串行通信与并行通信哪个更好
串行通信和并行通信

MCS-51 串行I/O接口的基本工作是:发送时,将CPU送来的并行数据转换成一定格式的串行数据,从引脚TXD上按规定的波特率逐位输出;接收时,要监视引脚 RXD,一旦出现起始位“0”,就将外围设备送来的一定格式的串行数据转换成并行数据,等待CPU读入。
串行通信和并行通信
[] [] Biblioteka 计算机与外界的信息交换称为通信。基本的通信方法有并行通信和串行通信两种。
一组信息(通常是字节)的各位数据被同时传送的通信方法称为并行通信。并行通信依靠并行I/O接口实现。并行通信速度快,但传输线根数多,只适用于近距离(相距数公尺)的通信。
一组信息的各位数据被逐位顺序传送的通信方式称为串行通信。串行通信可通过串行接口来实现。串行通信速度慢,但传输线少,适宜长距离通信。
2. 信息传送方向
根据信息的传送方向,串行通信可以进一步分为单工、半双工和全双工3种。信息只能单方向传送称为单工;信息能双向传送,但不能同时双向传送称为半双工;能够同时双向传送则称为全双工。
MCS-5l单片机有一个全双工串行口。全双工的串行通信只需要一根输出线(TXD)和一根输入线(RXD)
波特率
串行通信的特点

USB
定义
USB(Universal Serial Bus)是一种通用的串行通信接口 标准,由美国国家标准化协会(USB Implementers Forum)制定。
传输速度
USB具有较高的数据传输速率,从最初的USB 1.0到最新的 USB 3.0,速度不断提升。
传输方式
USB采用差分(平衡)传输方式,通过一对传输线实现高 速数据传输。
定义
串行通信是一种数据通信方式, 通过一条传输线逐位传输数据。
传输距离远
由于信号在传输线上的衰减较 小,因此可以用于长距离的数 据传输。
可靠性高
由于信号在传输线上的干扰较 小,因此传输的可靠性较高。
与并行通信的区别
并行通信:并行通信是通过多条传输线 同时传输数据,数据在传输线上同时传 输。
并行通信的数据传输速率较快,但成本 较高,而串行通信的数据传输速率较慢 ,但成本较低。
机等。
RS-4
定义
RS-485是另一种标准的串行通 信接口,由美国电子工业协会
(EIA)制定。
传输方式
RS-485采用差分(平衡)传输 方式,通过一对传输线实现数 据的发送和接收。
传输距离
由于RS-485的信号幅度较大, 传输距离相对较长,通常在100 米以内。
应用场景
常用于多台设备之间的中短距 离通信,如楼宇自动化、智能
类型
校验位可以是奇校验、偶校验或无校验。
功能
校验位用于检测数据传输过程中可能出现的错误,提高数据传输 的可靠性。
停止位
01
02
03
停止位
在数据传输结束时发送停 止位,表示数据传输的结 束。
作用
用于同步接收器和发送器, 确保数据传输的正确结束。
串行通信和并行通信的区别

1
串行传输和并行传输的区别 从技术发展的情况来看,串行传输方式大有彻底取代并行传输方式的势头,USB 取代 IEEE 1284,SATA 取代 PATA,PCI Express 取代 PCI……从原理来看,并行 传输方式其实优于串行传输方式。通俗地讲,并行传输的通路犹如一条多车道的 宽阔大道,而串行传输则是仅能允 许一辆汽车通过的乡间公路。以古老而又典 型的标准并行口(Standard Parallel Port)和串行口(俗称 COM 口)为例,并行接 口有 8 根数据线, 数据传输率高; 而串行接口只有 1 根数据线, 数据传输速度低。 在串行口传送 1 位的时间内, 并行口可以传送一个字节。当并行口完成单词 “advanced”的传送任务时,串行口中仅传送了这个单词的首字母“a”。
本文由刘越4521贡献
doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
串行通信和并行通信区别! 串行通信和并行通信区别!(2009-05-07 19:40:17) 并行通信传输中有多个数据位,同时在两个设备之间传输。发送设备将这些数据 位通过 对应的数据线传送给接收设备,还可附加一位数据校验位。接收设备可 同时接收到这些数据,不需要做任何变换就可直接使用。并行方式主要用于近距 离通信。计算 机内的总线结构就是并行通信的例子。这种方法的优点是传输速 度快,处理简单。
4
1
3
高, 而在 Serial ATA 2.0 的数据传输率将达到 300MB/s, 最终 SATA 将实现 600MB/s 的最高数据传输率。 SATA 与 IDE 接口硬盘哪个更快? SATA 接口比同转速的 IDE 接口的传输速度要快,价格比较同容量同转速同 品牌的硬盘便宜 80-150 块钱左右,而且内置高速缓存通常都在 8M 以上,而普通 IDE 缓存都在 2M 左右,相差甚远; 更大的区别在于: 一、 (SATA 不依赖于系统总线的带宽, 而是内置时钟。 第一代 SATA 内置 1500MHz 时钟,可以达到 150M 字节/秒的接口带宽。由于不再依赖系统总线频率,每一代 SATA 升级带宽的增加都是成倍的:第二代 300M 字节/秒(即 SATA-II),并且支持 热插拔; 二、SATA 不再使用过时的并行总线接口,转用串行总线,整个风格完全改变。 SATA 与原来的 IDE 相比有很多优越性,最明显的就是数据线从 80 pin 变成了 7 pin, 而且 IDE 线的长度不能超过 0.4 米, SATA 线可以长达 1 米, 而 安装更方便, 利于机箱散热。除此之外,它还有很多优点: (1)、一对一连接,没有主从盘的烦恼;而 IDE 一个接口只能接两个 IDE 设备, 而且还要分主从设备,如果一个接口接上两个 IDE 设备后就会共同分享这一带 宽,从而速度大幅度下降; (2)、每个设备都直接与主板相连,独享 150M 字节/秒带宽,设备间的速度不 会互相影响。 (3)、SATA 提高了错误检查的能力,除了对 CRC 对数据检错之外,还会对命令 和状态包进行检错,因此和并行 ATA 相比提高了接入的整体精确度,使串行 ATA 在企业 RAID 和外部存储应用中具有更大的吸引力。 (4)、SATA 的信号电压最高只有 0.5 伏,低电压一方面能更好地适应新平台强 调 3.3 伏的电源趋势,另一方面有利于速度的提高。 (5)、SATA II 可以通过 Port Multiplier,让每一个 SATA 接口可以连接 4-8 个硬盘,即主板有 4 个 SATA 接口,可以连接最多 32 个硬盘。 (6)、还有一个非常有趣的技术,叫 Dual host active fail over。它可以通 过 Port Selector 接口选择器,让两台主机同时接一个硬盘。这样,当一台主机 出现故障的时候,另一台备用机可以接管尚为完好的硬盘阵列和数据; (7)、SATA-II 在 SATA 的基础上加入 NCQ 原生指令排序、存储设备管理 (Enclosure Management)、底板互连、数据分散/集中这四项新特性。提高读 盘效率,减少磁头的内外圈来回摆动次数; (8)、SATA-I 代需要在安装操作系统前用 SATA 接口驱动程序软盘引导计算机, 然后安装,且 CMOS 设置较为复杂,而 SATA-II 的出现,在许多主板生产厂商的 支持下,已经不需要驱动软盘的引导可直接由主板识别,且 CMOS 设置也更为简 单,自动化程序提高。
串行通信和并行通信的区别

1.串行通信和并行通信的区别2.通信的方式3.Rs232协议4.51单片机通信的硬件连接5.软件编写串口程序通讯两个设备之间的交流通信:并行通信和串行通信并行通信在同一时刻发送多位数据串行通信用一根线在不同的时刻发送8位数据并行通信优点发送速度快缺点传输距离短资源占用多串行通信优点传输距离远占用资源少缺点发送速度慢通信的方式1.单工通信只能接受或者发送收音机遥控器2.半双工通信在同一时刻只能发送或者接收对讲机3.全双工通信在同一时刻既能接收又能发送电话4.协议数据发送的格式Rs232协议:例如:发送8位数据0x12;发送数据之前先发送一个开始位开始位+数据位+奇偶校验位+停止位开始位1位低电平数据位5~8位用的最多的是8位奇偶校验位1位停止位1~2位1位1.5位2位奇偶校验奇校验通过查看数据中1的个数例如选择奇校验发送的数据为010111101的个数为基数那么奇偶校验位为0如果发送的数据位101010101的个数为偶数那么奇偶校验位为1发送方通过发送数据中1的个数,如果为奇数,那么奇偶校验位位0否则为1接收方当接收到数据,通过查看数据中1的个数+奇偶校验位1的个数如果为奇数,代表数据发送成功,否则失败停止位1位2位1.5位数字芯片时间通过时钟脉冲1位=1个脉冲2位=2个脉冲1.5位=1.5个脉冲3.串口的硬件连接4.51单片机中的硬件连接图1.ttl电平0 0v~1.5v1 2.5~5v2.把ttl电平转化为cmos电平0 5v~12v1-5v~-12v通过max232转化ttl电平转化为cmos电平5.软件控制51单片机中包含一个串口1.波特率例如1s可以发送100帧数据1帧数据包含10位那么波特率=10*100=1000bit/s设备1s中发送的位数单片机的波特率位96002.串口控制寄存器sconSCON 8位寄存器D7~D6 SM0 SM1代表的是串口工作模式00代表的是串口只是一个8位移位寄存器01代表的是一个一帧信息为10位的串口‘用的最多10 11 代表的是一个一帧信息为11位的串口10位包含开始位+8位数据位+一位停止位D4 ren 代表的是数据接收使能位1:代表的是可以接受否则不能接受D0:RI: 接收标志位如果接受到数据那么RI为1 否则为D1 TI:发送标志位如果发送完数据那么标志位位1否则为001 0 1 0 0 0 0 01010000 0x50PCON 电源控制寄存器最高位smod 代表时钟频率是否加倍产生波特率通过T1定时器来产生T1工作在方式2下并且Th1=0xfd tl1=0xfd软件编程1.初始化串口1.1设置波特率1.2启动SCON1.3启动定时器12.回显1.单片机等待接收数据2.接收到数据再把数据发送给电脑作业:1.串口实现回显功能2.串口去控制LED灯发送1 LED1点亮发送2 LED2 点亮…………….发送7 LED7点亮发送$ 全部熄灭扩展实现流水灯。
为什么串行接口速率比并行接口快?

为什么串行接口速率比并行接口快?串行接口的速率会比并行快,可以从下面四个方面考虑:①高速串口不需要时钟信号来同步数据流,也就没有时钟周期性的边沿,频谱不会集中,所以噪声干扰少很多。
以PCIE和SATA为例,时钟信息通过8b/10b编码已经集成在数据流里面,数据本身经过加扰,绝对不可能有多于5个0或者5个1的长串(利于时钟恢复),也绝对不存在周期性(避免频谱集中)。
这样,通过数据流的沿变可以直接用PLL恢复出时钟,再用恢复的时钟采集数据流。
这有什么好处?时钟信号消耗的功耗极多,带来的噪声也最大,不传时钟可以降低功耗,减少噪声。
②所有高速串口都采用差分总线传输,外界噪声同时加载到两条差分线上,相减之后可以抵消,具备很强的抗干扰能力,同时因为差分线通常以电流为载体传输,远端没有电压传输的压降,因此长距离也不是问题。
③差分信号没有时钟skew问题,因为它根本就没有同步时钟,不存在时钟和数据流的对齐问题。
只需要保证差分信号线是对齐的就行,这是很容易的,因为差分信号线的值总是相反,相关性强,易控制。
一根线跳的时候,另一根线经过一个非门的延时马上会跳,这个非门的延时是很容易补偿的。
并行总线最大的问题就是多根线传输的时候,无法保证所有的沿变都对齐,很有可能传着传着某些信号跟不上,落后了一个时钟周期,数据就传错了。
想控制也难,因为各个信号没有相关性,互相的沿变本身就是独立的,因为布线不同,很有可能一个跳的早点,另一个跳的晚点,再加上各个传输线电阻不同,噪声不同,传一会儿就分辨不出来哪个值对应哪个周期。
④差分线线数少,干扰少。
并行传输,一般32根或者64根,一根线跳变,会给旁边的线带来噪声,频率越高,这种噪声越大,很容易导致别的线值被篡改或者无法辨认,所以频率不可能很高。
串行传输一般就4根数据线,分成Rx两根差分线和Tx两根差分线,差分线总是往相反方向跳,可以抵消各自的跳变噪声,比如Rx的正极性发生跳变时会产生噪声,这种噪声可以被Rx的负极性以相反的跳变直接抵消掉(因为他们是差分信号对),总的噪声为0,杜绝了内部噪声。
串行通信与并行通信技术的比较分析

串行通信与并行通信技术的比较分析一、引言在信息通信领域,串行通信与并行通信技术是两种常见的数据传输方式。
作为通信技术的基础,它们在不同的应用领域中发挥着重要作用。
本文将对串行通信和并行通信技术进行比较分析,探讨它们各自的优缺点和适用场景。
二、串行通信技术串行通信指的是将数据按照顺序位逐个地传输,即一个位一个地进行传输的方式。
串行通信技术利用了线路稳定的优势,常用于远距离通信或者光纤通信中。
其主要特点有以下几点:1. 简单可靠:串行通信只需要两根传输线路用于发送和接收,并且不会出现并发的现象,使得电路设计和调试相对简单。
此外,串行通信在传输时不会出现时序问题,更容易实现可靠性通信。
2. 传输速率相对较慢:由于串行通信是按位传输,它的传输速率相对较慢。
因此,当需要传输大量数据时,串行通信可能会显得效率较低。
3. 适用于长距离传输:串行通信技术可以通过扩展传输线路的长度来实现长距离传输。
这使得串行通信在远距离通信中得到广泛应用。
三、并行通信技术并行通信是指通过多条线路同时传输数据,即一次性传输多个位的数据。
与串行通信相比,它具有以下特点:1. 高传输速率:由于并行通信同时传输多个位的数据,因此它的传输速率较高。
这使得并行通信在需要快速传输大量数据的场景下得到广泛应用,比如计算机内部的数据传输。
2. 复杂的设计和调试:并行通信涉及多条传输线路的设计和调试,因此其硬件实现相对复杂。
并且,在高速并行通信中,也需要处理时序和同步等问题,加大了设计的复杂度。
3. 信号传输受限:由于并行通信需要较多的传输线路,信号传输的质量可能受到限制。
长距离传输时,信号衰减和时序偏移等问题可能导致通信质量下降。
四、串行通信与并行通信的对比在不同的应用场景下,串行通信和并行通信各有优势。
根据具体需求,选择合适的通信技术可以提高通信效率和可靠性。
1. 数据传输量:当需要传输大量数据时,串行通信可能显得效率低下,而并行通信能够充分利用多条线路的传输能力,实现高速的数据传输。
通信教程概述并行与串行通信的区别
通信教程概述并行与串行通信的区别嵌入式电子设备之间互相通信已经非常普遍,通信的方式主要分为两类:并行和串行。
1并行通信并行是指多比特数据同时通过并行线进行传送,这样一次性可以传输更多的数据。
但并行传送的线路长度受到限制,因为长度增加,干扰就会增加,数据也就容易出错。
并行接口同时传输多个位。
它们通常需要数据总线(八、十六或更多线路),以1和0的编码传输数据。
如下图:使用9线的并行通信,由时钟控制的8位数据总线,每个时钟脉冲发送一个字节。
并行通信主要特点:1.各数据位同时传输,传输速度快、效率高,多用在实时、快速的场合。
2.并行通信不能长距离通信,抗干扰能力差。
2串行通信串行通信作为计算机通信方式之一,主要起到主机与外设以及主机之间的数据传输作用。
串行通信分为:同步和异步通信。
1.同步通信同步通信一般有一个同步时钟,如下图,一根数据线,一根时钟线。
一个时钟传输一个Bit位。
我们常见的SPI、I2C等就是串行同步通信。
2.异步通信异步通信中,在异步通信中有两个比较重要的指标:字符帧格式和波特率。
数据通常以字符或者字节为单位组成字符帧传送,是通过双方约定好的波特率进行数据传输。
假如双方波特率不一致,则接收到数据就是乱码。
我们常见的UART、CAN等就是串行异步通信。
3.串行异步通信UART这里在进一步讲述常见的串行异步通信:UART。
内置规则:•波特率•数据位•同步位•奇偶校验位波特率常规波特是1200、2400、4800、19200、38400、57600和115200 bps数据位每个数据包中的数据量可以设置为5到9位,通常为8位。
同步位同步位是与每个数据块一起传送的两个或三个特殊位。
它们是起始位和停止位。
奇偶校验位奇偶校验是一种非常简单的错误检查方式。
它有两种:奇数或偶数。
4.UART两设备连线这种发送和接收数据的串行接口是全双工(双向都可以发送,也可以接收)。
5.举例9600波特,8个数据位,无奇偶校验和1个停止位。
adc与cpu的数据交换有串行通信与并行通信两种其中并行通信
ADC与CPU的数据交换:串行通信与并行通信1. 引言ADC(模数转换器)和CPU(中央处理器)是现代计算机系统中重要的组成部分。
ADC负责将模拟信号转换为数字信号,而CPU负责对这些数字信号进行处理和分析。
数据交换是ADC和CPU之间的关键环节,它决定了系统的性能和效率。
在数据交换中,串行通信和并行通信是两种常见的方式。
本文将深入探讨ADC与CPU之间的数据交换,并分析串行通信和并行通信的优缺点。
2. 串行通信串行通信是一种逐位传输数据的方式,数据按照顺序逐位传输。
在ADC与CPU之间的串行通信中,数据通过单根线路进行传输。
串行通信的主要特点如下:2.1 占用较少的线路串行通信只需要一根线路进行数据传输,因此占用的线路资源较少。
这在一些对线路资源有限的场景中非常有优势。
2.2 传输距离较长由于串行通信只需要一根线路,因此可以通过采取一些技术手段(如差分信号传输)来提高信号的抗干扰能力,从而实现较长的传输距离。
2.3 传输速率较低由于串行通信是逐位传输数据,因此传输速率较低。
传输速率受限于线路的带宽和信号传输的速度。
2.4 应用广泛串行通信在许多领域广泛应用,如串行接口(如串行ATA、串行SCSI)、串行通信协议(如RS-232、RS-485)等。
3. 并行通信并行通信是一种同时传输多个数据位的方式,数据同时通过多根线路进行传输。
在ADC与CPU之间的并行通信中,数据可以同时传输多个位。
并行通信的主要特点如下:3.1 传输速率较高由于并行通信可以同时传输多个数据位,因此传输速率较高。
传输速率受限于线路的带宽和数据线的数量。
3.2 占用较多的线路并行通信需要多根线路进行数据传输,因此占用的线路资源较多。
这在一些对线路资源有限的场景中可能会成为问题。
3.3 传输距离较短由于并行通信需要多根线路,同时存在信号传输的时间差,因此传输距离较短。
3.4 应用局限并行通信在一些特定的应用场景中才会被采用,如内部总线(如PCI、PCIe)和内存总线(如DDR、GDDR)等。
太厉害了!终于有人能把“并行通信和串行通信”讲的明明白白了
太厉害了!终于有人能把“并行通信和串行通信”讲的明明白白了通信接口广泛用于现场数据采集和数据传输。
监控系统主要涉及串行通信接口和网络接口。
计算机和外围设备或计算机之间通常有两种通信方式:并行通信和串行通信。
并行通信并行通信指的是数据位的同时传输。
数据并行传输速度快,但占用大量通信线路,数据传输的可靠性随着距离的增加而降低,仅适用于短距离数据传输。
串行通信串行通信是指在一条数据线上逐位顺序传输数据。
在传输过程中,在传输每个数据之后,再传输第二个数据,依此类推。
当接收数据时,一次一条数据线被逐个接收,然后它们被组合成一个完整的数据。
在远程数据通信中,一般采用串行通信,具有通信线路少、成本低的优点。
一、同步和异步通信方式串行通信有两种基本通信模式:同步串行通信方式和异步串行通信方式。
同步串行通信方式是指在相同的数据传输速率下,发送端和接收端的通信频率保持严格同步。
因为不需要起始位和停止位,所以可以提高数据传输速率,但是发射器和接收器的成本更高。
异步串行通信方式是指发送端和接收端不需要在相同的波特率下严格同步,并且允许相对延时,即接收端和发送端之间的频率偏差在10%以内,这样可以保证通信的正确性。
二、数据传送方式1、单工方式。
单工方式使用数据传输线,只允许数据在固定的方向上传输。
例如,甲只能用作发射器,乙只能用作接收器,数据只能从甲传送到乙,而不能从乙2、半双工方式。
半双工方式使用数据传输线,允许数据以分时方式在两个方向传输,但不能同时在两个方向传输。
例如,在某个时刻,甲是发射器,乙是接收器,数据从甲传送到乙;另一方面,甲可以作为接收器,乙可以作为发送器,数据从甲传输到乙。
3、全双工方式。
全双工方式使用两条数据传输线,允许数据同时双向传输。
例如,甲和乙有独立的发射器和接收器。
同时,允许向甲和乙发送数据波特率指每秒传输二进制数据的位数,单位为b/s和bps(位/秒)。
它是衡量串行数据传输速度的重要指标和参数。
串行通信与并行通信的区别
串⾏通信与并⾏通信的区别
⼀、基本概念
串⾏通信:⼀条信息的各位数据被按逐位按顺序传送。
并⾏通信:⼀条信息的数据可以按照多位传送,有更多的信号地线。
⼆、特点
串⾏通讯:两个设备之间通过⼀对信号线进⾏通讯,其中⼀根为信号线,另外⼀根为信号地线,信号电流通过信号线到达⽬标设备,再经过信号地线返回,构成⼀个信号回路。
并⾏通讯通常可以⼀次传送8bit、16bit、32bit甚⾄更⾼的位数,相应地就需要8根、16根、32根信号线,同时需要加⼊更多的信号地线。
通过串⾏通讯与并⾏通讯的对⽐,可以看出:串⾏通讯很简单,但是相对速度低;并⾏通讯⽐较复杂,但是相对速度⾼。
更重要的是,串⾏线路仅使⽤⼀对信号线,线路成本低并且抗⼲扰能⼒强,因此可以⽤在长距离通讯上;⽽并⾏线路使⽤多对信号线(还不包括额外的控制线路),线路成本⾼并且抗⼲扰能⼒差,因此对通讯距离有⾮常严格的限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串行通信与并行通信哪个更好近两年,大家听得最多的一个词可能就是串行传输了。
从技术发展的情况来看,串行传输方式大有彻底取代并行传输方式的势头,USB取代 IEEE 1284,SATA取代PATA,PCI Express取代PCI……从原理来看,并行传输方式其实优于串行传输方式。
通俗地讲,并行传输的通路犹如一条多车道的宽阔大道,而串行传输则是仅能允许一辆汽车通过的乡间公路。
以古老而又典型的标准并行口(Standard Parallel Port)和串行口(俗称COM口)为例,并行接口的位宽为8,数据传输率高;而串行接口只有1位,数据传输速度低。
在串行口传送1位的时间内,并行口可以传送一个字节。
当并行口完成单词“advanced”的传送任务时,串行口中仅传送了这个单词的首字母“a”。
图1:并行接口速度是串行接口的8倍那么,现在的串行传输方式为何会更胜一筹呢?一、并行传输技术遭遇发展困境电脑中的总线和接口是主机与外部设备间传送数据的“大动脉”,随着处理器速度的节节攀升,总线和接口的数据传输速度也需要逐步提高,否则就会成为电脑发展的瓶颈。
图2 PC总线的发展我们先来看看总线的情况。
1981年第一台PC中以ISA总线为标志的开放式体系结构,使用了ISA总线,数据总线为8位,工作频率为8.33MHz,这在当时却已经算作“先进技术(Advanced Technology)”了,所以ISA总线还有另一个名字“AT总线”。
到了286时,ISA的位宽提高到了16位,为了保持与8位的ISA兼容,工作频率仍为8.33MHz。
ISA总线虽然只有16MBps的数据传输率,但直到386时代,都一直是主板与外部设备间最快的数据通道。
到了486时代,同时出现了PCI和VESA两种更快的总线标准,它们具有相同的位宽(32位),但PCI总线能够与处理器异步运行,当处理器的频率增加时,PCI总线频率仍然能够保持不变,可以选择25MHz、30MHz和33MHz三种频率。
而VESA总线与处理器同步工作,因而随着处理器频率的提高,VESA总线类型的外围设备工作频率也得随着提高,适应能力较差,因此很快失去了竞争力。
PCI总线标准成为Pentium时代PC总线的王者,硬盘控制器、声卡到网卡,全部使用PCI插槽。
而显卡方面对数据传输速度要求更高,出现了专用的AGP,并行数据传输技术向来是提高数据传输率的重要手段,但是,进一步发展却遇到了障碍。
首先,由于并行传送方式的前提是用同一时序传播信号,用同一时序接收信号,而过分提升时钟频率将难以让数据传送的时序与时钟合拍,布线长度稍有差异,数据就会以与时钟不同的时序送达,另外,提升时钟频率还容易引起信号线间的相互干扰,导致传输错误。
因此,并行方式难以实现高速化。
从制造成本的角度来说,增加位宽无疑会导致主板和扩充板上的布线数目随之增加,成本随之攀升。
在外部接口方面,我们知道IEEE 1284并行口的速率可达300kBps,传输图形数据时采用压缩技术可以提高到2MBps,而RS-232C标准串行口的数据传输率通常只有20kbps,并行口的数据传输率无疑要胜出一筹。
因此十多年来,并行口一直是打印机首选的连接方式。
对于仅传输文本的针式打印机来说,IEEE 1284并行口的传输速度可以说是绰绰有余的。
但是,对于近年来一再提速的激光打印机来说,情况发生了变化。
笔者使用爱普生6200L在打印2MB图片时,速度差异不甚明显,但在打印7.5MB 大小的图片文件时,从点击“打印”到最终出纸,使用USB接口用了18秒,而使用并行口时,用了33秒。
这一测试结果说明,现行的并行口对于时下流行的激光打印机来说,已经力难胜任了。
二、USB,串行接口欲火重生凤凰涅槃,欲火重生。
1995年,由Compaq、Intel、Microsoft和NEC等几家公司推出的USB接口首次出现在PC机上,1998年起即进入大规模实用阶段,作为IEEE 1284并行口和RS-232C串行口的接班人,USB现在已经呈现出大红大紫了。
USB虽然只有一位的位宽,但数据传输速度却比并行口要高,而且具有很大的发展空间。
USB设备通信速率的自适应性,使得它可以自动选择HS(High-Speed,高速,480 Mbps)、FS(Full-Speed,全速,12Mbps)和LS(Low-Speed,低速,1.5Mbps)三种模式中的一种。
USB总线还具有自动的设备检测能力,设备插入之后,操作系统软件会自动地检测、安装和配置该设备,免除了增减设备时必须关闭PC机的麻烦。
图3 采用差模信号传送方式的USB图4 差分传输方式具有更好的抗干扰性能 USB接口之所以能够获得很高的数据传输率,主要是因为其摒弃了常规的单端信号传输方式,转而采用差分信号(differential signal)传输技术,有效地克服了因天线效应对信号传输线路形成的干扰,以及传输线路之间的串扰。
USB接口中两根数据线采用相互缠绕的方式,形成了双绞线结构,如图3。
图4是由两根信号线缠绕在环状铁氧体磁芯上构成的扼流线圈。
在单端信号传输方式下,线路受到电磁辐射干扰而产生共模电流时,磁场被叠加变成较高的线路阻抗,这样虽然降低了干扰,但有效信号也被衰减了。
而在差动传输模式下,共模干扰被磁芯抵消,但不会产生额外的线路阻抗。
换句话说,差动传输方式下使用共模扼流线圈,既能达到抗干扰的目的,又不会影响信号传输。
差分信号传输体系中,传输线路无需屏蔽即可取得很好的抗干扰性能,降低了连接成本。
不过,由于USB接口3.3V的信号电平相对较低,最大通信距离只有5m。
USB规范还限制物理层的层数不超过7层,这意味着用户可以通过最多使用5个连接器,将一个USB设备置于距离主机最远为30m的位置。
为了解决长距离传输问题,扩展USB的应用范围,一些厂商在USB规范上添加了新的功能,例如Powered USB和Extreme USB,前者加大了USB的供电能力,后者延长了USB的传输距离。
譬如采用CAT5电缆和RJ45连接器,可以简单地将扩展至100m;采用光纤更可扩展至2km,只是成本比CAT5更高。
小知识:双绞线,绞在一起有什么好?双绞线互相缠绕的目的是利用铜线中电流产生的电磁场互相作用抵消邻近线路的干扰并减少来自外界的干扰。
每对线在每英寸长度上相互缠绕的次数决定了抗干扰的能力和通讯的质量,缠绕得越紧密其通讯质量越高,所支持的数据传输率越高,制造成本当然也相应提高。
双绞线即使外面没有屏蔽层,也能获得很好的抗干扰性能,所以局域网中选用CAT5非屏蔽双绞线(UTP)便能满足传输100Mbps 信号的要求,且通信距离可以达到100m。
三、差分信号技术:高速信号传输的金钥匙电脑发展史就是追求更快速度的历史,随着总线频率的提高,所有信号传输都遇到了同样的问题:线路间的电磁干扰越厉害,数据传输失败的发生机率就越高,传统的单端信号传输技术无法适应高速总线的需要。
于是差分信号技术就开始在各种高速总线中得到应用,我们已经知道,USB实现高速信号传输的秘诀在于采用了差分信号传输方式。
图5 差分信号传输电路图6 单端信号传输图7 差分信号传输差分信号传输技术是20世纪90年代出现的一种数据传输和接口技术,与传统的单端传输方式相比,这种技术具有低功耗、低误码率、低串扰和低辐射等特点,其传输介质可以是铜质的PCB连线,也可以是平衡电缆,最高传输速率可达1.923Gbps。
Intel倡导的第三代I/O技术(3GIO),其物理层的核心技术就是差分信号技术。
那么,差分信号技术究竟是怎么回事呢?我们知道,在传统的单端(Single-ended)通信中,一条线路来传输一个比特位。
高电平表示1,低电平表示0。
倘若在数据传输过程中受到干扰,高低电平信号完全可能因此产生突破临界值的大幅度扰动,一旦高电平或低电平信号超出临界值,信号就会出错,如图6所示。
在差分传输电路中,输出电平为正电压时表示逻辑“1”,输出负电压时表示逻辑“0”,而输出“0”电压是没有意义的,它既不代表“1”,也不代表“0 ”。
而在图7所示的差分通信中,干扰信号会同时进入相邻的两条信号线中,在信号接收端,两个相同的干扰信号分别进入差分放大器的两个反相输入端后,输出电压为0。
所以说,差分信号技术对干扰信号具有很强的免疫力。
对于串行传输来说,LVDS能够低于外来干扰;而对于并行传输来说,LVDS可以不仅能够抵御外来干扰,还能够抵御数据传输线之间的串扰。
因为上述原因,实际电路中只要使用低压差分信号(Low Voltage Differential Signal,LVDS),350mV左右的振幅便能满足近距离传输的要求。
假定负载电阻为100Ω,采用LVDS方式传输数据时,如果双绞线长度为10m,传输速率可达400 Mbps;当电缆长度增加到20m时,速率降为100 Mbps;而当电缆长度为100m时,速率只能达到10 Mbps左右。
LVDS最早由美国国家半导体公司提出的一种高速串行信号传输电平,由于它传输速度快,功耗低,抗干扰能力强,传输距离远,易于匹配等优点,迅速得到诸多芯片制造厂商和应用商的青睐,并通过TIA/EIA(Telecommunication Industry Association/Electronic Industries Association)的确认,成为该组织的标准(ANSI/TIA/EIA-644 standard)。
在近距离数据传输中,LVDS不仅可以获得很高的传输性能,同时还是一个低成本的方案。
LVDS器件可采用经济的CMOS工艺制造,并且采用低成本的3类电缆线及连接件即可达到很高的速率。
同时,由于LVDS可以采用较低的信号电压,并且驱动器采用恒流源模式,其功率几乎不会随频率而变化,从而使提高数据传输率和降低功耗成为可能。
因此,USB、SATA、PCI Express以及HyperTransport普遍采用LVDS技术,LCD中控制电路向液晶屏传送像素亮度控制信号,也采用了LVDS方式。
四、新串行时代已经到来差分传输技术不仅突破了速度瓶颈,而且使用小型连接可以节约空间。
因此,近年来,除了USB 和FireWire,还涌现出很多以差分信号传输为特点的串行连接标准,几乎覆盖了主板总线和外部I/O 端口,呈现出从并行整体转移到新串行时代的大趋势,串行接口技术的应用在2005年将进入鼎盛时期(图8)。
图8 所有的I/O技术都将采用串行方式● LVDS技术,突破芯片组传输瓶颈随着电脑速度的提高,CPU与北桥芯片之间,北桥与南桥之间,以及与芯片组相连的各种设备总线的通信速度影响到电脑的整体性能。
可是,一直以来所采用的FR4印刷电路板因存在集肤效应和介质损耗导致的码间干扰,限制了传输速率的提升。