江苏省淮安市淮海中学2014届高三Ⅲ级部决战四统测二文科数学试卷(带解析)
【数学】江苏省淮安市淮海中学2014届高三模拟测试

淮安市淮海中学高三年级三统模拟测试(一)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应的位.......置上... 1.已知集合{}1 3 5 9U =,,,,{}1 3 9A =,,,{}1 9B =,,则()U A B =U ð ▲ . 【答案】{}52. 已知2(,)a ib i a b R i+=-∈,其中i 为虚数单位,则a b += ▲ . 【答案】3【解析】本题考查复数的四则运算.因为22(,)a iai b i a b R i+=-=-∈,所以,a =1,b =2,所以a b +=3.3. 用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为400~1,按编号顺序平均分为20个组。
若第1组中用抽签的方法确定抽出的号码为11,则第20组抽取的号码为 ▲ .3.【答案】3914. 从1,2,3,4中随机取出两个不同的数,则其和为奇数的概率为 ▲ .4.【答案】23【解析】本题考查古典概型.基本事件总数为6,符合要求的事件数为4,故所求概率为23.5.已知单位向量,i j 满足(2)j i i -⊥,则,i j 的夹角为 ▲ . 5.【答案】3π【解析】本题考查平面向量的垂直和数量积的计算.因为(2)j i i -⊥,所以(2)0j i i -=,即22 i j i ⋅-=0,所以,2||||cos 10i j θ-= ,即1cos 2θ=,则,i j 的夹角为3π. 6.根据如图所示的伪代码,可知输出的结果S 为 ▲【答案】2051100223Pr int I While I I I S I End While S ←<←+←+7.已知实数x ,y 满足11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最大值是 ▲ .【答案】32【解析】本题考查线性规划.可行域为三角形区域,最优解为11(,)22.8、已知cos()4πθ+=,(0,)2πθ∈,则sin(2)3πθ-= ▲ .【解析】本题考查同角三角函数的基本关系和两角和(差)的正弦、余弦.根据题意,3(,)444πππθ+∈,所以sin()410πθ+=24sin 2sin[2()]cos2()12cos ()42445ππππθθθθ=+-=-+=-+=,3cos2cos[2()]sin 2()2sin()cos()424445πππππθθθθθ=+-=+=++=-,因此413sin(2)()3525πθ-=⋅--=.9、直线23+=x y 与圆心为D 的圆()()13122=-+-y x 交于B A ,两点,直线BD AD ,的倾斜角分别为βα,,则()βα+tan = ▲ .43- 10.设P 为2412-=x y 图象C 上任意一点,l 为C 在点P 处的切线,则坐标原点O 到l 距离的最小值为 ▲ .211、已知椭圆方程为22221(0)x y a b a b+=>>,A 、B 分别是椭圆长轴的两个端点,M 、N 是椭圆上关于x 轴对称的两点,直线,AM BN 的斜率分别为12,k k ,若1214k k ⋅=,则椭圆的离心率为 ▲ .【解析】本题考查椭圆的标准方程和几何性质.设00(,)M x y ,则00(,)N x y -,2222200012222220000(1)14x b y y y b a k k x a a x a x a x a -⋅=⋅====+---,可得2234a c =,从而c e a == 11.12.若0,0a b >>,且21a b +=,则22(4)S a b =+ 的最大值是 ▲ .12.【解析】由22a b+≥得12≤,22142a b +≥,所以22221(4)(2)2S a b a b ⎡⎤=+=+⎣⎦,当且仅当122a b ==时取到等号.12.已知a >0,b >0,函数f (x )=x 2+(ab -a -4b )x +ab 是偶函数,则f (x )的图象与y 轴交点纵坐标的最小值为________.根据函数f (x )是偶函数可得ab -a -4b =0,函数f (x )的图象与y 轴交点的纵坐标为ab .由ab -a -4b =0,得ab =a +4b ≥4ab ,解得ab ≥16(当且仅当a =8,b =2时等号成立),即f (x )的图象与y 轴交点纵坐标的最小值为16.13.设函数()x x x x f 5323+-=,{}n a 为公差不为0的等差数列,若101021=+++a a a ,则()()()1021a f a f a f +++ = ▲ .3014. 定义在R 上的函数()f x 满足(2)f x -是偶函数,且对任意x R ∈恒有(3)(1)201f x f x -+-=,又(4)2013f =,则(2014)f = .答案:1二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤. 15.(本小题满分14分)在ABC ∆中,,,A B C 的对边分别是,,a b c ,已知平面向量(sin(),cos )m C C π=-,(sin(),sin )2n B B π=+,且sin 2m n A ⋅=.(1)求sin A 的值;(2)若1,cos cos 1a B C =+=,求边c 的值. 15.【解析】(1)由题意,sin 2sin cos sin cos A C B B C =+ …………………………2分 得2sin cos sin()sin A A B C A =+= ………………………………………………4分由于ABC ∆中sin 0A >,2cos 1A ∴=,1cos 2A =………………………………5分∴sin A ==………………………………………………………6分(2)由cos cos 1B C +=得cos()cos 1A C C -++= ………………………………7分即sin sin cos cos cos 1A C A C C -+=,1cos 12C C +=…………9分 得sin()16C π+=,250,3666C C ππππ<<∴<+<,平方得3C π∴=……………12分 所以ABC ∆为正三角形,1c ∴=………………………………………………… 14分 16.(本小题满分14分) (2013·苏州质检)如图,在直三棱柱ABC -A 1B 1C 1中,已知∠ACB =90°,M 为A 1B 与AB 1的交点,N 为棱B 1C 1的中点, (1)求证:MN ∥平面AA 1C 1C ;(2)若AC =AA 1,求证:MN ⊥平面A 1BC .证明 (1)连接AC 1,因为M 为A 1B 与AB 1的交点,所以M 是AB 1的中点,又N 为棱B 1C 1的中点.所以MN ∥AC 1,………………3分 又因为AC 1⊂平面AA 1C 1C ,MN ⊄平面AA 1C 1C , 所以MN ∥平面AA 1C 1C . …………………………7分 (2)因为AC =AA 1,所以四边形AA 1C 1C 是正方形, 所以AC 1⊥A 1C ,又AC 1∥MN ,所以A 1C ⊥MN .又因为ABC -A 1B 1C 1是直三棱柱,…………………9分所以CC 1⊥平面ABC ,因为BC ⊂平面ABC ,所以CC 1⊥BC 11分 又因为∠ACB =90°,所以AC ⊥BC , 因为CC 1∩AC =C ,所以BC ⊥平面AA 1C 1C ,又AC 1⊂平面AA 1C 1C ,所以BC ⊥AC 1,因为MN ∥AC 1,所以MN ⊥BC ,又MN ⊥A 1C , 又BC ∩A 1C =C ,所以MN ⊥平面A 1BC . ……………14分17.(本小题满分14分)如图,ABCD 是边长为1百米的正方形区域,现规划建造一块景观带△ECF ,其中动点E 、F 分别在CD 、BC 上,且△ECF 的周长为常数a (单位:百米). (1)求景观带面积的最大值;(2)当a=2时,请计算出从A 点欣赏此景观带的视角(即∠EAF ).FE D C17.解析:(1)设,EC x CF y ==,则x y a +=(※)由基本不等式,(2x y +≥=+……… 3分所以,△ECF 的面积22113224S xy -=≤=……………… 5分当且仅当x y ==时等号成立2……………………………………… 6分 (2)记,EAD FAB αβ∠=∠=,,(0,),(0,)22ππαβαβ∈+∈,则tan 1,tan 1x y αβ=-=- 故22()tan()1(1)(1)x y x y x y x y xyαβ---++==---+-由(※)可得,2()2a xy a x y =+-,即2()2xy x y =+-………………… 10分代入上式可得,2()tan()2()x y x y αβ-++=-+=1所以()24EAF ππαβ∠=-+=故当2a =时,视角EAF ∠为定值4π……………………………………………… 14分18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)y x a b a b+=>>的右焦点为(10)F ,,离心率为.分别过O ,F 的两条弦AB ,CD 相交于点E (异于A ,C 两点),且OE EF =.(1)求椭圆的方程; (2)求证:直线AC ,BD 的斜率之和为定值.18.【答案】(1)解:由题意,得1c =,c e a ==,故a =……………… 2分 从而2221b a c =-=, ……………… 4分所以椭圆的方程为2212x y +=. ① ……………… 6分 (2)证明:设直线AB 的方程为y kx =, ② 直线CD 的方程为(1)y k x =--, ③由①②得,点A ,B的横坐标为由①③得,点C ,D, ……………… 10分记11( )A x kx ,,22( )B x kx ,,33( (1))C x k x -,,44( (1))D x k x -,, 则直线AC ,BD 的斜率之和为13241324(1)(1)kx k x kx k x x x x x ----+-- ……………… 12分 132413241324(1)()()(1)x x x x x x x x k +--+-+-=⋅1234123413242()()()()()x x x x x x x x k x x x x --+++=⋅--2222213242(1)2420212121()()k k k k k k x x x x -⎛⎫---+ ⎪+++⎝⎭=⋅--0= ……………………………………………… 16分19.(本小题满分16分)设等差数列{a n }的前n 项和为S n ,已知a 1=2,S 6=22. (1)求S n ;(2)若从{a n }中抽取一个公比为q 的等比数列{a k n },其中k 1=1,且 k 1<k 2<…<k n <…,k n ∈N *.①当q 取最小值时,求{ k n }的通项公式;(第18题)②若关于n (n ∈N *)的不等式6S n >k n +1有解,试求q 的值.19.解:(1)设等差数列的公差为d ,则611665222S a d =+⋅⋅=,解得23d =,…2分 所以(5)3n n n S +=. …………4分 (2)因为数列}{n a 是正项递增等差数列,所以数列}{n k a 的公比1>q ,若22=k ,则由382=a ,得3412==a a q ,此时932)34(223=⋅=k a ,由)2(32932+=n , 解得*310N n ∉=,所以22>k ,同理32>k ; …………6分 若42=k ,则由44=a ,得2=q ,此时122-⋅=n k n a ,另一方面,2(2)3n k n a k =+,所以2(2)23n n k +=,即1322n n k -=⨯-, ………8分所以对任何正整数n ,n k a 是数列}{n a 的第2231-⋅-n 项.所以最小的公比2=q .所以2231-⋅=-n n k . …………10分(3)因为12423n n n k k a q -+==,得132n n k q -=-,而1q >, 所以当1q >且q N ∈时,所有的132n n k q -=-均为正整数,适合题意;当2q >且q N ∉时,132n n k q N -=-∈不全是正整数,不合题意.而16n n S k +>有解,所以2(5)213nn n q ++>有解,经检验,当2q =,3q =,4q =时,1n =都是2(5)213nn n q++>的解,适合题意; ……………12分 下证当5q ≥时,2(5)213n n n q ++>无解, 设2(5)23nnn n b q ++=, 则212[(1)(75)7]3n n nq n q n q b b q +-+-+--=,因为57022q q-<-,所以2()2[(1)(75)7]f n q n q n q =-+-+-在*n N ∈上递减, 又因为(1)0f <,所以()0f n <恒成立,所以10n n b b +-<,所以1n b b ≤恒成立, 又因为当5q ≥时,11b <,所以当5q ≥时,16n n S k +>无解. ……………15分 综上所述,q 的取值为2,3,4. ………………16分 20.(本小题满分16分)已知函数32()f x x x b =-++,()ln g x a x =.(1)若()f x 的极大值为427,求实数b 的值; (2)若对任意[]1,x e ∈,都有2()(2)g x x a x -++≥恒成立,求实数a 的取值范围;(3)当0b =时,设()(),1(),1f x x F x g x x ⎧<⎪=⎨⎪⎩≥,对任意给定的正实数a ,曲线()y F x =上是否存在两点,P Q ,使得POQ ∆是以O (O 为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y 轴上?请说明理由.20.解析:(1)由32()f x x x b =-++,得2()32(32)f x x x x x '=-+=--,令()0f x '=,得0x =或23.当x 变化时,()f x '及()f x 的变化如下表:所以()f x 的极大值为24()327f b =+=427,0b ∴=.…………………………………………………………………………………4分(2)由2()(2)g x x a x ≥-++,得2(ln )2x x a x x -≤-.[1,],ln 1x e x x ∈∴≤≤,且等号不能同时取,ln x x ∴<,即ln 0x x ->22ln x x a x x -∴≤-恒成立,即2min 2()ln x x a x x -≤-……………………………………………6分 令22(),([1,])ln x x t x x e x x -=∈-,求导得,2(1)(22ln )()(ln )x x x t x x x -+-'=-, 当[1,]x e ∈时,10,0ln 1,22ln 0x x x x -≥≤≤+->,从而()0t x '≥,()t x ∴在[1,]e 上为增函数,min ()(1)1t x t ∴==-,1a ∴≤-.…………………………………………8分(3)由条件,32,()ln ,x x F x a x ⎧-+=⎨⎩11x x <≥,假设曲线()y F x =上存在两点P ,Q 满足题意,则P ,Q 只能在y 轴两侧,……9分 不妨设(,())(0)P t F t t >,则32(,)Q t t t -+,且1t ≠.POQ ∆是以O 为直角顶点的直角三角形,0OP OQ ∴⋅=,232()()0t F t t t ∴-++= (*), 是否存在P ,Q 等价于方程()*在0t >且1t ≠时是否有解.………………………11分 ①若01t <<时,方程()*为()()232320t t t t t -+-++=,化简得4210t t -+=,此方程无解……………………………12分②若1t >时,方程()*为()232ln 0t a t t t -+⋅+=,即()11ln t t a=+, 设()()()1ln 1h t t t t =+>,则()1ln 1h t t t'=++,显然,当1t >时,()0h t '>, 即()h t 在()1,+∞上为增函数,()h t ∴的值域为()()1,h +∞,即()0,+∞,∴当0a >时,方程(*)总有解.∴对任意给定的正实数a ,曲线()y F x = 上总存在两点P ,Q ,使得POQ ∆是以O (O 为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y 轴上.……………16分淮安市淮海中学高三年级三统模拟测试(一)数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答.题卡指定区域......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,等腰梯形ABCD 内接于⊙O ,AB ∥CD .过点A 作⊙O 的切线交CD 的延长线于点E . 求证:∠DAE =∠BAC . B .选修4—2:矩阵与变换 已知矩阵1237A -⎡⎤=⎢⎥-⎣⎦, (Ⅰ)求逆矩阵1A -;(Ⅱ)若矩阵X 满足31AX ⎡⎤=⎢⎥⎣⎦,试求矩阵X .C .选修4—4:坐标系与参数方程在极坐标系中,已知点)6P p,直线:cos()4l +=pr q P 到直线l 的距离.D .选修4—5:不等式选讲已知1x ≥,1y ≥,求证:22221x x y xy y x y ++++≤.【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)如图,三棱锥P -ABC 中,已知平面PAB ⊥平面ABC ,AC ⊥BC ,AC =BC =2a ,点O ,D 分别是AB ,PB 的中点,PO ⊥AB ,连结CD .(1)若2PA a =,求异面直线PA 与CD 所成角的余弦 值的大小;(2)若二面角A -PB -CPA 的长度23.(本小题满分10分)设集合A ,B 是非空集合M 的两个不同子集,满足:A 不是B 的子集,且B 也不是A 的子集.(1)若M=1234{,,,}a a a a ,直接写出所有不同的有序集合对(A ,B )的个数; (2)若M=123{,,,,}n a a a a ⋅⋅⋅,求所有不同的有序集合对(A ,B )的个数.ABC DOP(第22题)。
2014年全国统一高考数学试卷(文科)(大纲版)(含答案及解析)

2014年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.72.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.27.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.649.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=110.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.412.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是.(用数字作答)14.(5分)函数y=cos2x+2sinx的最大值是.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.2014年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.7【考点】1A:集合中元素个数的最值;1E:交集及其运算.【专题】5J:集合.【分析】根据M与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【考点】G9:任意角的三角函数的定义.【专题】56:三角函数的求值.【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}【考点】7E:其他不等式的解法.【专题】59:不等式的解法及应用.【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5G:空间角.【分析】由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE 与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.【解答】解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】由已知式子解出x,然后互换x、y的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=e y,即=e y﹣1,∴x=(e y﹣1)3,∴所求反函数为y=(e x﹣1)3,故选:D.【点评】本题考查反函数解析式的求解,属基础题.6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)•的值.【解答】解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)•=2﹣=0,故选:B.【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.【专题】5O:排列组合.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.64【考点】89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4成等比数列是解决问题的关键,属基础题.9.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.4【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C.【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,∴设g(x)=f(x+2),则g(﹣x)=g(x),即f(﹣x+2)=f(x+2),∵f(x)是奇函数,∴f(﹣x+2)=f(x+2)=﹣f(x﹣2),即f(x+4)=﹣f(x),f(x+8)=f(x+4+4)=﹣f(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,∴f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是﹣160.(用数字作答)【考点】DA:二项式定理.【专题】11:计算题.【分析】根据题意,由二项式定理可得(x﹣2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=﹣160x3,即可得答案.【解答】解:根据题意,(x﹣2)6的展开式的通项为T r=C6r x6﹣r(﹣2)r=(﹣1)+1r•2r•C6r x6﹣r,令6﹣r=3可得r=3,此时T4=(﹣1)3•23•C63x3=﹣160x3,即x3的系数是﹣160;故答案为﹣160.【点评】本题考查二项式定理的应用,关键要得到(x﹣2)6的展开式的通项.14.(5分)函数y=cos2x+2sinx的最大值是.【考点】HW:三角函数的最值.【专题】11:计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=1﹣2sin2x+2sinx=,结合﹣1≤sinx≤1及二次函数的性质可求函数有最大值【解答】解:∵y=cos2x+2sinx=1﹣2sin2x+2sinx=又∵﹣1≤sinx≤1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意﹣1≤sinx≤1的条件.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为5.【考点】7C:简单线性规划.【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.【专题】5B:直线与圆.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.【考点】83:等差数列的性质;84:等差数列的通项公式;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)将a n=2a n+1﹣a n+2变形为:a n+2﹣a n+1=a n+1﹣a n+2,再由条件得+2b n+1=b n+2,根据条件求出b1,由等差数列的定义证明{b n}是等差数列;(Ⅱ)由(Ⅰ)和等差数列的通项公式求出b n,代入b n=a n+1﹣a n并令n从1开始取值,依次得(n﹣1)个式子,然后相加,利用等差数列的前n项和公式求出{a n}的通项公式a n.=2a n+1﹣a n+2得,【解答】解:(Ⅰ)由a n+2a n+2﹣a n+1=a n+1﹣a n+2,由b n=a n+1﹣a n得,b n+1=b n+2,即b n﹣b n=2,+1又b1=a2﹣a1=1,所以{b n}是首项为1,公差为2的等差数列.(Ⅱ)由(Ⅰ)得,b n=1+2(n﹣1)=2n﹣1,由b n=a n+1﹣a n得,a n+1﹣a n=2n﹣1,则a2﹣a1=1,a3﹣a2=3,a4﹣a3=5,…,a n﹣a n﹣1=2(n﹣1)﹣1,所以,a n﹣a1=1+3+5+…+2(n﹣1)﹣1==(n﹣1)2,又a1=1,所以{a n}的通项公式a n=(n﹣1)2+1=n2﹣2n+2.【点评】本题考查了等差数列的定义、通项公式、前n项和公式,及累加法求数列的通项公式和转化思想,属于中档题.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)由(Ⅰ)可得若k=2,不满足条件.若k=3,求得“同一工作日需使用设备的人数大于3”的概率为0.06<0.1,满足条件,从而得出结论.【解答】解:(Ⅰ)由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)由(Ⅰ)可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.31>0.1,不满足条件.若k=3,则“同一工作日需使用设备的人数大于3”的概率为0.6×0.5×0.5×0.4=0.06<0.1,满足条件.故k的最小值为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】53:导数的综合应用.【分析】(Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性;(Ⅱ)当a>0,x>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,推出f′(1)≥0且f′(2)≥0,即可求a的取值范围.【解答】解:(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1﹣a),①若a≥1时,则△≤0,f′(x)≥0,∴f(x)在R上是增函数;②因为a≠0,∴a≤1且a≠0时,△>0,f′(x)=0方程有两个根,x1=,x2=,当0<a<1时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0且f′(2)≥0,解得﹣,a的取值范围[)∪(0,+∞).【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。
2014年江苏省高考数学试卷答案与解析

2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是.4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.答案:1.考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}点评:本题主要考查集合的基本运算,比较基础.2.考点:复数的基本概念;复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的有关概念,即可得到结论.解答:解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21点评:本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.考点:程序框图.专题:算法和程序框图.分析:算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.解答:解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.考点:古典概型及其概率计算公式.专题:概率与统计.分析:首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.解答:解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.点评:本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.考点:三角方程;函数的零点.专题:三角函数的求值;三角函数的图像与性质.分析:由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.解答:解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.点评:本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.考点:频率分布直方图.专题:概率与统计.分析:根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.解答:解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.点评:本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:利用等比数列的通项公式即可得出.解答:解:设等比数列{a n}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.点评:本题考查了等比数列的通项公式,属于基础题.8.考点:棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台).专题:立体几何.分析:设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.解答:解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.点评:本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.考点:直线与圆的位置关系.专题:直线与圆.分析:求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.解答:解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.点评:本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.考点:二次函数的性质.专题:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.解答:解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3点评:本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.考点:向量在几何中的应用;平面向量数量积的运算.专题:平面向量及应用.分析:由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.解答:解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.点评:本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.解答:解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).点评:本题考查函数的图象以函数的零点的求法,数形结合的应用.14.考点:余弦定理;正弦定理.专题:三角函数的图像与性质;解三角形.分析:根据正弦定理和余弦定理,利用基本不等式即可得到结论.解答:解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.点评:本题主要考查正弦定理和余弦定理的应用,利用基本不等式是解决本题的关键.15.考点:两角和与差的正弦函数;两角和与差的余弦函数.专题:三角函数的求值;三角函数的图像与性质.分析:(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.解答:解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.点评:本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.考点:平面与平面垂直的判定;直线与平面垂直的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC 即可.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.考点:椭圆的简单性质;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.解答:解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,),且A,C关于x轴对称,∴C(,﹣),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.点评:本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析:(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x 的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.解答:解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.点评:本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.考点:利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构u造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.解答:解:(1)∵f(x)=e x+e﹣x,∴f(﹣x)=e﹣x+e x=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(e x+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴e x+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=e x,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=e x+e﹣x﹣a(﹣x3+3x),则g′(x)=e x﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而e a﹣1<a e﹣1,②当a=e时,a e﹣1=e a﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e﹣1)lna,从而e a﹣1>a e﹣1.点评:本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.考点:数列的应用;等差数列的性质.专题:等差数列与等比数列.分析:(1)利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”即可得到a n,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出S n,对∀n∈N*,∃m∈N*使S n=a m,取n=2和根据d<0即可得出;(3)设{a n}的公差为d,构造数列:b n=a1﹣(n﹣1)a1=(2﹣n)a1,c n=(n﹣1)(a1+d),可证明{b n}和{c n}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.解答:解:(1)当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,S n=a n+1.∴数列{a n}是“H”数列.(2)S n==,对∀n∈N*,∃m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n+1﹣b n=﹣a1,c n=(n﹣1)(a1+d),对∀n∈N*,c n+1﹣c n=a1+d,则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列.数列{b n}的前n项和T n=,令T n=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为H数列.数列{c n}的前n项和R n=,令c m=(m﹣1)(a1+d)=R n,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为H数列.因此命题得证.点评:本题考查了利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”求a n、等差数列的前n 项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.21.考点:弦切角.专题:直线与圆.分析:利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.解答:证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.点评:本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题.22.考点:矩阵与向量乘法的意义.专题:矩阵和变换.分析:利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y的值.解答:解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=点评:本题考查矩阵的乘法,考查学生的计算能力,属于基础题.23.考点:直线的参数方程.专题:计算题;坐标系和参数方程.分析:直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.解答:解:直线l的参数方程为,化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.点评:本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.24.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.解答:证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.点评:本题考查不等式的证明,正确运用均值不等式是关键.25.考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.解答:解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.点评:本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.26.考点:三角函数中的恒等变换应用;导数的运算.专题:函数的性质及应用;三角函数的求值.分析:(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.解答:解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵f n(x)为f n﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kf k﹣1(x)+xf k(x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nf n﹣1()+f n()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.点评:本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.。
江苏省淮安市淮海中学高三决战四统测试数学试题

江苏省淮安市淮海中学2014届高三决战四统测试数学试题(一)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题..卡.相应位置上...... 1. 已知集合{}{}1,0,1,02A B x x =-=<<,则A B =I ▲ . 2. 已知(1)2i z i +⋅=-,那么复数z = ▲ .3. 从1,2,3,4,5这五个数中任取两个数,这两个数的和是奇数的概率为 ▲ .4. 已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则8967a a a a ++等于▲ .5.为了解某地区高三学生的身体发育情况,抽查了该地区100名高三男生的体重. 根据抽样测量后的男生体重(单位:kg )数据绘制的频率分布直方图如图所示,则这100名学生中体重值在区间[56.5,64.5)的人数是 ▲ .6.如图所示的流程图,最后输出的n 的值是 ▲ .7.已知向量a ,b ,满足|a |=1,| b |=3,a +b =(3,1),则向量 a +b 与向量a -b 的夹角是 ▲ . 8.如图,正三棱锥P -ABC 的所有棱长都为4.点D ,E ,F 分别 在棱PA ,PB ,PC 上,满足PD =PF =1,PE =2,则三棱锥P – DEF 的体积是 ▲ .(第5题) 结束 开始 P ← 0 n ← 1 P ←P +1n (n +1)n ← n +1 输出nY N ( 第6题 ) P <0.70 ACP DEF 第8题图注 意 事 项考生在答题前认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本试卷满分160分,考试时间为120分钟。
考试结束后,请将本试卷和答题纸一并交回。
2.答题前,请您务必将自己的姓名、考试号用的0.5毫米黑色墨水的签字笔填写在试卷及答题纸上的规定位置。
3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题纸上的指定位置作答,在其它位置作答一律无效。
江苏省淮安市淮海中学Ⅲ级部高三数学决战四统试题(3)苏教版

淮海中学2014届高三Ⅲ级部数学决战四统测(三)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应的位置上.......... 1. 已知集合{}1,2,3,4A =--,{}2|,5B x x R x =∈<,则AB = ▲ .2.复数1iZ i=+(i 是虚数单位)的虚部为 ▲ . 3.抽样统计甲,乙两个城市连续5天的空气质量指数(AQI),数据如下:的城市为 ▲ (填甲或乙).4.抛物线24y x =的焦点到双曲线2214x y -=的渐近线的距离是 ▲ . 5.如图是计算111319+++的值的一个流程图,则常数a 的最大值是 ▲ .6.投掷两颗骰子得到其向上的点数分别为,m n ,设(,)a m n =,则满足5a <的概率为 ▲ .注 意 事 项考生在答题前认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本试卷满分160分,考试时间为120分钟。
考试结束后,请将本试卷和答题纸一并交回。
2.答题前,请您务必将自己的姓名、考试号用的0.5毫米黑色墨水的签字笔填写在试卷及答题纸上的规定位置。
3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题纸上的指定位置作答,在其它位置作答一律无效。
7. 设()αβ∈0π,,,且5sin()13αβ+=, 1tan 22α=.则cos β的值为 ▲ .8.如果一个正三棱锥的底面边长为6,且侧棱长为,那么这个三棱锥的体积是 ▲ .9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩,,表示的平面区域S 的面积为4,若点S y x P ∈),(,则3z x y =+的最大值为 ▲ .10.若关于x 的方程sin 2cos 2x x k +=在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数解,则k 的取值范围为 ▲11.设O 是ABC ∆外接圆的圆心,AO xAB yAC =+,且6AB =,8AC =,42x y +=,则AB AC ⋅= ▲ .12.在平面直角坐标系中,若符合点A (1,2),B (m ,1)到直线l 的距离分别为1,2的直线有且仅有2条,则实数m 的取值范围是 ▲ .13. 设x 1、x 2 是函数)0()(223>-+=a x a bx ax x f 的两个极值点,且22||||21=+x x 则b 的最大值为_____▲____ 14. 已知等比数列{}n a 的首项为43,公比为13-,其前n 项和记为S ,又设13521,,,,2482n nn B -⎧⎫=⎨⎬⎩⎭(),2n N n *∈≥,n B 的所有非空子集中的最小元素的和为T ,则22014S T +≥的最小正整数为 ▲.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤. 15. (本小题满分14分)已知函数()cos f x wx wx m ++(R x ∈>,0ω,m 是实数常数)的图像上的一个最高点⎪⎭⎫ ⎝⎛1,6π,与该最高点最近的一个最低点是⎪⎭⎫⎝⎛-3,32π, (1)求函数()x f 的解析式及其单调增区间;(2)在锐角三角形△ABC 中,角A 、B 、C 所对的边分别为c b a ,,,且ac BC AB 21-=⋅,角A 的取值范围是区间M ,当M x ∈时,试求函数()x f 的取值范围.16.(本小题满分14分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.(1)求证:MQ∥平面PAB;(2)若AN⊥PC,垂足为N,求证:MN⊥PD.17(本题满分16分,第1小题8分,第2小题8分)如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60o(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到海岸线的距离BC=43km.D为海湾一侧海岸线CT上的一点,设CD=x(km),点D对跑道AB的视角为θ.(1)将tanθ表示为x的函数;(2)求点D的位置,使θ取得最大值.18.(本小题满分16分)(第17题)已知椭圆)0(12222>>=+b a by a x 的左右焦点分别为21,F F ,短轴两个端点为B A ,,且四边形B AF F 21是边长为2的正方形. (1)求椭圆的方程;(2)若D C ,分别是椭圆长轴的左右端点,动点M 满足CD MD ⊥,连接CM ,交椭圆于点P .证明:OM OP ⋅为定值;(3)在(2)的条件下,试问x 轴上是否存在异于点C 的定点Q ,使得以MP 为直径的圆恒过直线MQ DP ,的交点,若存在,求出点Q 的坐标;若不存在,请说明理由.19. (本小题满分16分)已知()n n n A a b ,(n ∈N *)是曲线x y e =上的点,1a a =,n S 是数列{}n a 的前n 项和,且满足22213n n n S n a S -=+,0n a ≠,234n =,,,…. (1)证明:数列2n n b b +⎧⎫⎨⎬⎩⎭(2n ≥)是常数数列;(2)确定a 的取值集合M ,使a M ∈时,数列{}n a 是单调递增数列; (3)证明:当a M ∈时,弦1n n A A +(n ∈N *)的斜率随n 单调递增 20.(本题满分16分)已知实数0a ≠,函数21()(2)2ln ,()()44f x a x x g x f x a a=-+=-+。
数学_2014年江苏省淮安市高三第四次调研数学试卷(含答案)

2014年江苏省淮安市高三第四次调研数学试卷一、填空题(共14小题,每小题5分,共70分)1. 已知集合A ={x|1≤x ≤2},B ={1, 2, 3, 4},则A ∩B =________.2. 已知复数z 满足z ⋅i =1+i (i 是虚数单位),则z =________.3. 袋中有2个红球,2个蓝球,1个白球,从中一次取出2个球,则取出的球颜色相同的概率为________.4. 平面α截半径为2的球O 所得的截面圆的面积为π,则球心O 到平面α的距离为________.5. 如图所示的流程图,输出y 的值为3,则输入x 的值为________.6. 一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是________.7. 在平面直角坐标系xOy 中,曲线C 的离心率为√2,且过点(1, √2),则曲线C 的标准方程为________.8. 已知函数f(x)对任意的x ∈R 满足f(−x)=f(x),且当x ≥0时,f(x)=x 2−ax +1,若f(x)有4个零点,则实数a 的取值范围是________.9. 已知正实数x ,y 满足(x −1)(y +1)=16,则x +y 的最小值为________. 10. 在直角三角形ABC 中,C =90∘,AC =6,BC =4.若点D 满足AD →=−2DB →,则|CD →|=________.11. 已知函数f(x)=sin(ωx +φ)的图象如图所示,则f(2)=________.12. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2−4x =0.若直线y =k(x +1)上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围是________.13. 设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a i 2(i =1, 2, 3),则数列{b n }的公比为________.14. 在△ABC 中,BC =√2,AC =1,以AB 为边作等腰直角三角形ABD (B 为直角顶点,C 、D 两点在直线AB 的两侧).当∠C 变化时,线段CD 长的最大值为________.二、解答题(共6小题,共90分)15. 如图,在五面体ABCDEF 中,四边形ABCD 是矩形,DE ⊥平面ABCD .(1)求证:AB // EF ;(2)求证:平面BCF ⊥平面CDEF .16. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若b =4,BA →⋅BC →=8. (1)求a 2+c 2的值;(2)求函数f(B)=√3sinBcosB +cos 2B 的值域.17. 某风景区在一个直径AB 为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆弧上的一点C 之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C 到点B 设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)(1)设∠BAC =θ(弧度),将绿化带总长度表示为θ的函数S(θ); (2)试确定θ的值,使得绿化带总长度最大.18.如图,在平面直角坐标系xOy 中,椭圆x 2a2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB +CD =7.(1)求椭圆的方程;(2)求AB +CD 的取值范围.19. 已知函数f(x)=(x −a)2e x 在x =2时取得极小值. (1)求实数a 的值;(2)是否存在区间[m, n],使得f(x)在该区间上的值域为[e 4m, e 4n]?若存在,求出m ,n 的值;若不存在,说明理由.20. 各项均为正数的数列{a n }中,设S n =a 1+a 2+...+a n ,T n =1a 1+1a 2+...+1a n,且(2−S n )(1+T n )=2,n ∈N ∗.(1)设b n =2−S n ,证明数列{b n }是等比数列;(2)设c n =12na n ,求集合{(m, k, r)|c m +c r =2c k , m <k <r, m, k, r ∈N ∗}.2014年江苏省淮安市高三第四次调研数学试卷答案1. {1, 2}2. 1−i3. 154. √35. 16. 2√27. y 2−x 2=1 8. (2, +∞) 9. 8 10. 10 11. −√2212. [−2√2, 2√2]13. 3+2√2 14. 315. 证明:(1)因为四边形ABCD 是矩形,所以AB // CD , 因为AB ⊄平面CDEF ,CD ⊂平面CDEF , 所以AB // 平面CDEF .…4分因为AB ⊂平面ABFE ,平面ABFE ∩平面CDEF =EF , 所以AB // EF . …7分(2)因为DE ⊥平面ABCD ,BC ⊂平面ABCD , 所以DE ⊥BC . …9分因为BC ⊥CD ,CD ∩DE =D ,CD ,DE ⊂平面CDEF , 所以BC ⊥平面CDEF . …12分因为BC ⊂平面BCF ,所以平面BCF ⊥平面CDEF .…14分. 16. 解:(1)∵ BA →⋅BC →=8,∴ accosB =8, 由余弦定理得b 2=a 2+c 2−2accosB =a 2+c 2−16, ∵ b =4,∴ a 2+c 2=32;(2)∵ a 2+c 2≥2ac , ∴ ac ≤16, ∵ accosB =8, ∴ cosB =8ac ≥12, ∵ B ∈(0, π), ∴ 0<B ≤π3,∵ f(B)=√3sinBcosB +cos 2B =√32sin2B +12(1+cos2B)=sin(2B +π6)+12,∵ π6<2B +π6≤5π6,∴ sin(2B +π6)∈[12, 1],则f(B)的值域为[1, 32].17. 解:(1)由题意,AC =100cosθ,直径AB 为100米,∴ 半径为50米,圆心角为2θ,∴ BĈ=100θ, ∴ 绿化带总长度S(θ)=200cosθ+100θ(θ∈(0, π2); (2)∵ S(θ)=200cosθ+100θ,∴ S′(θ)=−200sinθ+100, 令S′(θ)=0,可得θ=π6.函数在(0, π6)上单调递增,在(π6, π2)上单调递减,∴ θ=π6时,绿化带总长度最大.18. 解:(1)由题意知,e =ca =12,CD =7−2a , 所以a 2=4c 2,b 2=3c 2,…2分 因为点(c,7−4c 2)在椭圆上, 即c 24c 2+(7−4c 2)23c 2=1,解得c =1.所以椭圆的方程为x 24+y 23=1.…6分(2)①当两条弦中一条斜率为0时,另一条弦的斜率不存在, 由题意知AB +CD =7;…7分②当两弦斜率均存在且不为0时,设A(x 1, y 1),B(x 2, y 2), 且设直线AB 的方程为y =k(x −1), 则直线CD 的方程为y =−1k (x −1).将直线AB 的方程代入椭圆方程中,并整理得(3+4k 2)x 2−8k 2x +4k 2−12=0, 所以x 1=4k 2−6√k 2+13+4k 2,x 2=4k 2+6√k 2+13+4k 2,所以AB =√k 2+1|x 1−x 2|=12(k 2+1)3+4k 2.…10分同理,CD =12(1k 2+1)3+4k2=12(k 2+1)3k 2+4.所以AB +CD =12(k 2+1)3+4k 2+12(k 2+1)3k 2+4=84(k 2+1)2(3+4k 2)(3k 2+4),…12分令t =k 2+1,则t >1,3+4k 2=4t −1,3k 2+4=3t +1, 设f(t)=(4t−1)(3t+1)t 2=−1t 2+1t +12=−(1t −12)2+494,因为t >1,所以1t ∈(0,1), 所以f(t)∈(12,494],所以AB +CD =84f(t)∈[487,7).综合①与②可知,AB +CD 的取值范围是[487,7]. …16分.19. 解:(1)f ′(x)=e x (x −a)(x −a +2), 由题意知 f ′(2)=0 ,解得 a =2或 a =4. 当a =2时, f ′(x )=e x x (x −2),易知 f (x )在 (0,2) 上为减函数,在 (2,+∞)上为增函数,符合题意; 当a =4 时, f (x )=e x (x −2)(x −4)易知 f (x ) 在 (0,2) 上为增函数,在(2,4),(4,+∞) 上为减函数,不符合题意. 所以,满足条件的 a =2.(2)因为f(x)≥0,所以m ≥0.①若m =0,则n ≥2,因为f(0)=4<e 4n ,所以(n −2)2e n =e 4n . 设g(x)=(x−2)2xe x (x ≥2),则g′(x)=[x 2−4x 2+(x−2)2x]e x ≥0,所以g(x)在[2, +∞)上为增函数.由于g(4)=e 4,即方程(n −2)2e n =e 4n 有唯一解为n =4. ②若m >0,则2∉[m, n],即n >m >2或0<m <n <2. (I)n >m >2时,{f(m)=(m −2)2e m =e 4m ,f(n)=(n −2)2e n =e 4n ,由①可知不存在满足条件的m ,n . (II)0<m <n <2时, {(m −2)2e m =e 4n ,(n −2)2e n =e 4m ,两式相除得m(m −2)2e m =n(n −2)2e n . 设ℎ(x)=x(x −2)2e x (0<x <2), 则ℎ′(x)=(x 3−x 2−4x +4)e x =(x +2)(x −1)(x −2)e x ,ℎ(x)在(0, 1)上单调递增,在(1, 2)上单调递减, 由ℎ(m)=ℎ(n)得0<m <1,1<n <2, 此时(m −2)2e m <4e <e 4n ,矛盾.综上所述,满足条件的m ,n 值只有一组,且m =0,n =4. 20. 解:(1)当n =1时,(2−S 1)(1+T 1)=2, 即(2−a 1)(1+1a 1)=2,解得a 1=1. …2分由(2−S n )(1+T n )=2,所以T n =22−S n−1①当n ≥2时,T n−1=22−S n−1−1② ①-②,得1a n=22−S n−22−S n−1=2a n(2−S n )(2−S n−1)(n ≥2),…4分即(2−S n )(2−S n−1)=2[(2−S n−1)−(2−S n )]2, 即b n b n−1=2(b n−1−b n )2,所以b n b n−1+b n−1b n=52,因为数列{a n }的各项均为正数,所以数列{2−S n }单调递减,所以b nb n−1<1.所以b n b n−1=12(n ≥2).因为a 1=1,所以b 1=1≠0,所以数列{b n }是等比数列. …6分 (2)由(1)知2−S n =(12)n−1,所以a n =12n−1,即c n =n 2n.由c m +c r =2c k ,得c m c k+cr c k=2(∗)又n ≥2时,c n+1c n=n+12n<1,所以数列{c n }从第2项开始依次递减. …8分(I)当m ≥2时,若k −m ≥2,则c m c k≥c m c m+2=m 2m m+22m+2=4m m+2≥2,(∗)式不成立,所以k −m =1,即k =m +1. …10分 令r =m +1+i(i ∈N ∗),则c r =r 2m+1+i=2c k −c m =2(m+1)2m+1−m 2m=22m+1=2i+12m+1+i,所以r =2i+1,即存在满足题设的数组{(2i+1−i −1, 2i+1−i, 2i+1)}(i ∈N ∗).…13分 (II)当m =1时,若k =2,则r 不存在;若k =3,则r =4; 若k ≥4时,c 1c k≥c1c 4=2,(∗)式不成立.综上所述,所求集合为{(1, 3, 4), (2i+1−i −1, 2i+1−i, 2i+1)}(i ∈N ∗). …16分.。
江苏省淮安市淮海中学Ⅲ级部高三数学决战四统试题(2)

淮海中学2014届高三Ⅲ级部数学决战四统测(二)一.填空题:本大题共14小题,每小题5分,计70分。
1.已知i 是虚数单位,R a ∈,若复数iia -+1的实部是1-,则=a ▲ . 2.设集合}3,1{},2|||{=<-=B a x x A ,且A B A =⋃,则实数a 的取值范围是 ▲ . 3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测。
若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 ▲ . 4.设向量a 与b 的夹角为θ,)4,5(3),1,2(=+=, 则=θcos ▲ .5.已知正整数b a ,满足304=+b a ,则b a ,都是偶数的概率是 ▲ .6.执行如右图所示的程序框图,若输出的b 的值为31,则图中判断 框内①处应填的整数为 ▲ .7.在ABC ∆中,已知sin sin cos sin sin cos A B C A C B =sin sin cos B C A +,若,,a b c 分别是角,,A B C 所对的边,则2abc的最大值为 ▲ . 8.若等差数列}{n a 和等比数列}{n b 的首项均为1,且公差0d >,公比1q >,则集合},|{*N n b a n n n ∈= 的元素个数最多有 ▲ .个。
注 意 事 项 考生在答题前认真阅读本注意事项及各题答题要求 1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本试卷满分160分,考试时间为120分钟。
考试结束后,请将本试卷和答题纸一并交回。
2.答题前,请您务必将自己的姓名、考试号用的0.5毫米黑色墨水的签字笔填写在试卷及答题纸上的规定位置。
3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题纸上的指定位置作答,在其它位置作答一律无效。
9.已知直线)0(0>=--k k y x 与圆422=+y x 交于不同的两点B A ,,O 是坐标原点,且有||33||≥+,则k 的取值范围是 ▲ . 10.设O 为坐标原点,给定一个定点)3,4(A ,而点)0,(x B 在x 正半轴上移动,)(x l 表示的长,则OAB ∆中两边长的比值)(x l x的最大值为 ▲ . 11.已知x x x f 3)(3-=,过),1(m A 可作曲线)(x f y =的三条切线,则m 的取值范围是 ▲ .12.设B A ,分别是椭圆14:22=+y x C 的上下两个顶点,P 为椭圆C 上任意一点(不与点B A ,重合),直线PA PB ,分别交x 轴于N M ,两点,若椭圆C 在P 点的切线交x 轴于Q 点,则=-||NQ MQ ▲ .13.若关于x 的不等式022<-+a x ax 的解集中有且仅有4个整数解,则实数a 的取值范围是 ▲ .14.已知0=-z xy ,且210<<z y ,则2222164yz x yzxz +-的最大值是 ▲ . 二.解答题:本大题共6小题,计90分。
2014年高考数学(江苏卷) 解析版 Word版含解析

2014年普通高等学校招生全国统一考试(江苏卷)答案解析数 学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1、已知集合}4,3,1,2{A --=,}3,2,1{B -=,则B A = ▲ . 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】本题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。
属于基础题,难度系数较小。
2、已知复数2)25(i z -=(i 为虚数单位),则z 的实部为 ▲ . 【答案】21【解析】根据复数的乘法运算公式,i i i i z 2021)2(2525)25(222-=+⨯⨯-=-=,实部为21,虚部为-20。
【点评】本题重点考查的是复数的乘法运算公式,容易出错的地方是计算粗心,把12-=i 算为1。
属于基础题,难度系数较小。
3、右图是一个算法流程图,则输出的n 的值是 ▲ . 【答案】5【解析】根据流程图的判断依据,本题202>n 是否成立,若不成立,则n 从1开始每次判断完后循环时,n 赋值为1+n ;若成立,则输出n 的值。
本题经过4次循环,得到203222,55>===n n ,成立,则输出的n 的值为5【点评】本题重点考查的是流程图的运算,容易出错的地方是判断循环几次时出错。
属于基础题,难度系数较小。
4、从6,3,2,1这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 ▲ . 【答案】31【解析】将随机选取2个数的所有情况“不重不漏”的列举出来:(1,2),(1,3)(1,6),(2,3),(2,6),(3,6),共6种情况,满足题目乘积为6的要求的是(1,6)和(2,3),则概率为31。
【点评】本题主要考查的知识是概率,题目很平稳,考生只需用列举法将所有情况列举出来,再将满足题目要求的情况选出来即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省淮安市淮海中学2014届高三Ⅲ级部决战四统测二文科数学试卷(带解析)1.已知i 是虚数单位,R a ∈,若复数iia -+1的实部是1-,则=a . 【答案】1- 【解析】试题分析:因为,2)1(1)1)(1()1)((1i a a i i i i a i i a ++-=+-++=-+所以复数i i a -+1的实部是.1,121-=-=-a a考点:复数的概念2.设集合}3,1{},2|||{=<-=B a x x A ,且A B A =⋃,则实数a 的取值范围是 . 【答案】31<<a 【解析】试题分析:因为A B A =⋃,所以,A B ⊆又)2,2(}2|||{+-=<-=a a a x x A ,所以12<- a 且,32>+a 解得31<<a .考点:集合间关系3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测。
若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 . 【答案】6 【解析】试题分析:因为采用分层抽样的方法抽取样本,所以粮食类、植物油类、动物性食品类及果蔬类分别按2:3:1:420:30:10:40=比例进行抽取. 抽取的植物油类与果蔬类食品种数之和是.620231421=⨯++++考点:分层抽样4.设向量a 与b 的夹角为θ,)4,5(3),1,2(=+=b a a ,则=θcos .【解析】试题分析:因为)4,5(3),1,2(=+=,所以).1,1(=根据向量数量积有.10103251112||||cos =⨯+⨯==b a θ考点:向量的数量积5.已知正整数b a ,满足304=+b a ,则b a ,都是偶数的概率是 . 【答案】73 【解析】试题分析:因为304=+b a ,且b a ,为正整数,所以共有)2,7(),6,6(),10,5(),14,4(),18,3(),22,2(),26,1(七对整数解,其中b a ,都是偶数的有)6,6(),14,4(),22,2(三对,所以所求概率为73.考点:古典概型概率6.执行如图所示的程序框图,若输出的b 的值为31,则图中判断框内①处应填的整数为 .【答案】4 【解析】试题分析:第一次循环:,2,3==a b 第二次循环:,3,7==a b 第三次循环:,4,15==a b 第四次循环:,5,31==a b 结束循环,因此判断框内①的取值范围为),5,4[即应填的整数为4.考点:循环结构流程图7.在ABC ∆中,已知sin sin cos sin sin cos A B C A C B =sin sin cos B C A +,若,,a b c 分别是角,,A B C 所对的边,则2abc 的最大值为 . 【答案】23 【解析】试题分析:由正余弦定理得:bc a c b bc ac b c a ac ab c b a ab 222222222222-+⋅+-+⋅=-+⋅ ,化简得.3222c b a =+因此2ab c,2323322=≤+=ab ab b a ab 即最大值为23. 考点:正余弦定理,基本不等式8.若等差数列}{n a 和等比数列}{n b 的首项均为1,且公差0d >,公比1q >,则集合},|{*N n b a n n n ∈= 的元素个数最多有 个.【答案】2【解析】试题分析:由题意得:1)1(1-=-+n q d n ,令,1)1(1---=-d x q y x 则由,0ln 1=-='-d q q y x 得q dx qln log 1+=o ,当0l n l og ≤qdq时,1)1(1---=-d x q y x 在),1[+∞上单调增,方程1)1(1-=-+n q d n 有且仅有一解;当0ln log > qdq时,1)1(1---=-d x q y x 在),1[o x 上单调减,在),[+∞o x 上单调增,方程1)1(1-=-+n q d n 至多有两解考点:方程与函数思想9.已知直线)0(0>=--k k y x 与圆422=+y x 交于不同的两点B A ,,O 是坐标原点,且有||33||AB OB OA ≥+,则k 的取值范围是 . 【答案】)22,2[ 【解析】试题分析:设M为AB中点,则由||33||AB OB OA ≥+得:|2|33||2≥,||33||≥,而422=+OB OM ,所以,1,442222≥≤+=OM OM OB OM 又2||k d OM ==,因此,2||≥k 即,2≥k 又直线)0(0>=--k k y x 与圆422=+y x 交于不同的两点,所以.22,22||<=<=k r k d k 的取值范围是)22,2[考点:直线与圆位置关系,点到直线距离10.设O 为坐标原点,给定一个定点)3,4(A ,而点)0,(x B 在x 正半轴上移动,)(x l 表示的长,则OAB ∆中两边长的比值)(x l x的最大值为 . 【答案】53【解析】试题分析:由题意得:,258119)4()(22x x x x x l x +-=+-=当2541=x 时,)(x l x 取最大值,为53.考点:二次函数最值11.已知x x x f 3)(3-=,过),1(m A 可作曲线)(x f y =的三条切线,则m 的取值范围是 . 【答案】)2,3(-- 【解析】试题分析:因为 33)(2-='x x f ,设切点为),3,(3a a a -所以),1)(33(323--=--a a m a a .33223-+-=a a m 由题意得,关于a 的方程33223-+-=a a m 有三个不同的解,令,332)(g 23-+-=a a a 由066)(g 2=+-='a a a 得0=a 或.1=a 由图像知m 只有在)0(g 和)1(g 之间时,才存在三个不同的根,因为,2)1(,3-)0(-==g g所以.23--<<m 考点:利用导数求切线12.设B A ,分别是椭圆14:22=+y x C 的上下两个顶点,P 为椭圆C 上任意一点(不与点B A ,重合),直线PA PB ,分别交x 轴于N M ,两点,若椭圆C 在P 点的切线交x 轴于Q 点,则=-||NQ MQ . 【答案】0 【解析】试题分析:设),1,0(),1,0(),,(-B A n m P则),0,1(,11:n mN x m n y PA -+-=),0,1(,11:n m N x m n y PB +-+=在P 点的切线方程为:)0,4(,14m Q ny mx =+,因为1422=+n m ,所以MN 中点横坐标为,41)11(212m n m n m n m =-=++-即为Q 点,因此=-||NQ MQ 0.考点:椭圆切线方程13.若关于x 的不等式022<-+a x ax 的解集中有且仅有4个整数解,则实数a 的取值范围是 . 【答案】)73,72[ 【解析】试题分析:当0≤a 时,不等式022<-+a x ax 的解集中有无数个整数解,因此.0>a 设,2)(2a x ax x f -+=因为024)2(,1)1(,02)0(>+=-=<-=a f a f a f假若a >1,则f (1)=1-a <0,4个整数解应为1,0,-1,-2,而f (-2)=4a-2-2a=2a-2>0,矛盾,所以假设错误,故0<a≤1所以4个整数解应为0,-1,-2,-3.所以,0)4(,0)3(≥-<-f f 实数a 的取值范围是)73,72[.考点:一元二次不等式的整数解14.已知0=-z xy ,且210<<z y ,则2222164y z x yz xz +-的最大值是 .【答案】82【解析】试题分析:因为0=-z xy ,210<<z y ,所以.2,2110><<x x 而.82)4(82)4(8)4()4(16416422222222432222=--≤+--=+-=+-x x x x x x x x x x x y z x yz xz考点:基本不等式求最值15.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,。
已知)sin 3,cos 2(A A =,1),cos 2,(cos -=⋅-=n m A A n .(1)若2,32==c a ,求ABC ∆的面积; (2)求)60cos(2C a cb +- 的值.【答案】(1) ,32(2)2. 【解析】试题分析:(1)先根据向量数量积,得等量关系:1cos sin 32cos 22-=-A A A ,再根据二倍角公式、配角公式化简得:1)62sin(=-πA ,最后根据角的取值范围,求角A :因为π<<A 0,所以)611,6(62πππ-∈-A ,所以262ππ=-A ,即3π=A .求三角形面积,需再求一边b 或一角C: 由正弦定理可知C b A a sin sin =,所以21sin =C ,因为)32,0(π∈C 所以2,6ππ==B C ,所以3232221=⨯⨯=∆A B C S .也可由余弦定理求边b :.4,2144)32(22=⨯-+=b b b.32234221=⨯⨯⨯=∆ABCS (2)求代数式值,要么化边,要么化角.)60cos(2C a c b +-)60cos(23sin 2)120sin()60cos(23sin 2sin )60cos(sin sin 2sin C CC C C B C A C B +--=+-=+-=2)60cos(23)60cos(3)60cos(23sin 23cos 23=++=+-=C C C CC(1)由1cos sin 32cos 22-=-A A A 得1)62sin(=-πA因为π<<A 0,所以)611,6(62πππ-∈-A所以262ππ=-A ,即3π=A 4分由正弦定理可知C b A a sin sin =,所以21sin =C ,因为)32,0(π∈C 所以2,6ππ==B C ,所以3232221=⨯⨯=∆ABC S 7分(2)原式)60cos(23sin 2)120sin()60cos(23sin 2sin )60cos(sin sin 2sin C CC C C B C A C B +--=+-=+-=2)60cos(23)60cos(3)60cos(23sin 23cos 23=++=+-=C C C CC 14分考点:正余弦定理,二倍角公式16.如图,正方形ABCD 和三角形ACE 所在的平面互相垂直,EF ∥BD ,AB =2EF. (1)求证:BF ∥平面ACE ; (2)求证:BF ⊥BD.【答案】(1)详见解析, (2) 详见解析. 【解析】试题分析:(1) 证明线面平行,需先证线线平行. 正方形ABCD=AB ,又因为AB,∴BO =EF ,又因为EF ∥BD ,∴EFBO 是平行四边形,∴BF ∥EO ,又∵BF ⊄平面ACE ,EO ⊂平面ACE ,∴BF ∥平面ACE.列线面平行判定定理的条件必须要全面. (2)证明线线垂直,一般利用线面垂直进行转化.条件为面面垂直,所以先由面面垂直性质定理转化为线面垂直:正方形ABCD 中,AC ⊥BD ,又因为正方形ABCD 和三角形ACE 所在的平面互相垂直,BD ⊂平面ABCD ,平面ABCD∩平面ACE =AC ,∴BD ⊥平面ACE ,∵EO ⊂平面ACE ,∴BD ⊥EO ,∵EO ∥BF ,∴BF ⊥BD.证明 (1)AC 与BD 交于O 点,连接EO.正方形ABCD =AB ,又因为AB ,∴BO =EF ,又因为EF ∥BD , ∴EFBO 是平行四边形,∴BF ∥EO ,又∵BF ⊄平面ACE ,EO ⊂平面ACE , ∴BF ∥平面ACE 7分(2)正方形ABCD 中,AC ⊥BD ,又因为正方形ABCD 和三角形ACE 所在的平面互相垂直,BD ⊂平面ABCD ,平面ABCD∩平面ACE =AC , ∴BD ⊥平面ACE ,∵EO ⊂平面ACE ,∴BD ⊥EO ,∵EO ∥BF ,∴BF ⊥BD. 14分考点:线面平行判定定理,面面垂直性质定理,17.据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k (0)k >.现已知相距18km 的A ,B 两家化工厂(污染源)的污染强度分别为,a b ,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC x =(km ).(1)试将y 表示为x 的函数; (2)若1a =,且6x =时,y 取得最小值,试求b 的值.【答案】(1)22(18)ka kb y x x =+-, (2) 8.【解析】试题分析:(1)解实际问题应用题,关键要正确理解题意,正确列出等量关系,注意考虑函数定义域. 设点C 受A 污染源污染程度为2kax ,点C 受B 污染源污染程度为2(18)kb x -,其中k 为比例系数,且0k >.从而点C 处受污染程度22(18)ka kby x x =+-.定义域为).18,0( (2)因为1a =,所以,22(18)k kb y x x =+-,求复杂分式函数最值,通常考虑利用导数求解.'3322[](18)b y k x x -=+-,令'0y =,得x =,因此函数在)118,0(3b +单调减,在)18,118(3b +单调增,即在x =. 又此时6x =,解得8b =,经验证符合题意.解:(1)设点C 受A 污染源污染程度为2kax ,点C 受B 污染源污染程度为2(18)kb x -,其中k 为比例系数,且0k >. 4分从而点C 处受污染程度22(18)ka kby x x =+-. 6分(2)因为1a =,所以,22(18)k kb y x x =+-, 8分'3322[](18)b y k x x -=+-,令'0y =,得x =12分又此时6x =,解得8b =,经验证符合题意.所以,污染源B 的污染强度b 的值为8. 14分 考点:利用导数求函数值域18.已知)0,2(),0,2(B A -,点D C ,依次满足)(21,2||+==。