广义Schur补为零的一些分块矩阵的Drazin逆表达式

合集下载

关于矩阵广义BottDuffin逆的逆序律

关于矩阵广义BottDuffin逆的逆序律

关于矩阵广义BottDuffin逆的逆序律矩阵广义BottDuffin逆的逆序律是一种矩阵乘法的性质,它指出当两个矩阵相乘时,其广义BottDuffin逆也具有类似于逆序律的性质。

要了解这个逆序律,我们需要先了解什么是矩阵广义BottDuffin逆。

矩阵广义BottDuffin逆是一个广义逆,它可以看作是矩阵Moore-Penrose逆的一种推广。

对于一个矩阵A,如果它的秩r小于等于它的列数n,那么它的广义BottDuffin逆A+是唯一的满足下列四条性质的矩阵:1. A+AA+A=A+其中,T表示矩阵的转置,+表示矩阵的伪逆。

有了这个定义,我们就可以开始讨论矩阵广义BottDuffin逆的逆序律了。

假设我们有两个矩阵A和B,它们分别是m×n和n×p的矩阵。

我们可以想象将它们拼成一个m×p的方阵C:C = [A B]为了简化问题,我们假设A和B的秩都小于等于它们的列数,也即m≤n 和n≤p。

这种情况下,C的秩也小于等于它的列数p,因此C的广义BottDuffin逆C+是存在的。

(CA)+ = A+C(BA)+B也就是说,当我们将C和A相乘的广义BottDuffin逆取逆之后,得到的结果等于将A 和B相乘的广义BottDuffin逆先加C,再取逆的结果。

这个定理的证明需要用到广义BottDuffin逆的定义和一些矩阵的基本性质,因此比较繁琐。

不过,这个定理可以帮助我们更方便地处理一些矩阵计算问题,尤其是当我们需要求解一些线性方程组时,可以借助这个定理来求解。

总的来说,矩阵广义BottDuffin逆的逆序律是一种重要的矩阵乘法性质,它在矩阵计算和应用中有着广泛的应用。

理解和应用这个性质需要一定的数学知识和技巧,但它可以帮助我们更好地理解和处理矩阵问题。

两个矩阵和Drazin逆新的表达式

两个矩阵和Drazin逆新的表达式

文献[ 3 ]给 出在 P Q=O , Q 。 一0 和P Q。 一O , P -0 条件 下两 矩 阵和 D r a z i n 逆 的表 示. 2 0 1 2 年, 文献 [ 4 ]给 出在 P。 Q一0 , Q -0 , Q PQ—O 条 件下 两矩 阵和 D r a z i n 逆 的表示 . 文献 [ 5 ]给 出在 P 。 Q+ P Q 一0 条 件下
( P + Q) 。= ( P+ Q) ( ( P。 + QP) 。+ ( PQ + Q。 ) x( P + Q P)。 ( P + Q P) ( PQ + Qz )( PQ + Qz )o x( Pz + QP) + ( P Q + Qz )。 ).
两个 矩 阵和 Dr a z i n逆 新 的表 达 式
杨 晓 英
( 四 川 信 息 职 业 技 术 学 院基 础教 育部 , 广元 6 2 8 0 1 7 )
摘要 : 针对两个矩阵和 D r a z i n 逆 的表 示 , 由D r a z i n逆 的定 义 , 根 据 矩 阵分 解 的 思想 , 利用 D r a z i n逆 的相 关 性 质 , 给 出了 两 个 矩 阵 的 和 在 一 定 条 件 下 D r a z i n逆 新 的 表 示 . 新 结 果 推 广 了 现 有 的一 些 结
作者简 介 : 杨晓英( 1 9 8 4 一) , 女, 硕士, 讲师 , 研究方 向 : 矩阵理论与应用 。
基金项 目: 国 家 自然 科 学 基 金 项 目( 1 1 5 O 1 1 4 1 ) ; 四川 省 教育 厅 自然 科 学 基 金 项 目( 1 4 Z B 0 4 4 2 )
第 3期
果.
关键词 : 矩阵和 ; Dr a z i n逆 ; 矩 阵分 解

广义Schur补可逆的一些分块矩阵的Drazin逆表示

广义Schur补可逆的一些分块矩阵的Drazin逆表示
( o eeo cec , ri E gne n nvr t, ab 50 1 hn ) C l g f i e Ha n nier gU i s y H ri 10 0 ,C ia l S n b i ei n
Absr c Th a i n e s ቤተ መጻሕፍቲ ባይዱblc t c sh sbe n wi ey su i d i t x t e r t a t: e Dr zn i v re o o k mar e a e d l t d e n mar h oy.I a mp ra ta lc - i i th s i o t n pp ia
第3 3卷第 6期
21 0 2年 6月









Vo . 3 № . 13 6
J u n lo r i n iern iest o r a fHab n E gn e gUnv ri i y
Jn2 2 u . 01
广 义 Sh r 可 逆 的一 些 分块 矩 阵 的 D ai 表 示 cu 补 rz n逆
ie c u 。 lme ts =D —CA。 i 。 sn u a z d s h rc mp e n s n n i g lr

tre t n0hDziro [ 】 he sa srernVe = ep et a e ∈ rni ft in sf 。
C w r g e w ee n r su r t cs i ebok a s ig n fh l wn o dt n :) ee i n( h r a dD ae q ae r e )wt t l s tf n eo ef l igcn io s 1 v A ma i hh c s iy o t oo i B A 0, DC =0, A C = B A D C =O; )C =0, A B 2 AA C C=0,A B =0, A AB=O.T eersl e — C D C h s eut gn s

一类分块矩阵的Drazin逆表示

一类分块矩阵的Drazin逆表示
i 1 A一
Dr zn i e s fM de h o dii n a i nv r e o un r t e c n to s D c = 0, BD。 : 0 C

k =0
∑AA (。“C= . 0) 0 8
Ke y wor ds:Dr z n i v r e,i de a i n e s n x,blc ti o k marx

其 中 E为 n阶奇异方 阵 , 解与 2×2分块 矩 阵 其
M =
A。 为 A的 D ai , A =,一从 若 i 称 rz n逆 记 。 A=i ,
则 。称 为 A的群逆 , 为 A 。 然 i 记 显 =0当且仅 当
非奇异 , 时 A =A~。 此

的 D ai 具 有 很 大 联 系 。9 9年 C mp e rz n逆 17 a bl l和 Mee 就 此提 出了如 下 公 开 问题 : 何 刻 画 复数 域 yr 如 上 2 x2分块矩 阵
Re r s nt tO o heD r z n I e s fa Cl s fBl c a rx p e e a i n f r t a i nv r e o a so o k M t i
ZH UANG Guif n .e
( col f cec , in nnU ies y Wu i 1 12 C ia S ho o ine J ga nvri , x 24 2 , hn ) S a t
Fb e. 2 O 0l

类 分 块 矩 阵 的 D a i 表 示 rzn逆
庄 桂 芬
( 江南大 学 理 学院 , 苏 无锡 2 4 2 ) 江 1 12
摘 要 : 复数域上 2×2分块矩 阵 的 D ai rz n逆表 示是 有待 解决 的一 个公开 问题 , 中利 用和 的 文

《2024年线性关系Drazin逆的若干性质》范文

《2024年线性关系Drazin逆的若干性质》范文

《线性关系Drazin逆的若干性质》篇一一、引言Drazin逆作为一种广义的逆矩阵概念,在许多数学领域和工程应用中有着重要的应用。

其特别之处在于它可以描述一种弱逆性的关系,在线性代数和矩阵分析中具有重要意义。

本文将重点讨论线性关系中Drazin逆的若干性质,旨在揭示其基本特征及其在各种数学环境下的应用。

二、Drazin逆的定义Drazin逆是指一个广义逆矩阵,其定义基于矩阵的幂级展开和指数级展开。

对于一个给定的矩阵A,如果存在一个矩阵X满足特定的条件,那么这个矩阵X就称为A的Drazin逆。

具体定义如下:设A是一个复数或实数域上的方阵,如果存在一个非负整数k和一个矩阵X,使得AXA=A(即A的k次幂乘以X等于A),则称X为A的Drazin逆。

三、Drazin逆的性质(一)基本性质1. 唯一性:对于给定的k值,Drazin逆是唯一的。

2. 幂等性:Drazin逆满足幂等性,即(AXA)^k=A。

3. 线性关系:Drazin逆与原矩阵之间存在一种线性关系,这种关系可以通过矩阵运算和代数运算来描述。

(二)与其他逆的关系1. 当k=1时,Drazin逆退化为常规的伪逆(即Moore-Penrose 逆)。

2. 当矩阵A可逆时(即行列式不为零),Drazin逆退化为普通逆矩阵。

3. Drazin逆在某些情况下与奇异值分解(SVD)密切相关,可以通过SVD来求解Drazin逆。

四、Drazin逆的应用Drazin逆在许多领域有着广泛的应用,如线性系统理论、控制系统、信号处理等。

具体应用包括:1. 线性系统解的稳定性分析:在解线性系统时,如果系数矩阵是奇异的(即行列式为零),则可以通过求解Drazin逆来找到系统的解,并分析解的稳定性。

2. 控制系统的模型降阶:在控制系统中,常常需要对高阶系统进行降阶处理以简化计算和分析。

Drazin逆可以用于这种模型降阶过程。

3. 信号处理中的滤波和预测:在信号处理中,Drazin逆可以用于设计滤波器和进行预测分析。

(计算数学专业论文)广义逆在代数扰动理论中的性质、表示及矩阵Drazin逆..

(计算数学专业论文)广义逆在代数扰动理论中的性质、表示及矩阵Drazin逆..

摘要广义逆矩阵的表示与计算是,1义逆理论的重要研究课题,因其埋论.卜的重要地位和实际中的J“泛应用+直为人们所关注,近二三卜年来,国内外众多学者在这方而做了大量:工作,得到了丰富的成果(见f1~6]等)。

区别于传统的分析扰动,J.R.Bunch和D.J.Rose在1974年首先提出了用代数扰动的方法求勰非奇异线性方程组,随后,L,B,Rail。

陈永林,季均等运用这一1方法相继得到了ycy-Banach空间卜的线性算子。

实(复)域上矩阵的{1)逆,{1,2)逆及A簧;逆的‘系列结果。

本文的第三章将麻用代数扰动的思想,首次得到L一零矩阵的(J。

义)Bott—Duffin逆矩阵及矩阵的加权Drazin逆的荇干新性质以及这两类广义逆的新表达式。

鉴于除环在:】:程,物理等领域的重要应j_l】,本文的第四章将对广义逆在P一除环}。

所具有的众多性质加以系统整理。

并且在P一除环.卜首次研究了矩阵的代数扰动理论。

条件数是衡量矩阵对扰动敏感程度的主要指标之,在矩阵计算和扰动分析的研究中发挥着重要作用,从而广受重视(见[3,32—471等)。

本文的第五章将讨论Drazin逆条件数的极小性质,绘出了Drazin逆条件数达到极小的充要条件以及此时矩阵所具有的性质。

非负矩阵在随机过程,马氏链,数理统计中有着』’‘泛的廊朋。

本文的第六章将讨论…类特殊的非负矩阵。

文章将从新的角度出发,在进一步的讨论中得到若T瓤性质。

关键词:代数扰动,(加权)Drazin逆,(广义)Bott—Duffin逆,P.除环,条件数,值域与零空间,矩阵范数,非负矩阵ABSTRACTTherepresentationandcalculationofgeneralizedinversenratrieesisanimportanttopicinthetheoryofgeneralizedinverse.Sinceitshighvalueinthefieldofboththeoticalresearchandpracticaluse,manyscholarshave(10nenmchresearchonit.(Refs:[1—6]ete.)Intheyearof1974,J.RBunchandD.JRosefoundanewwaycalledalgebrai(-perturbationmethodforsolvingnorIsingularlinearequations.Afterthen.L,B.Rail,Y,L.ChenandJ.JihavealsodonealargearnountofworkonitwithresultsinpropertiesoflinearoperatoronBanachspace,{1卜inverse,{l,2)一inverseaxedAG.inverseofmatrices.ThethirdcharptofthispaperisgoingtodiscussthepropertiesandrepresentationsonalgebraicperturbationofgeneralizedBott—DuffininverseandweightedDraziuinverse.Intermoftheimportantpracticalapplicationsofdivisionringtoengineeringandphysics.intheforthcharpt,wegivesomenewresultsinP—divisionringOUalgebraicperturbationtheoryCondition11111nberisoneofthemostimportantindecieswhichareusedtomemsuresensitationofmatrixagainstperturhationInthefivthcharpt,weobtainsomepropezlAesofmatrixwhenitsconditionnumberonDrazininversei8minimal.Andfinaly,wewillfindsomepropertiesofnonnegativematriceswhichhavingsanlenonnegativegroupinverseandM—Pinverse.KEYWORD:algebraperturbation,(weighted)Drazininverse,(generalized)Bott.Duffininverse,P—divisionring,conditionnumber,valuedfield&zerospace、matrixnornl.nonnegativematrix噶垫堑=硕士学位论文答辩委员会成员名单矿衫年,月J孑曰I姓名职称单位各注I座发顿放褪鲜芳肝也犬墨税哲缸主席l{才l研韶褪鲜袁肝范无喜磁学瓜f呶茄旋教疆辞龟卿勃震基诒噎番L}馥确坩井烀笮磊好瑟戎爱么舅畚云纬lV学位论文独创性声明本人所呈交的学位论文是我在导师的指导F进行的研究工作及取得的研究成果。

广义Schur补可逆的一些分块矩阵的Drazin逆表示_卜长江

广义Schur补可逆的一些分块矩阵的Drazin逆表示_卜长江

Representations of the Drazin inverse of several block matrices with a nonsingular generalized Schur complement
BU Changjiang,WANG Guanghui,SONG Xiaocui
D 给出了当广义 Schur 补 S = D - CA B 可逆时, 分块矩阵 M =
[ C D]∈C
A B
n×n
( A, D 是方阵) 在满足下列条件之一时的
Drazin 逆表示: 1 ) BCA π = O, BDCA π = O, D2 CA π = O; 2 ) CA π A2 = O, CA π BC = O, CA π BD = O, CA π AB = O. 这些结果推 910 , 12] 广了文献[ 的结论. 关键词: Drazin 逆; 分块矩阵; 广义 Schur 补; 可逆矩阵 doi: 10. 3969 / j. issn. 1006 - 7043. 201103079 网络出版地址: http: / / www. cnki. net / kcms / detail /23. 1390. U. 20120503. 1610. 010. html 中图分类号: O015. 21 ; TP273 文献标志码: A 7043 ( 2012 ) 03078704 文章编号: 1006-
i +1
+
( Q D ) i +1 P i P π Σ i =0
i +3
+
根据引理 4 , 又有
D P1 =
s -1
r -2
Qπ Σ Qi ( PD )
i =0

分块矩阵广义逆的几种表达式

分块矩阵广义逆的几种表达式

分块矩阵广义逆的几种表达式许赟;孙乐平【摘要】We show the conditions under which the generalized inversesA(1,3) , A(2) , A+, Ad and Ag of the partitioned matrixA= (A11 A12 A21 A22) can be expressed in the form of X = ( Sα1 -Aα11A12Sα2 -Aα22A21Sα1Sα2),which is induced,from the form of the inverse of the partitioned matrix A. Then from the results, we derive some other expressions of the Moore - Penrose inverse of the partitioned matrix A. Then from the M-P inverse of its blocks. Finally, we offer an example.%受分块矩阵的逆矩阵形式的启发,给出了分块矩阵A=(A11 A12 A21 A22)的广义逆A(1,3),A(2),A+,Ad和Ag可以表示为X=(Sα1 -Aα11A12Sα2 -Aα22A21Sα1 Sα2)的条件;然后运用这些结果,得到分块矩阵A的M-P逆的几个表达式;最后给出一个求分块矩阵M-P逆的例子.【期刊名称】《上海师范大学学报(自然科学版)》【年(卷),期】2007(036)005【总页数】7页(P15-21)【关键词】Moore-penrose逆;Drazin逆;分块矩阵【作者】许赟;孙乐平【作者单位】上海师范大学,数理信息学院,上海,200234;上海师范大学,数理信息学院,上海,200234【正文语种】中文【中图分类】O1511 IntroductionGeneralized inverses of partitioned matrices have been discussed in many papers, especially the 2×2 block matrix(1)In [4,7,8], the authors gave some general expressions of the Moore-Penrose inverse of the partitioned matrix (1). The expressions of the drazin inverse of (1) appeared in [1,5,11,12]. Expressions of the generalized inverse under the rank conditions of the partitioned matrix were discussed in [4,9,10].The Moore-penrose inverse of a partitioned matrix in Banachiewicz-Schur form was studied by Jerzy K.Badsalary and George P.H.styan in [1]. It shows the conditions under which the Moore-penrose inverse of the partitioned matrix (1) can be expressed by the Banachiewicz-Schur form. Zhengbing extended their results in [2]. He studied the Banachiewicz-Schur form of the weighted M-P inverse and the weighted drazin inverse of the partitioned matrix (1).From [6] we know that for a nonsingular partitioned matrix A, it has been proved that if A11 and A22 are nonsingular, then S1,S2 are also nonsingular and the inverse of A can be expressed byIn this paper, we first consider what conditions the four blocks of A should satisfy if the generalized inverse of the partitioned matrix A has the expression of the following form(3)where S1=A11-A12Aα22A21,S2=A22-A21Aα11A12, and Mα stands for a certain generalized inverse of M. Then using the results, we derive some other expressions of the M-P inverse of the partitioned matrix A under some conditions.2 Main resultsLet matrices A, X be given by (1) and (3), andTheorem 1 Let the matrices A, X be given by (1) and (3). Then X∈ A{1,3}if A12∈ R(A11), A11∈ R(S1), A21∈ R(A22), A22∈ R(S2).(4)The conditions are independent of the choice of A11{1,3}, and S1{1,3}, S2{1,3}.Proof From the expressions (1) and (3), we can derive thatOn account of conditions A12∈ R(A11), and A11∈ R(S1), we can getSo (AXA)11=A11 follows.Similarly,(AXA)12=A12,(AXA)21=A21,(AXA)22=A22 can also be deduced under the conditions (4). The result AXA=A is proved.Next,Then =AX is easily obtained with S1{1,3}, S2{1,3}.It is clear that the conditions are independent of the choice of A22{1,3} andS2{1,3}.Theorem 2 Let the matrices A, X b e given by (1)and (3). Then X∈ A{2} ifA12∈ R(A11), A21∈ R(A22).(5)The conditions are independent of the choice of A11{2}, A22{2} and S1{2}, Proof By a straightfoward multiplication, we deriveImitaing the proof of Theorem 1, using the co nditions A12∈ R(A11), and A21∈ R(A22) to these expressions, we can obtain XAX=X.Theorem 3 If the four blocks of matrix A satisfy the conditions (4), and(6)then X=A+, where andProof From Theorem 1 and Theorem 2, we know that if the matrix A satisfies the conditions (4), we have the equationsMultiply X by A:(7)Suppose conditions (6) are satisfied. Then(8)because So, (XA)*=XA. Then the result X=A+follows.A12∈ R(A11), A21∈ R(A22),thenProof With the conditions we know S1=A11, S2=A22. Substitute S1=A11, S2=A22 into (6) and combine the proofs of Theorems 1 and 2. The result can be derived.Now we consider the Drazin inverse.Theorem 4 Let A12∈ ⊆⊆ Assume that the following equations(10)(11)(12)are all valid. Then X=Ad, where andProof By a straightforward computation and using conditions A12∈ we obtain thatMultiplying X by A and using condition (12), we obtainUsing (11), we derive (XA)12=0,(XA)21=0. Then from these aboveequations, we can easily derive AX=XA.⊆⊆Similarly, we can also deriveCombine the above two equations withThen XAX=X is deduced.Now we prove Ak+1X=Ak.It follows from the conditions A12∈ A21∈ ⊆⊆ thatBy induction, we getLet Ind(A11)=k1, Ind(A22)=k2, and k=max(k1,k2). Then The result Ak+1X=Ak is proved.Corollary 2 Let A12(A22)d A21=0,A21(A11)d A12=0. If(13)thenWith the conditions A12(A22)d A21=0 and A21(A11)d A12=0, we can get S1=A11, and S2=A22. The result is easily deduced by substitute it into the conditions of theorem 4.If Ind(A11)=Ind(A22)=1, then Ind(A)=1, thus a special case of drazin inverse, group inverse is derived.Theorem 5 Letand the conditions of Theorem 4(k=1) be satisfied, then X=Ag. Corollary 3 Let A12(A22)g A21=0,A21(A11)g A12=0. If(14)then3 ApplicationUsing the corollary 1, we show some other expressions of A+ which are simple and useful. With these expressions, we can compute the Moore-Penrose inverses of some huge matrices by computing the Moore-Penrose inverse of its blocks. It can simplify the process of the computation to some extent.First we need the following Result.Suppose N1 and N2 are two matrices of the same dimensions, andN=N1+N2, ifthen It is not hard to prove it by verifying that satisfies the penroseconditions (1)~(4).Based on this result, if we express(15)the following theorem gives the conditions under which the M-P inverse of the matrix sum can be written as the sum of the M-P inverse of the two matrices.(16)The conclusion can be deduced from the above result.We can also decompose A into(17)Using this result again, if we add conditions(18)to (17), we will have(19)Because we only need to deal with(20)(20) is the special case of the partitioned matrix of A with A12=0, Usingcorollary 1, the M-P of (20) can be deduced under some conditions. Simplifying the result, we get the following theorem.Theorem 7 Let matrix A satisfy conditions(21)Then(22)Similarly, we can derive the following theorem by decomposing A into(23)Theorem 8 If matrix A satisfies(24)then(25)We can also verify that the results of Theorem 7 and Theorem 8 satisfy the four equtions of the definition of the M-P inverse.Now, we set a example for theorem 7. Let We can compute thatSo A+ can be obtained from .It can also be verified that A+ satisfies the four equations of the Moore-penrose inverse.References:[1] BAKSALARY J K, STYAN G P H. Generalized inverses of partitioned matrices in Banachiweicz-Schur form[J]. Linear Algebra Appl, 2002,354: 41-47.[2] DRAGANA S, CVETKOVI C, ZHENG B. Weighted Generalized inverses of partitioned matrices in Banachiewicz-Schur form[J]. J Appl Math and Computing, 2006, 22(3): 175-184.[3] TIAN Y G. The Moore-penrose inverses of m×n block matrices and their applications[J]. Linear algebra and its appli-cations , 1998, 283:35-60. [4] GEORGE MARSAGLIA, GEORGE P H STYAN. Equalities and inequalities for Ranks of Matrices+[J]. Linear and Mul-tilinear Algebra, 1974,2: 269-292.[5] ROBERT H, LI X Z, WEI Y M. Reprensentations for The Drazin Inverse ofa 2×2 Block Matrix[J]. SIAM J Martrix A-nal Appl, 2006, 27(3): 757-771.[6] DUNCAN W J. Some devices for the solution of large sets of simultaneous linear equations[J].The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, seventh Series, 1944,35: 660-670.[7] MIAO J. General expression for the Moore-penrose inverse of a 2× block matrix[J]. Linear Algebra Appl, 1990,151: 1-15.[8] HUNG C H, MARKHAM T L. The Moore-penrose inverse of a partitioned matrix Algebra Appl, 1975,11: 73-86.[9] MARSAGLIA G, STYAN G P H. Rank conditions for generalized inverses of partitioned matrices[J]. Sankhya Ser A, 1974, 36: 437-442.[10]MEGER C D. Generalized inverses and ranks of block matrices[J]. SIAM JAppl Math, 1973, 25: 597-602.[11]WEI Y. Expressions for the Drazin inverse of a 2×2 block matrix[J]. Linear and Multilinear Algebra, 1998,45: 131-146.[12]MIAO J. Results of the Drazin inverse of block matrices[J].J Shanghai Normal University, 1989,18: 25-31.[13]WANG G R, WEI Y M, QIAO S Z. Generalized Inverse: Theory and computations[M]. Beijing: Science press, 2004.[14]CHEN Y L. Theory and methods of generalized inverses of matrices[M]. Nanjing: Nanjing normal university,2005.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Representations for the Drazin inverse of several block matrices with a generalized Schur complement equal to zero
BU Changjiang,LIU Guangfeng,BAI Shuyan
j =0 D D r -1 j =0 r -1 j =0 j =0 r -1 2j + 2 D
2
主要结果
B,
该文主 要 是 得 到 下 面 形 式 的 2 × 2 分 块 矩 阵 Drazin 逆表达式: M =
A21 = CA ( WA ) ( I - ( WA) BCA D ) + Σ CA π ( BCA π ) j ( ( WA) D ) Σ CA π ( BCA π ) j ( ( WA) D )
D
示中也有重要应用. 设 M =
矩阵 M 的广义 Schur 补给出分块矩阵的 Drazin 逆表示是近期的一个研究热点问题 . 这篇文章在分块矩阵 M 的 Schur 补 S 等于零,BCA π 是 r 次幂零矩阵且( I + BC( A D ) 2 ) ABCA π = O 的条件下给出分块矩阵 M 的 Drazin 逆表达式. 关键词: Drazin 逆; 分块矩阵; 指标; 广义 Schur 补 中图分类号: O015. 21 ; TP273 文献标识码: A 7043 ( 2011 ) 10139104 文章编号: 1006-
[
]
矩阵的 Drazin 逆表示不仅在矩阵代数中有重 要意义,而且在奇异差分方程、 广义系统、 马尔科夫 . 尤 链和迭代法等领域中都有十分重要的应用 [6 ] 其在奇异线性微分方程的解表示中 ,矩阵的 Drazin 逆理论更是不可或缺的工具. 1979 年,以二阶奇 Campbell 等[1]提出一个 2 × 2 分块矩 异系统为背景, 阵 Drazin 逆 表 达 式 的 open 问 题. 1983 年,Campbell[2]再次提出类似的 open 问题,引起学者们极大 的关注, 但这些问题至今未能完全解决. 近年来一 些学者在分块矩阵的子块满足一定条件下给出其 Drazin 逆表达式[7-14]. 在分块矩阵的广义 Schur 补
第 32 卷第 10 期 2011 年 10 月
哈 尔 滨 工 程 大 学 学 报 Journal of Harbin Engineering University
Vol. 32 №. 10 Oct. 2011
doi: 10. 3969 / j. issn. 1006 - 7043. 2011. 10. 023
O O , H =[ . ] C O] O
2
]
, H =
[
A + A D BC C
Aπ B O
],
= O,
2 因为 CA π BC = O 且 CA π BC = O. 所 以 H1 H2 = O,
H2 H1 H2 = O 且( H1 H2 ) 2 = O
2 因为 H2 = O, 所以,由引理 2 得 D D H D = H1 + H2 ( H1 ) 2 D + H1 H2 ( H1 ) 3
定理中所示. 下面给出定理 1 的推论,此 推 论 恰 好 是 文 献 [ 10] 的结果. 设分块矩阵 M 如同式 ( 1 ) . 若 BCA π 是 r 次幂零矩阵, ABCA π = O ,则 推论 MD = 其中:
(
R11 R21
D 3
R12 R22
)
D D 2 D , 其中: R11 = W - ( W ) BCA + BCA π
( College of Science,Harbin Engineering University,Harbin 150001 ,China)
Abstract : The representation of the Drazin inverse of a 2 × 2 block matrix not only has great theoretical value in the generalized inverse theory,but also plays an important role in the expression of the analytical solution of a generalA B ized system in control theory. Let complex matrix M = ,where A and D,are square and S = D - CA D B is C D the generalized Schur complement. Using the generalized Schur complement of block matrix M to give the representation of the Drazin inverse of a partitioned matrix is currently a hot research issue. In this paper,the authors gave the representations of the Drazin inverse of M when the generalized Schur complement S was zero,BCA π was rnilD 2 π potent matrix,and ( I + BC( A ) ) ABCA = O. Keywords: Drazin inverse; block matrix; index; generalized Schur complement
广义 Schur 补为零的一些分块矩阵的 Drazin 逆表达式
卜长江,刘广峰,白淑艳
( 哈尔滨工程大学 理学院, 黑龙江 哈尔滨 150001 ) 摘 要: 2 × 2 分块矩阵的 Drazin 逆表示不仅在广义逆理论中有重要的理论价值, 而且在控制理论中的广义系统解析表 S = D - CA B 是分块矩阵 M 的广义 Schur 补. 利用分块 [ C D ]是复数域上 2 × 2 分块矩阵, A B
r -1 j =0 2j + 1
+ Σ
( I - ( WA) BCA D ) ,
2j + 2
j =0 D
CA π ( BCA π )
r -1 j =0
是 CA π B = O 和 AA π B = O 成立的必要条件. 定理 2 设分块矩阵 M 的形式如同式 ( 1 ) . 若 π CA BC = O, AA π BC = O, 则 B11 B12 MD = . D 2 D 2 D C( Z ) C( Z ) A B + C( Z D ) 3 A π B
( ( WA) D )
r -1
( I - ( WA) D BCA D ) ,
2j + 2
M12 = Σ ( BCA π ) j ( ( WA) D ) M21 = Σ CA D ( BCA π )
j =0 j =0 r -1 j
B,
D
( ( WA )
r -1

2j + 1
( I -
j
( WA ) D BCA D ) ( ( WA) D )
D D -1 因为 M = QH Q , 所以 B11 B12 MD = . D 2 D 2 D C( Z ) C( Z ) A B + C( Z D ) 3 A π B
[
]
[
]
B12 、 Z 如定理中所示. 其中: B11 、 通过与定理 1 和定理 2 类似的证明方法分别给 出定理 3 和定理 4 . 定理 3 设分块矩阵 M 的形式如同式 ( 1 ) . 若 D CA π BCA π = O 且 ( A + BCA D ) BCA π = O, 则M =
[10 ] 2 P, Q ∈ Cn × n , Q2 = O , 若 P Q = O, D D D 2 QPQ = O 且( PQ) 2 = O, 则( P + Q) = P + Q( P ) +
· 1392·







r -1


第 32 卷
PQ( P D ) 3 .
A11 = Σ ( BCAπ ) j ( ( WA) D ) 2j + 1 ( I - ( WA) D BCAD ) , A12 = Σ ( BCA π ) j ( ( WA) D )
[
]
M22 = Σ CA D ( BCA π ) j ( ( WA ) D ) ( BCA π ) j ( ( WA) D ) W = I + BC( A D ) 2 . 证明: 由于 M = PNP 其中: P = I O
2 D -1 2j + 3
B + Σ CA π
D D D 2 其中: B11 = Z + A π BC( Z BC( Z ) ,
B,
B12 = ( I + A π BC( Z D BC( Z D ) × Z D ( A D B + Z D A π B) , Z = A + A D BC. -1 证明: 由于 M = QHQ ,令 H = H1 + H2 . 其中: Q = H1 =
,令 N = P1 + P2 , A + BCA D
π
A22 = CA D ( ( WA D ) 2 B +
r -1 j =0
Σ CA π ( BCA π ) j ( ( WA) D )
2j + 3
B,
MD =
相关文档
最新文档