②都不是“垂直对点集”。

相关文档
最新文档