广义逆矩阵
三矩阵相乘的广义逆

广义逆矩阵是线性代数中的一个重要概念,它可以用来解决线性方程组的求解等问题。
在这里,我将介绍广义逆矩阵的基本概念和性质,并讨论三矩阵相乘的广义逆的计算方法。
广义逆矩阵的定义:设 A 是一个 n 阶方阵,如果存在一个 n 阶方阵 B,使得 AB=BA=I,其中 I 是 n 阶单位矩阵,那么 B 就称为 A 的广义逆矩阵,记作 B=A^{-1}。
广义逆矩阵的性质:1. 如果 A 是可逆的,那么 A 的广义逆矩阵就是 A 的逆矩阵,即 A^{-1}=A^{-1}。
2. 如果 A 是非奇异的,那么 A 的广义逆矩阵就是 A 的伪逆矩阵,即 A^{-1}=A^+。
3. 如果 A 是奇异的,那么 A 的广义逆矩阵就是 A 的指数矩阵,即 A^{-1}=e^A。
4. 如果 A 是对称矩阵,那么 A 的广义逆矩阵也是对称矩阵,即 A^{-1}=A^{T}。
三矩阵相乘的广义逆的计算方法:设 A、B、C 是三个 n 阶方阵,那么它们的广义逆矩阵可以通过以下公式计算:(ABC)^{-1}=C^{-1}B^{-1}A^{-1}其中 C^{-1}、B^{-1}、A^{-1} 分别是 C、B、A 的广义逆矩阵。
这个公式可以通过矩阵运算的性质来证明,也可以通过计算 A、B、C 的指数矩阵来得到。
例如,如果 A、B、C 都是可逆的,那么它们的广义逆矩阵就是它们的逆矩阵,即(ABC)^{-1}=A^{-1}B^{-1}C^{-1}如果 A、B、C 都是非奇异的,那么它们的广义逆矩阵就是它们的伪逆矩阵,即(ABC)^{-1}=A^+B^+C^+如果 A、B、C 都是奇异的,那么它们的广义逆矩阵就是它们的指数矩阵,即(ABC)^{-1}=e^Ae^Be^C如果 A 是对称矩阵,B、C 是对称矩阵,那么它们的广义逆矩阵也是对称矩阵,即(ABC)^{-1}=(B^TA^TC^T)^{-1}=(C^TA^TB^T)^{-1}需要注意的是,三矩阵相乘的广义逆矩阵并不一定存在,例如如果 A、B、C 中有一个是零矩阵,那么它们的广义逆矩阵就不存在。
第4章 矩阵的广义逆

定义 3 设 A 为一个 m n 复矩阵,若有一个 n m 复矩阵 G 存在, 使( 1 )成立,即 AGA A ,则称 G 为 A 的一个 {1}-广义逆,记为
G A{1} 或 G A{1} ,也称 G 为 A 的一个减号广义逆,记为 G A , 即有 AA A A . (5)
A为列满秩
7
推论 设 A C mn , 则
(1) A左可逆的充要条件是 N ( A) {0};
( 2) A右可逆的充要条件是 R( A) C m .
证 充分性:N ( A) {0}
rank ( A) n
必要性: A左可逆
Ax 0只有零解
A为列满秩
1 ALபைடு நூலகம்A En
x N ( A)
由于 M-P 的 4 个方程都各有一定的解释,并且应用起来各有方 便之处,所以出于不同的目的,常常考虑满足部分方程的 G ,总之, 按照定义 2 可推得,满足 1 个,2 个,3 个,4 个 M-P 方程的广义逆 矩阵共有 15 类,即
1 2 3 4 C4 C4 C4 C4 15 .
使得
AGb b ( b R( A))
m n
则称G为A的广义逆矩阵 , 记为G A .
定理1设 A C
, 则A 存在广义逆矩阵A 的
充要条件是存在 G C nm , 使其满足AGA A
14
定理1 设 A C
m n
, 则A 存在广义逆矩阵A 的
nm
充要条件是存在 G C
15
由AGA A可得: AGAx0 Ax0 b 即,AGb b, 说明x Gb是方程 Ax b 的解. G是A的减号逆 , G A . m n nm 设 A C , 且 A C 是A的一个广义 推论 1 逆矩阵A , 则
矩阵论广义逆矩阵

解(1)例4.9已求得
于是
(2)
由于 的惟一性,它所具有的一些性质与通常逆矩阵的性质相仿,归纳如下.
定理6.12设 ,则
(1) ;
(2) ,
(3) ,其中λ∈C,且 如式(6.3);
(4) ;
(5) ;
(6) ;
(7) , ;
(8)当U和V分别是m阶与n阶酉矩阵时,有
(9) 的充分必要条件是rankA=m;
则对任意 矩阵
是A的{1}-逆;当L=O时,X是A的{1,2}-逆.
证因为
容易验证,由式(6.1)给出的矩阵X满足AXA=A.所以X∈A{1}.
当L=O时,易知式(6.1)的矩阵X还满足XAX=A,故X∈A{1,2}.
证毕
需要指出的是,式(6.1)中矩阵L任意变化时,所得到的矩阵X并非是满足AXA=A的所有矩阵,即只是A{1}的一个子集.
则有
A=( )=AB( )=ABW
证毕
在式(6.1)中取L=O,即有X∈A{1,2},此时rankX=r=rankA.这个结论具有一般性.
定理6.8设 ,则 的充分必要条件是rankX=rankA.
证若X∈A{1,2},则有
rankA=rank(AXA)≤rankX=rank(XAX)≤rankA
即rankX=rankA.
第六章广义逆矩阵
当A是n阶方阵,且detA≠0时,A的逆矩阵 才存在,此时线性方程组Ax=b的解可以简洁地表示为x= .近几十年来,由于解决各种问题的需要,人们把逆矩阵的概念推广到不可逆方阵或长方矩阵上,从而产生了所谓的广义逆矩阵.这种广义逆矩阵具有通常逆矩阵的部分性质,并且在方阵可逆时,它与通常的逆矩阵相一致;而且这种广义逆矩阵可以给出线性方程组(包括相容的和矛盾的方程组)各种“解”的统一描述.
矩阵的广义逆及其应用.ppt

第五章 矩阵的广义逆
§1 广义逆矩阵
(6) 若F是列满秩矩阵,则 F (F H F )1 F H
(7) 若G是行满秩矩阵,则 G GH (GGH )1
(8) 若矩阵A的满秩分解为A FG,则有 A G F ;
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
第五章 矩阵的广义逆
§1 广义逆矩阵 一、矩阵的广义逆
设A Rnn,对于线性方程组 Ax b,当A可逆时, 方程组有唯一解:x A1b.
若矩阵 A不可逆时,如何求解方程组 Ax b?
更一般,当矩阵 A Rmn不是方阵时,如何讨论 方程组 Ax b的解, 其中x Rn,b Rm ? 为了分析和解决上述问题,引入广义逆的概念.
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
§1 广义逆矩阵
定理2:设A Rmn,b Rm,x Rn,若性方程组 Ax b 是相容的,即方程组Ax b 有解,则其
通解为: x Ab (In A A)t,t是任意n 1向量. 证明:首先证明t Rn,x Ab (In A A)t是 方程组的解,然后证明方程组的任一解x,均可 表示成x Ab (In A A)t的形式.
A
1
1
1
2
(3)(1)3
0
3 3 2 4
0
1 2 4
0
1
2
0 4 8
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
§1 广义逆矩阵
1
A
0
0
1 2 4 (1)(2)2 1 1 0 0
工程矩阵理论(第6章-矩阵的广义逆)

矩阵的广义逆可以用于求解线性方程组,特别是当系数矩阵奇异或接近奇异时,广义逆提供了有效的 解决方案。
最小二乘解
在最小二乘问题中,广义逆可以找到使得残差平方和最小的解,这在数据分析和统计中非常有用。
在控制论中的应用
系统稳定性分析
在控制系统中,广义逆可以用于分析 系统的稳定性,通过计算系统的极点 来评估系统的动态行为。
04
矩阵的广义逆的存在性条件
存在性条件
矩阵A的秩为n
矩阵A的秩必须等于其维数n,即 $rank(A) = n$,以保证存在一个广义逆 矩阵。
VS
线性方程组有解
矩阵A所对应的线性方程组必须有解,即 系数矩阵A的行列式值不为零,即 $det(A) neq 0$。
唯一性条件
要点一
矩阵A为非奇异矩阵
矩阵A必须是非奇异矩阵,即其行列式值不为零,即 $det(A) neq 0$,以保证广义逆矩阵的唯一性。
程实际需求。
工程实例三:最优化问题求解
总结词
最优化问题求解是矩阵广义逆的一个重要应用方向。
详细描述
在工程领域中,经常需要解决各种最优化问题,如线 性规划、二次规划、非线性规划等。这些问题的数学 模型通常可以转化为矩阵形式。通过利用矩阵的广义 逆,可以高效地求解这些最优化问题,为工程实践提 供更好的解决方案。
最小二乘法的优点是简单易行,适用于大规模数据的计算。 但是,它只能找到一个近似解,而不是精确解。
迭代法
迭代法是一种通过不断迭代来逼近解的方法。在矩阵的广 义逆中,迭代法可以用来求解线性方程组的迭代解。通过 不断迭代更新解向量,最终逼近方程组的解。
迭代法的优点是适用于大规模数据的计算,且可以找到精 确解。但是,迭代法的收敛速度较慢,需要多次迭代才能 得到满意的结果。
广义逆矩阵作用

广义逆矩阵作用广义逆矩阵,也叫伪逆矩阵,是矩阵理论中的一个重要概念。
在线性代数和应用数学中,矩阵的逆矩阵是一个很常见的概念,但是有些矩阵并不存在逆矩阵。
为了解决这个问题,广义逆矩阵应运而生。
广义逆矩阵是对非方阵进行求逆运算的一种方法。
一般来说,如果一个矩阵存在逆矩阵,那么它的逆矩阵一定是唯一的。
但是对于非方阵,它们并没有逆矩阵,只能求得广义逆矩阵。
那么广义逆矩阵有什么作用呢?首先,广义逆矩阵可以用来求解线性方程组的最小二乘解。
在实际问题中,经常会遇到超定线性方程组,即方程的个数大于未知数的个数。
这时候,线性方程组一般是无解的,但是可以使用广义逆矩阵来求解最小二乘解,使得方程组的残差最小化。
广义逆矩阵还可以用于解决矩阵方程。
矩阵方程是指形如AX=B的方程,其中A是一个矩阵,X和B是向量或矩阵。
如果A存在逆矩阵,那么方程可以直接求解,即X=A^(-1)B。
但是如果A不存在逆矩阵,就需要使用广义逆矩阵来求解。
广义逆矩阵的求解方法有很多种,其中最常用的方法是Moore-Penrose广义逆矩阵。
Moore-Penrose广义逆矩阵是广义逆矩阵的一种特殊形式,它具有很多良好的性质。
对于任意一个矩阵A,它的Moore-Penrose广义逆矩阵可以通过以下方法求得:首先计算A的转置矩阵A^T,然后计算A^TA的逆矩阵(A^TA)^(-1),最后再将结果与A^T相乘,即可得到A的Moore-Penrose广义逆矩阵。
广义逆矩阵在实际应用中有着广泛的应用。
例如,在信号处理领域中,广义逆矩阵可以用于解决信号重构问题,通过最小二乘法使得信号的重构误差最小。
在机器学习和数据挖掘中,广义逆矩阵可以用于降维和特征选择,帮助提取数据中的关键特征。
广义逆矩阵还在控制理论和系统工程中扮演重要角色。
在控制系统设计中,经常需要求解线性方程组,而广义逆矩阵可以用于求解最优控制器的增益矩阵。
在系统工程中,广义逆矩阵可以用于求解线性约束问题,例如最小二乘估计以及线性规划等。
广义逆的性质与应用

广义逆的性质与应用广义逆是矩阵理论中的重要概念,广义逆的性质与应用涵盖了多个领域,包括线性代数、最小二乘法、控制论、信号处理等。
本文将介绍广义逆的定义、性质及其在不同领域中的应用。
一、定义与性质1.1 定义广义逆也被称为伪逆或摩尔-彭若斯广义逆,是对于非方阵的矩阵而言的一种逆。
对于任意的m x n矩阵A,它的广义逆记作A^+ ,满足以下条件:1) AA^+A = A2) A^+AA^+ = A^+3) (AA^+)^T = AA^+4) (A^+A)^T = A^+A1.2 性质广义逆具有以下一些重要性质:1) 如果A是可逆矩阵,则A的广义逆等于A的逆。
2) A的广义逆是唯一的。
3) 两个矩阵的广义逆的乘积等于它们各自广义逆的乘积。
4) 广义逆具有非负性:如果A的元素都是非负的,则A的广义逆的元素也都是非负的。
5) 当A是满秩矩阵时,AA^+ = I,即A乘以它的广义逆等于单位矩阵。
二、应用领域2.1 最小二乘法最小二乘法是一种常用于解决拟合问题的数学方法,广义逆在最小二乘法中起着重要作用。
对于线性方程组Ax=b,其中A是一个非方阵,x和b是两个向量,如果该方程组无解,我们可以通过广义逆来寻找一个最优解,即使得Ax尽量接近b的解x^* = A^+b。
2.2 控制论广义逆在控制论中的应用主要是在系统建模和控制器设计中。
在一些复杂的系统中,往往无法直接求解系统的解析解。
通过广义逆,我们可以得到一种近似解,在控制器设计中,可以利用广义逆来求解动态系统的逆动力学问题。
2.3 信号处理广义逆在信号处理中也起着重要作用,特别是在图像恢复、压缩感知以及信号降噪等方面的应用。
通过广义逆,可以对噪声干扰下的信号进行恢复和重构,提高信号的质量和准确性。
2.4 数据挖掘在数据挖掘中,广义逆被广泛应用于矩阵分解、推荐系统和聚类分析等领域。
通过广义逆,可以对大量的数据进行降维处理,提取有效的特征,并用于分类和预测任务。
三、总结广义逆作为矩阵理论的重要内容,具有广泛的应用价值。
广义逆矩阵

第六章 广义逆广义逆矩阵的概念是方阵逆矩阵概念的推广,广义逆矩阵的基本知识是矩阵理论的重要组成部分,其在数理统计、数值分析、博弈论、控制论、计量经济、电网理论等中有重要的应用。
本章首先给出各种广义逆矩阵的概念,重点介绍矩阵{}1-逆及矩阵Moore-Penrose 逆的性质、计算方法及这两种广义逆矩阵在线性方程组求解中的应用,最后给出方阵的群逆与Drazin 逆的基本性质。
§ 广义逆矩阵的概述广义逆矩阵的概念渊源于线性方程组的求解问题。
设n C 为复n 维向量空间,m n C ⨯为复m n ⨯矩阵全体。
设矩阵m n A C ⨯∈,考虑线性方程组Ax b = (6-1) 其中,m b C ∈为给定的m 维向量,n x C ∈为待定的n 维向量。
定义1 若存在向量n x C ∈满足线性方程组(6-1),则称线性方程组(6-1)是相容的;否则称线性方程组(6-1)是不相容的。
众所周知,当A 为可逆矩阵时,线性方程组(6-1)有唯一解1x A b -=,其中1A -是A 的逆矩阵。
当A 为不可逆矩阵或长方矩阵时,相容线性方程组(6-1)有无数解;不相容线性方程组(6-1)无解,但它有最小二乘解,即求n x C ∈,使得()min y R A Ax b y b ∈-=- (6-2)成立,其中代表任意一种向量范数,{}(),m n R A y C y Ax x C =∈=∀∈。
上述两种情况的解是否也能表示成一种紧凑的形式x Gb =,其中,G 是某个n m ⨯矩阵? 这个矩阵G 是通常逆矩阵的推广。
1920年,. Moore 首先提出广义逆矩阵的概念,由于Moore 的方程过于抽象,并未引起人们的重视。
1955年,R. Penrose 给出如下比较直观和实用的广义逆矩阵的概念。
定义2 设矩阵m n A C ⨯∈,若存在矩阵n m X C ⨯∈满足下列Penrose 方程(1)AXA A =; (2)XAX X =; (3)()H AX AX =; (4)()H XA XA =则称X 为A 的Moore-Penrose 逆,记为A +。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AXA A
(P1)
XAX X
AX H AX
(P2 ) ( P3 )
XAH XA (P4 )
如果矩阵G仅满足其中的一个或几个时,可以定义 不同的广义逆矩阵。
因此,共可定义 C41 C42 C43 C44 15 类不同的广义逆。
由A+的存在性可知,15类广义逆都存在,除A+是唯一确定的外, 其余各类广义逆矩阵都不唯一确定。
存在性证明
设 rankA r, 若 r 0, 则A是 m n 阶零矩阵,可以 验证 n m阶零矩阵满足四个方程。
设r 0,由满秩分解定理知,存在B Crmr ,C Crrn , 使得A BC
令X C H (CC H )1(BH B)1 BH
可以验证X满足广义逆矩阵方程
对于矩阵方程
几类弱逆
G A Y A AYAA
此定理表明:只要求出 A中1 的一个元素,就可得到 A1 中所有的元素。
广义逆矩阵A+的计算:方法一 利用满秩分解
如果矩阵A有满秩分解A=BC,则有A+的表达式,即
A C H (CC H )1(BH B)1 BH
如果A是非奇异矩阵,则 A1 C并1B且1 由上面的公式 计算出 A ,C从1B而1
方程 AXA A
(P1 )
XAX X
AX H AX
(P2 ) (P3 )
---广义逆矩阵方程
XAH XA (P4 )
则称X为A的Moor –Penrose逆,记为A+
例:容易由定义直接验算:
若 A 1 1,
0 0
则
1 0
A
2 1
2
0
定理 设 A C mn,A+存在且唯一,即广义矩阵方程组 有唯一解 X C nm
2)A的减号逆A-不唯一。
例:设
A
1 1
0 0,
1 0
容易验证B 1 0 0, C 1 0 0
0 1 0 0 0 1
均满足 ABA A, ACA A, 故B,C都是A的减号逆.
3)矩阵A有唯一的A-充分必要条件是A为非奇异矩阵,
此时
A-=A-1
定理 A{1}的表示通式
设A Crmn,A A{1}是一个给定的广义逆, Y C nm是任意矩阵 , 则A{1}的通式为
A A1
因此广义逆A+是通常逆矩阵概念的一种推广。 广义逆矩阵A+与通常逆矩阵有许多类似的性质,但也有一些不 同。
如果矩阵A是行满秩的,A有满秩分解A = Im A,
则A+的表达式为 A AH ( AAH )1
如果矩阵A是列满秩的,A有满秩分解A = A I n, 则A+的表达式为
A ( AH A)1 AH
广义逆矩阵方程
设A是n阶非奇异矩阵,则存在唯一的逆矩阵A-1, 它具有如下性质:
AA1 I
A1 A I
AA1 A A
A1 AA1 A1
或者说, A-1是下述矩阵方程组的解
AXA A
(P1 )
XAX X
AX H AX
(P2 ) (P3 )
XAH XA (P4 )
设 A C mn , 若矩阵 X C nm 满足如下四个(Penrose)
几种常用的广义逆矩阵
A{1},它的形式记为 A
A{1,2},它的形式记为
Ar --自反广义逆
A{1,3},它的形式记为
Al --最小二乘广义逆
A{1,4},它的形式记为
Am 最小范数广义逆
广义逆A-
A{1}是指仅满足第一个Penrose方程的广义逆,即若
AA-1A=A, 则记 A A{1}
说明: 1)利用初等行变换,可以求得A-
则容易验证: A VDU H .
其中
D
1 0
0 0
广义逆集合 对于矩阵 A C mn ,记
A{i} ={ G Cnm |G满足第i个Penrose方程} A{i,j} ={ G Cnm |G满足第i,j个Penrose方程}
A{i ,j ,k} ={ G Cnm |G满足第i,j,k个Penrose方程}
各类广义逆的关系
{A} A{1,2,3,4} A{i, j,k} A{i, j} A{i}
把逆矩阵推广到不可逆方阵或长方矩阵上,这就是所谓的 广义逆矩阵。
广义逆矩阵具有通常逆矩阵的部分性质,并且在方阵可逆 时,它与通常的逆矩阵一致,而且广义逆矩阵可以给出线性 方程组(包括相容的和矛盾方程组)各种解的统一形式。
主要内容: 1·广义逆矩阵及其分类 2·A+的计算 3·几类弱逆 4·广义逆矩阵与线性方程组的解1Biblioteka 2 010
101
6 1
11 6
2 3
3
1
2
6 1
1 1
2
1 1
1 4
33
1 1
1 2 5 6
1 2 6 5
广义逆矩阵A+的计算:方法二--奇异值法
设矩阵 A C的rmn奇异值分解为A=UDVH 其中U , V 分别是m阶、n阶酉矩阵,
D
0
00, diag(1, 2, , r )
特别地,设 为n维列向量,且 0, 则 ( H)1 H
设 为n维行向量,且 0, 则 H ( H )1
例1:
求广义逆
1 A 1
0 1
0 0
解 由于A是行满秩的,故
A AH ( AAH ) 1
1 0
0
1 0
0
1
1 1
1 0
[11
0 1
0 0
0 0
1]1 1
1 1 0
第七章 广义逆矩阵
广义逆矩阵是逆矩阵的推广,与线性方程组的求解有密切 联系。给定一个线性方程组 Ax=b,当矩阵A可逆时,线性 方程组的解可表示为x=A-1 b
当矩阵A是奇异矩阵或不是方阵时,线性方程组的解应如何表 示呢?当线性方程组是矛盾方程,或者说是不相容方程时,线 性方程组能否有其它意义下的解,这种解又应当如何表示呢?
矩阵A中分别有两行、两列对应成比例,因此A既不是行 满秩也不是列满秩
首先利用初等行变换求出A的Hermite标准型H为:
1 2 0 1 H 0 0 1 1,
0
设A的满秩分解为 A
0
0
BC
0
,则
B
2 1
1 1 ,
C 1 2 0
1
1 2
0 0 1 1
于是
A C H (CC H )1(BH B)1 BH
11
1 1 2
1 1 0
0 1 0
例2:设
1 A 2,
3
求 A
由A为列向量,即为列满秩,则 A ( AH A)1 AH
从而 A 1 1 2 3
14 若A既不是行满秩也不是列满秩,则需首先对A进行满秩
分解,再求 A
例3:已知
2 A 1
4 2
1 1
1 2,
求 A
1 2 2 1