2.1绝对值不等式的解法

合集下载

上海高考数学复习专题-不等式

上海高考数学复习专题-不等式

【注】本例中
“a>0”是先决条件,否则需要讨论
x1,x2 与对称轴
x=−
$
的大小关系,非常
复杂。(如图 d)
图a
图b
图c
图d
2)分离参数法:将不等式变换为 f(x) ≥a 或 f(x) ≤a 的形式。 f(x) ≥m,x∈R 恒成立(如图 e),则 8! "3R ≥ 2 f(x) ≤m,x∈R 恒成立,(如图 f)则 8! "3 I ≤ 2 f(x) ≥m,在区间[x1,x2]恒成立,(如图 g),则 f! '" ≥ m

当且仅当 ' = $ = ⋯ = 时,取等号。
即:n 个正数的算术平均值,不小于它的几何平均值。当且仅当它们都相等时取等号。
【注】算术平均值 = .# /#⋯ #
几何平均值 = 0 ' ∙ $ ∙ ⋯ ∙
1.3 几个常用的重要结论
ab > 0 ⇒ + ≥ 2,当且仅当 a=b 时,取等号。
>0 2 = 常数 > 0,
一个含参数的等式(或参数)时,不得扩大或缩小原变量的范围。 如:若 a>b ⇒ ac>bc,则有 c>0
H
如:若
>
⇒ bc>ad,则有 ac>0
2.2 求解一元二次不等式
【注】1)对于a $ + + > 0!或 < 0",必须讨论:(1)a=0 ,(2)a≠0 2)一元二次不等式的解集,常与一元二次方程 a $ + + = 0 (a≠0)的根联系在一起。
"> 0
n!I"
m!I" n!I"

0

绝对值方程与绝对值不等式教案

绝对值方程与绝对值不等式教案

绝对值方程与绝对值不等式教案第一章:绝对值概念回顾1.1 绝对值的定义绝对值表示一个数与零点的距离,不考虑数的正负号。

例如:|3| = 3, |-5| = 51.2 绝对值的性质性质1:|a| = |-a|性质2:|a + b| ≤|a| + |b| (三角不等式)性质3:如果a是实数,|a| ≥0,且|a| = 0当且仅当a = 0第二章:绝对值方程的解法2.1 绝对值方程的一般形式|ax + b| = c2.2 分类讨论解绝对值方程当c > 0时,方程有两个解:x = (c b)/a 或x = -(c b)/a当c = 0时,方程变为|ax + b| = 0,此时x = -b/a当c < 0时,方程无解第三章:绝对值不等式的解法3.1 绝对值不等式的一般形式|ax + b| ≥c 或|ax + b| ≤c3.2 分类讨论解绝对值不等式当c ≥0时,|ax + b| ≥c的解集为:x ≤(c b)/a 或x ≥-(c b)/a当c < 0时,|ax + b| ≥c的解集为:实数集R,因为任何数的绝对值都不可能小于负数。

第四章:绝对值不等式的性质和应用4.1 绝对值不等式的性质如果a > 0,|ax| > |bx|等价于|x| > |b|/a如果a < 0,|ax| > |bx|等价于|x| < |b|/a4.2 绝对值不等式的应用求解绝对值不等式时,先考虑a的正负,再根据不等式的性质进行求解。

第五章:绝对值方程和不等式的实际应用案例5.1 实际应用案例一:距离问题问题描述:两个人从A、B两地出发,相向而行,已知他们的速度和相遇时间,求他们各自走了多远。

建立模型:设两人的速度分别为v1和v2,相遇时间为t,A、B两地距离为d,则有|v1t v2t| = d。

求解:根据绝对值方程的解法,求出两人各自走了多远。

5.2 实际应用案例二:利润问题问题描述:某商品的原价为a元,打m折后的售价为b元,求商品的折扣力度。

绝对值不等式的解法及应用

绝对值不等式的解法及应用

绝对值不等式的解法及应用绝对值不等式在数学中具有重要的应用价值,在各个领域中都有广泛的运用。

本文将对绝对值不等式的解法进行简要说明,并介绍其在实际问题中的应用。

一、绝对值不等式的解法1. 求解一元绝对值不等式对于形如 |x|<a 的不等式,其中 a>0 ,我们可以将其分解为两个简单的不等式,即 x<a 和-x<a ,然后再根据这两个不等式得到解的范围。

例如,对于 |x|<3 这个不等式,我们可以拆分为 x<3 和 -x<3 ,再分别求解这两个不等式,得到解的范围为 -3<x<3 。

2. 求解含有绝对值不等式的方程对于形如 |f(x)|=g(x) 的方程,可以通过以下步骤求解:Step 1: 根据绝对值的定义,将绝对值拆解为两个条件,即 f(x)=g(x) 和 f(x)=-g(x) 。

Step 2: 分别求解这两个条件对应的方程,得到解的范围。

Step 3: 将 Step 2 中得到的解进行合并,得到最终的解集。

例如,对于 |x-2|=3 这个方程,我们可以拆解为 x-2=3 和 x-2=-3 ,然后求解这两个方程得到 x=5 和 x=-1 ,最终的解集为 {5, -1} 。

二、绝对值不等式的应用绝对值不等式在实际问题中有广泛的应用,下面将介绍其中两个常见的应用领域。

1. 绝对值不等式在不等式求解中的应用在不等式求解中,绝对值不等式是一种常见的工具。

通过合理地运用绝对值不等式,可以简化不等式的求解过程,提高解题效率。

下面通过一个例子来说明。

例题:求解不等式 |2x-1|<5 。

解:根据绝对值的定义,将不等式拆分为两个条件,即 2x-1<5 和2x-1>-5 。

然后分别求解这两个条件对应的方程,得到 x<3 和 x>-2 。

最后将这两个解的范围进行合并,得到最终的解集为 -2<x<3 。

2. 绝对值不等式在数列问题中的应用在数列问题中,绝对值不等式可以用来求解数列的范围,帮助我们找到数列的性质和规律。

绝对值不等式公式大全

绝对值不等式公式大全

绝对值不等式公式大全下面是一些常见的绝对值不等式及其推导和解法。

1.绝对值的定义:对于任意实数x,绝对值,x,定义如下:-当x≥0时,x,=x。

-当x<0时,x,=-x。

2.单个绝对值不等式:2.1,x,>a时,有以下不等式:-方程的解集为:x>a或x<-a。

-解法:将,x,>a拆解为x>a或x<-a,然后根据实际问题分析确定解集。

2.2,x,<a时,有以下不等式:-方程的解集为:-a<x<a。

-解法:将,x,<a拆解为x>-a且x<a,然后根据实际问题分析确定解集。

3.绝对值的性质:3.1,a+b,≤,a,+,b该性质成立是因为绝对值函数具有非负性质,并且,a+b,的取值范围比,a,+,b,的取值范围要小。

3.2,a-b,≥,a,-,b该性质成立是因为绝对值的定义在于,x,≥-x,同时采用了加法的逆运算。

3.3,a-b,≥,b,-,a该性质成立是因为绝对值的定义在于,x,≥-x,同时采用了减法的逆运算。

4.绝对值不等式的加法运算法则:若,a,≤,b,则有以下结论:-,a+x,≤,b+x-,x+a,≤,x+b解法:根据2.1的解法,将,x,≤a拆解为-a≤x≤a,根据性质3.1,可得,a+x,≤,a,+,x,≤,a,+,b。

5.绝对值不等式的乘法运算法则:若0≤a≤b-,a*x,≤,b*x,其中x可以是任意实数。

解法:对于给定的,x,≤a(根据2.2的解法得到),将其乘以非负的实数k,则有,k*x,≤a*k,根据性质3.1,可得,k*x,≤a*k≤b*k。

6.绝对值不等式的复合运算法则:若,a,≤b且,c,≤d,则有以下结论:-,a+c,≤,b+d-,a-c,≤,b-d解法:根据4的解法,分别将,a+c,和,a-c,展开为,a+x,的形式,并应用3.1的性质,可以得到上述结论。

这些是常见的绝对值不等式及其推导和解法,通过这些公式和方法,我们可以更方便地求解一些数学问题。

但需要注意的是,在应用绝对值不等式时,需要根据具体问题来确定解集,并判断是否需要考虑特殊情况,提高解题的准确性和完整性。

绝对值与绝对值不等式的应用

绝对值与绝对值不等式的应用

绝对值与绝对值不等式的应用绝对值是数学中的一种常见的概念,它可以用来衡量一个数在数轴上的距离。

绝对值的运用广泛,特别是在解决绝对值不等式问题时,可以帮助我们找到一组解。

本文将介绍绝对值的基本概念,并探讨在不等式求解中的应用。

一、绝对值的基本概念在数学中,绝对值表示一个数与零的距离。

对于一个实数x,它的绝对值用| x |表示。

根据定义,如果x大于等于零(x≥0),那么其绝对值等于它本身(| x | = x);如果x小于零(x<0),那么其绝对值等于它的相反数(| x | = -x)。

例如,| 3 | = 3,| -5 | = 5。

二、绝对值不等式的解法绝对值不等式是包含绝对值的不等式,常用的形式有两种:一是单一绝对值不等式,二是复合绝对值不等式。

接下来将分别介绍这两种形式的解法。

1. 单一绝对值不等式的解法单一绝对值不等式的一般形式为| ax + b | < c,其中a、b、c是已知实数,a不等于零。

首先我们需要将这个不等式转化为两个简单的不等式。

1.1 当a大于零(a>0)时,不等式可转化为- c < ax + b < c我们可以分别将上式的两个不等式进行求解,得到- c - b < ax < c - b再将求解结果除以a,得到(- c - b)/a < x < (c - b)/a因此,当a大于零时,不等式的解集为(- c - b)/a < x < (c - b)/a。

1.2 当a小于零(a<0)时,不等式可转化为c < ax + b < - c我们可以分别将上式的两个不等式进行求解,得到c - b < ax < - c - b再将求解结果除以a,由于a小于零,不等式的不等号需要反转,得到(- c - b)/a < x < (c - b)/a因此,当a小于零时,不等式的解集为(- c - b)/a < x < (c - b)/a。

高中数学第二章绝对值不等式解含有绝对值的不等式举例素材

高中数学第二章绝对值不等式解含有绝对值的不等式举例素材

2.2解含有绝对值的不等式举例浅谈含有绝对值不等式的解法不等式一直以来都是高考的重要内容之一,自从新课改以后,绝对值不等式被划入了选修部分。

含绝对值不等式解题方法灵活要求逻辑思维强,是高考的重点,在高考中用含绝对值不等式考查学生也是一种趋势.本文从以下五个方面讨论了不同形式的解绝对值不等式,为解决这些问题大家快速方便、准确地选择适当的方法.第一章 课题的提出 1.1课题选择的背景继义务教育阶段课程改革的全面推进,2011年新修的《普通高中数学课程标准实验》(以下简称标准)全国各地陆续进行新课改。

贵州2012年将新课改投入高考以来已连续使用了三年。

课改后高中的课程分为必修课程和选修课程.必修为了满足所有学生对数学的需求,选修则满足不同学生对数学的发展要求必修五个模块、选修四个系列而绝对值不等式在选修4—-5不等式选讲模块下在学习了必修5,不等式、一元二次不等式及基本不等式之后的专题也是对其巩固与深化. 1.2课题研究的意义绝对值不等式可以与集合、函数、代数等知识结合,涉及的知识点广计算量不大且题简洁是考查学生灵活应用知识能力、逻辑思维能力和分析解决问题能力的常考题型,特别是在新课改以后减少学生的计算负担,去掉繁琐的计算。

高考更青睐于用绝对值不等式来考查学生的灵活运用、逻辑思维、分析解决问题能力的考查,所以在高考中的地位不容小视.本文以解题入手决绝绝对值不等式问题,希望为学生学习快速准确应对绝对值不等式提供一些帮助。

第二章 解绝对值不等式 2.1用定义法解含绝对值不等式根据绝对值的意义,即(x x x x x ≥0)⎧=⎨-(<0⎩,), 有:(x x <<>0)⎧<⇔⎨∅(≤0⎩-ccc,c c), (0x x x x R <>>0)⎧⎪>⇔≠⎨⎪∈<0⎩-c或xcc,c(c=0), (c),例2。

1.1 求关于x 的不等式55x ≤-的解集.分析:结合高中课程标准实验教科书中的绝对值不等式的概念与定义,可以考虑先去掉绝对值符号,进一步化成一般的不等式,再进行求解。

试讲教案模板(含绝对值的不等式解法)

试讲教案模板(含绝对值的不等式解法)第一章:绝对值概念介绍1.1 绝对值的定义与性质引入绝对值的概念,解释绝对值表示一个数与零点的距离。

探讨绝对值的性质,如非负性、奇偶性等。

1.2 绝对值不等式介绍绝对值不等式的概念,即含有绝对值符号的不等式。

举例说明绝对值不等式的形式,如|x| > 2 或|x 3| ≤1。

第二章:绝对值不等式的解法2.1 绝对值不等式的基本性质讲解绝对值不等式的基本性质,如|a| ≤b 可以转化为-b ≤a ≤b。

引导学生理解绝对值不等式与普通不等式的区别与联系。

2.2 绝对值不等式的解法步骤介绍解绝对值不等式的步骤,包括正确理解不等式、画出数轴、分类讨论等。

通过具体例子演示解绝对值不等式的过程,如解|x 2| ≤3。

第三章:绝对值不等式的应用3.1 绝对值不等式在实际问题中的应用通过实际问题引入绝对值不等式的应用,如距离问题、温度问题等。

引导学生运用绝对值不等式解决实际问题,培养学生的数学应用能力。

3.2 绝对值不等式的综合应用提供综合性的题目,让学生练习将实际问题转化为绝对值不等式。

引导学生运用解绝对值不等式的技巧,求解综合应用问题。

第四章:含绝对值的不等式组4.1 不等式组的定义与性质引入不等式组的概念,即由多个不等式组成的集合。

探讨不等式组的性质,如解的交集、解的传递性等。

4.2 含绝对值的不等式组的解法讲解含绝对值的不等式组的解法,如先解每个绝对值不等式,再求交集。

提供例子,演示解含绝对值的不等式组的过程。

第五章:含绝对值的不等式解的应用5.1 含绝对值的不等式在实际问题中的应用通过实际问题引入含绝对值的不等式应用,如几何问题、物理问题等。

引导学生运用含绝对值的不等式解决实际问题,培养学生的数学应用能力。

5.2 含绝对值的不等式的综合应用提供综合性的题目,让学生练习将实际问题转化为含绝对值的不等式。

引导学生运用解含绝对值的不等式的技巧,求解综合应用问题。

第六章:绝对值不等式的图形解法6.1 绝对值不等式与数轴介绍如何利用数轴来解绝对值不等式。

试讲教案模板(含绝对值的不等式解法)

试讲教案模板(含绝对值的不等式解法)第一章:绝对值的概念1.1 绝对值的定义介绍绝对值的概念,强调绝对值表示一个数的非负值。

通过实际例子解释绝对值的意义。

1.2 绝对值的性质介绍绝对值的性质,包括:绝对值的正值性质:绝对值总是非负的。

绝对值的相等性质:两个数的绝对值相等,当且仅当它们相等或互为相反数。

第二章:绝对值的不等式2.1 绝对值不等式的形式介绍绝对值不等式的标准形式,例如|x| > a 或|x| ≤b。

2.2 绝对值不等式的解法介绍绝对值不等式的解法步骤,包括:将绝对值不等式转化为两个不等式。

分别解这两个不等式。

根据原绝对值不等式的形式,确定解集的范围。

第三章:绝对值不等式的应用3.1 绝对值不等式的实际应用通过实际问题引入绝对值不等式的应用,例如距离问题、温度问题等。

3.2 绝对值不等式的解题策略介绍解决绝对值不等式应用题的策略,包括:确定变量所在的区间。

根据绝对值不等式的性质,确定解集的范围。

第四章:含绝对值的不等式4.1 含绝对值的不等式的形式介绍含有绝对值的不等式的标准形式,例如|x| + |y| > a 或|x| ≤y ≤|z|。

4.2 含绝对值的不等式的解法介绍含有绝对值的不等式的解法步骤,包括:分析绝对值符号内的表达式。

根据绝对值符号内的表达式的正负情况,确定解集的范围。

第五章:含绝对值的不等式的应用5.1 含绝对值的不等式的实际应用通过实际问题引入含有绝对值的不等式的应用,例如几何问题、物理问题等。

5.2 含绝对值的不等式的解题策略介绍解决含有绝对值的不等式应用题的策略,包括:分析绝对值符号内的表达式。

根据绝对值符号内的表达式的正负情况,确定解集的范围。

第六章:含绝对值的不等式的图像解法6.1 不等式与绝对值的关系解释不等式与绝对值之间的关系,如何通过图像来表示不等式。

强调图像解法在理解和解题中的辅助作用。

6.2 绘制绝对值不等式的图像展示如何绘制绝对值不等式的图像,例如|x| > a 或|x| ≤b。

(完整版)含绝对值不等式的解法(含答案)

含绝对值的不等式的解法一、 基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。

(一)、公式法:即利用a x >与a x <的解集求解。

主要知识:1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。

2、a x >与a x <型的不等式的解法。

当0>a 时,不等式>x 的解集是{}a x a x x -<>或,不等式a x <的解集是{}a x a x <<-;当0<a 时,不等式a x >的解集是{}R x x ∈不等式a x <的解集是∅;3.c b ax >+与c b ax <+型的不等式的解法。

把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。

当0>c 时,不等式c b ax >+的解集是{}c b ax c b ax x -<+>+或,不等式c b ax <+的解集是{}c b ax c x <+<-;当0<c 时,不等式c b ax >+的解集是{}R x x ∈不等式c bx a <+的解集是∅;例1 解不等式32<-x分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。

答案为{}51<<-x x 。

(解略)(二)、定义法:即利用(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩去掉绝对值再解。

例2。

解不等式22x xx x >++。

分析:由绝对值的意义知,a a =⇔a ≥0,a a =-⇔a ≤0。

解:原不等式等价于2xx +<0⇔x(x+2)<0⇔-2<x <0。

绝对值不等式的解法

绝对值不等式的解法什么是绝对值不等式?绝对值不等式是数学中一类常见的不等式类型,它涉及到绝对值函数(|x|)。

绝对值函数定义了一个实数的非负值,即对于实数x,|x|的值总是与x的符号无关,而只与x的大小有关。

绝对值不等式的一般形式为:|f(x)| ≤ a 或|f(x)| ≥ a,其中f(x)是一个函数,a是一个正实数。

绝对值不等式的求解方法当遇到绝对值不等式时,我们需要找到使得不等式成立的x 的范围,也就是求解不等式的解集。

下面将介绍几种常见的绝对值不等式的解法。

1. 图形法图形法是解决绝对值不等式的直观方法。

我们可以通过绘制函数y = f(x)的图像来分析绝对值不等式。

对于不等式|f(x)| ≤ a,我们可以绘制函数y = f(x)的图像,并考察函数值在y轴上的绝对值是否小于等于a。

如果在x的某个范围内,函数图像位于y轴上的绝对值小于等于a,则该范围内的x属于解集。

对于不等式|f(x)| ≥ a,同样可以绘制函数y = f(x)的图像。

但在该情况下,我们需要考察函数图像位于y轴上的绝对值是否大于等于a。

如果在x的某个范围内,函数图像位于y轴上的绝对值大于等于a,则该范围内的x属于解集。

2. 分情况讨论法绝对值不等式的另一种解法是通过分情况讨论来找到解集的范围。

对于不等式|f(x)| ≤ a,我们可以将绝对值函数分为两种情况进行讨论: - 当f(x) ≥ 0 时,原不等式可以简化为f(x) ≤ a。

- 当 f(x) < 0 时,原不等式可以简化为 -f(x) ≤ a,进一步化简为f(x) ≥ -a。

上述两种情况分别给出了绝对值不等式的解集范围。

我们需要根据具体函数f(x)和给定的a值来确定最终的解集。

对于不等式|f(x)| ≥ a,同样可以采用类似的分情况讨论法:- 当f(x) ≥ 0 时,原不等式可以简化为f(x) ≥ a。

- 当 f(x) < 0 时,原不等式可以简化为 -f(x) ≥ a,进一步化简为f(x) ≤ -a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



x> 0
∴ 0< x <2
x x 6
2
-3≤x≤3
பைடு நூலகம்
例2 解不等式|x-2|+|x-1|≥5 分析 方法1: 去绝对值; 零点划分法 方法2: 几何意义; 方法3: 函数法. 思考1.总结解不等式
x a x b c和 x a x b c (a b)
的基本思路. 2.不等式|x-a|+|x-b|≥|a-b|的解集是什么?
5x-6 ≥ 0 5x-6<0
(Ⅰ)或 (Ⅱ)
分析:对绝对值里面的代数式符号讨论
解 原式可化为
-(5x-6)<6-x 5x-6<6-x 解(Ⅰ)得:6/5≤x<2 解(Ⅱ) 得:0<x<6/5 取它们的并集得:(0,2)
变1 解不等式 | 5x-6 | < 6 – x 分析 利用|x|<a 另解: 原不等式转化为 -(6-x)<5x-6<(6-x) -(6-x)<5x-6 x <2 5x-6 < 6-x 因此,原不等式的解集为 (0 , 2) 总结: |f(x)|<g(x) -g(x)<f(x)<g(x) |f(x)|>g(x) f(x)>g(x) 或f(x)<-g(x) 变2 解不等式
3. 如果
x a x a a x a x a
a
∈R ,则 >0,则
x a x a或x a
思考 当a≤0时,上述结论还成立吗?
例1 解不等式 (1) |3x-1|≤6
(2) |2-x|>3 解题反思:整体换元。
归纳:形如| f(x)|<a, |f(x)|>a 不等式的解法:
f ( x) a a f ( x) a f ( x) a f ( x) a或f (x) a
变1 解不等式 | 5x-6 | < 6 – x
变1 解不等式 | 5x-6 | < 6 – x
(Ⅰ)当5x-6≥0,即x≥6/5时,不等式化为 5x-6<6-x,解得x<2, 所以6/5≤x<2 (Ⅱ)当5x-6<0,即x<6/5时,不等式化为 -(5x-6)<6-x,解得x>0 所以0<x<6/5 取(Ⅰ)、 (Ⅱ) 并集得原不等式解集为(0, 2)
课堂小结 含绝对值的不等式的解法的基本思想是去 掉绝对值符号. 常用方法 (1)定义法(常用零点划分法); (2)公式法 ; (3)平方法; (4)换元法; 绝对值的几何意义 (5)数形结合法 函数法
变1 解不等式|2x+1|-|x-2|>0 x<-3,或x>1/3 总结: |f(x)|>|g(x)|
[f(x)]2>[g(x)]2 [f(x)-g(x)][f(x)+g(x)]> 0
变2 若关于x的不等式|x-2|+|x-1|≥a的解集 a≤1 是R,则实数a的取值范围是________. 总结: a≥f(x)恒成立 a≥f(x)max ; a≤f(x)恒成立 a≤f(x)min 变3 若关于x的不等式|x-2|-|x+1|≥a 有实数 a≤3 解,则实数a的取值范围是________. 总结: a≥f(x)有解 a≥f(x)min ; a≤f(x)有解 a≤f(x)max
5.2.1 含有绝对值的 不等式的解法
复习:
1.绝对值的定义: |x|= 2.几何意义:
x2
B O
x 0 -x
x>0 x=0 x<0
一个数的绝对值表示数轴上这个数对 应的点到原点的距离.
x1
A x
|x1| =OA |x2| =OB
|x2-x1| =AB
两个数的差的绝对值表示数轴上这两个 个数对应的两点间距离.
相关文档
最新文档